1
|
Ghassemifard L, Hasanlu M, Parsamanesh N, Atkin SL, Almahmeed W, Sahebkar A. Cell Therapies and Gene Therapy for Diabetes: Current Progress. Curr Diabetes Rev 2025; 21:e130524229899. [PMID: 38747221 DOI: 10.2174/0115733998292392240425122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2025]
Abstract
The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.
Collapse
Affiliation(s)
- Leila Ghassemifard
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masumeh Hasanlu
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Wal P, Aziz N, Prajapati H, Soni S, Wal A. Current Landscape of Various Techniques and Methods of Gene Therapy through CRISPR Cas9 along with its Pharmacological and Interventional Therapies in the Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 20:e201023222414. [PMID: 37867274 DOI: 10.2174/0115733998263079231011073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is frequently referred to as a "lifestyle illness". In 2000, India (31.7 million) had the greatest global prevalence of diabetes mellitus, followed by China (20.8 million), the United States (17.7 million), and other countries. In recent years, the treatment of gene therapy (T2DM) has attracted intensive interest. OBJECTIVE We aimed to critically review the literature on the various techniques and methods, which may be a possible novel approach through the gene therapy CRISPR Cas9 and some other gene editing techniques for T2DM. Interventional and pharmacological approaches for the treatment of T2DM were also included to identify novel therapies for its treatment. METHOD An extensive literature survey was done on databases like PubMed, Elsevier, Science Direct and Springer. CONCLUSION It can be concluded from the study that recent advancements in gene-editing technologies, such as CRISPR Cas9, have opened new avenues for the development of novel therapeutic approaches for T2DM. CRISPR Cas9 is a powerful tool that enables precise and targeted modifications of the genome.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Shashank Soni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| |
Collapse
|
3
|
Mansourzadeh S, Esmaeili F, Shabani L, Gharibi S. Trans-differentiation of mouse mesenchymal stem cells into pancreatic β-like cells by a traditional anti-diabetic medicinal herb Medicago sativa L. J Tradit Complement Med 2022; 12:466-476. [PMID: 36081823 PMCID: PMC9446024 DOI: 10.1016/j.jtcme.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND AIM Medicago sativa L. is a medicinal herb first cultivated in ancient Iran. Traditionally, it has been utilized for the treatment of several disorders. The plant has been in the human diet for at least 1500 years. Although the hypoglycaemic and anti-diabetic effects of the plant have been approved in traditional medicine, further investigations are needed to support the rational use of M. sativa by humans. This project aimed to evaluate the trans-differentiation potential of bone marrow mesenchymal stem cells (MSCs) to pancreatic β-like cells (insulin-producing cells; IPCs) under the influence of M. sativa extract. EXPERIMENTAL PROCEDURE Bone marrow MSCs isolated, characterized, and then treated by flower or leaf extract of M. sativa. Beta-cell characteristics of the differentiated cells were evaluated by several techniques, including specific staining, QPCR, immunofluorescence, and ELISA. RESULTS The results showed that the differentiated cells were able to express some specific pancreatic genes (PDX-1, insulin1, and insulin2) and proteins (insulin receptor beta, insulin, proinsulin, and C peptide). Furthermore, ELISA analysis indicated the ability of these cells in the production and secretion of insulin, after exposure to glucose. CONCLUSION Overall, both the flower and leaf extract of M. sativa had the potential of differentiation induction of MSCs into IPCs with the characteristics of pancreatic β-like cells. Therefore, M. sativa, as an herbal drug, may be beneficial for the treatment of diseases including diabetes.
Collapse
Affiliation(s)
- S. Mansourzadeh
- Research Institute of Biotechnology, Shahrekord University, Shahrekord 115, Iran
| | - F. Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjerib Avenue, Isfahan, 8174673441, Iran
| | - L. Shabani
- Research Institute of Biotechnology, Shahrekord University, Shahrekord 115, Iran
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord 115, Iran
| | - Sh Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Yang Y, Liu S, He C, Chen Z, Lyu T, Zeng L, Wang L, Zhang F, Chen H, Zhao RC. Long Non-coding RNA Regulation of Mesenchymal Stem Cell Homeostasis and Differentiation: Advances, Challenges, and Perspectives. Front Cell Dev Biol 2021; 9:711005. [PMID: 34368161 PMCID: PMC8339964 DOI: 10.3389/fcell.2021.711005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Given the self-renewal, multi-differentiation, immunoregulatory, and tissue maintenance properties, mesenchymal stem cells (MSCs) are promising candidates for stem cell-based therapies. Breakthroughs have been made in uncovering MSCs as key contributors to homeostasis and the regenerative repair of tissues and organs derived from three germ layers. MSC differentiation into specialized cell types is sophisticatedly regulated, and accumulating evidence suggests long non-coding RNAs (lncRNAs) as the master regulators of various biological processes including the maintenance of homeostasis and multi-differentiation functions through epigenetic, transcriptional, and post-translational mechanisms. LncRNAs are ubiquitous and generally referred to as non-coding transcripts longer than 200 bp. Most lncRNAs are evolutionary conserved and species-specific; however, the weak conservation of their sequences across species does not affect their diverse biological functions. Although numerous lncRNAs have been annotated and studied, they are nevertheless only the tip of the iceberg; the rest remain to be discovered. In this review, we characterize MSC functions in homeostasis and highlight recent advances on the functions and mechanisms of lncRNAs in regulating MSC homeostasis and differentiation. We also discuss the current challenges and perspectives for understanding the roles of lncRNAs in MSC functions in homeostasis, which could help develop promising targets for MSC-based therapies.
Collapse
Affiliation(s)
- Yanlei Yang
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Beijing Key Laboratory (No. BZO381), School of Basic Medicine, Center of Excellence in Tissue Engineering, Peking Union Medical College Hospital, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Suying Liu
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chengmei He
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhilei Chen
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Taibiao Lyu
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liuting Zeng
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Wang
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hua Chen
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Robert Chunhua Zhao
- Beijing Key Laboratory (No. BZO381), School of Basic Medicine, Center of Excellence in Tissue Engineering, Peking Union Medical College Hospital, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
In vitro and in vivo effects of insulin-producing cells generated by xeno-antigen free 3D culture with RCP piece. Sci Rep 2019; 9:10759. [PMID: 31341242 PMCID: PMC6656749 DOI: 10.1038/s41598-019-47257-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
To establish widespread cell therapy for type 1 diabetes mellitus, we aimed to develop an effective protocol for generating insulin-producing cells (IPCs) from adipose-derived stem cells (ADSCs). We established a 3D culture using a human recombinant peptide (RCP) petaloid μ-piece with xeno-antigen free reagents. Briefly, we employed our two-step protocol to differentiate ADSCs in 96-well dishes and cultured cells in xeno-antigen free reagents with 0.1 mg/mL RCP μ-piece for 7 days (step 1), followed by addition of histone deacetylase inhibitor for 14 days (step 2). Generated IPCs were strongly stained with dithizone, anti-insulin antibody at day 21, and microstructures resembling insulin secretory granules were detected by electron microscopy. Glucose stimulation index (maximum value, 4.9) and MAFA mRNA expression were significantly higher in 3D cultured cells compared with conventionally cultured cells (P < 0.01 and P < 0.05, respectively). The hyperglycaemic state of streptozotocin-induced diabetic nude mice converted to normoglycaemic state around 14 days after transplantation of 96 IPCs under kidney capsule or intra-mesentery. Histological evaluation revealed that insulin and C-peptide positive structures existed at day 120. Our established xeno-antigen free and RCP petaloid μ-piece 3D culture method for generating IPCs may be suitable for clinical application, due to the proven effectiveness in vitro and in vivo.
Collapse
|
6
|
Wang S, Zhu R, Li H, Li J, Han Q, Zhao RC. Mesenchymal stem cells and immune disorders: from basic science to clinical transition. Front Med 2019; 13:138-151. [PMID: 30062557 DOI: 10.1007/s11684-018-0627-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/12/2017] [Indexed: 02/08/2023]
Abstract
As a promising candidate seed cell type in regenerative medicine, mesenchymal stem cells (MSCs) have attracted considerable attention. The unique capacity of MSCs to exert a regulatory effect on immunity in an autologous/allergenic manner makes them an attractive therapeutic cell type for immune disorders. In this review, we discussed the current knowledge of and advances in MSCs, including its basic biological properties, i.e., multilineage differentiation, secretome, and immunomodulation. Specifically, on the basis of our previous work, we proposed three new concepts of MSCs, i.e., "subtotipotent stem cell" hypothesis, MSC system, and "Yin and Yang" balance of MSC regulation, which may bring new insights into our understanding of MSCs. Furthermore, we analyzed data from the Clinical Trials database ( http://clinicaltrials.gov ) on registered clinical trials using MSCs to treat a variety of immune diseases, such as graft-versus-host disease, systemic lupus erythematosus, and multiple sclerosis. In addition, we highlighted MSC clinical trials in China and discussed the challenges and future directions in the field of MSC clinical application.
Collapse
Affiliation(s)
- Shihua Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Peking Union Medical College Hospital, Beijing, 100005, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Rongjia Zhu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Peking Union Medical College Hospital, Beijing, 100005, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hongling Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Peking Union Medical College Hospital, Beijing, 100005, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Peking Union Medical College Hospital, Beijing, 100005, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Qin Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
- School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- Peking Union Medical College Hospital, Beijing, 100005, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Peking Union Medical College Hospital, Beijing, 100005, China.
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
7
|
Navaei-Nigjeh M, Moloudizargari M, Baeeri M, Gholami M, Lotfibakhshaiesh N, Soleimani M, Vasheghani-Farahani E, Ai J, Abdollahi M. Reduction of marginal mass required for successful islet transplantation in a diabetic rat model using adipose tissue-derived mesenchymal stromal cells. Cytotherapy 2018; 20:1124-1142. [PMID: 30068495 DOI: 10.1016/j.jcyt.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Adipose tissue-derived mesenchymal stromal cells (AT-MSCs), widely known as multipotent progenitors, release several cytokines that support cell survival and repair. There are in vitro and in vivo studies reporting the regenerative role of AT-MSCs possibly mediated by their protective effects on functional islet cells as well as their capacity to differentiate into insulin-producing cells (IPCs). METHODS On such a basis, our goal in the present study was to use three different models including direct and indirect co-cultures and islet-derived conditioned medium (CM) to differentiate AT-MSCs into IPCs and to illuminate the molecular mechanisms of the beneficial impact of AT-MSCs on pancreatic islet functionality. Furthermore, we combined in vitro co-culture of islets and AT-MSCs with in vivo assessment of islet graft function to assess whether co-transplantation of islets with AT-MSCs can reduce marginal mass required for successful islet transplantation and prolong graft function in a diabetic rat model. RESULTS Our findings demonstrated that AT-MSCs are suitable for creating a microenvironment favorable for the repair and longevity of the pancreas β cells through the improvement of islet survival and maintenance of cell morphology and insulin secretion due to their potent properties in differentiation. Most importantly, hybrid transplantation of islets with AT-MSCs significantly promoted survival, engraftment and insulin-producing function of the graft and reduced the islet mass required for reversal of diabetes. CONCLUSIONS This strategy might be of therapeutic potential solving the problem of donor islet material loss that currently limits the application of allogeneic islet transplantation as a more widespread therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Mona Navaei-Nigjeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| | - Milad Moloudizargari
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Elham H, Mahmoud H. The Effect of Pancreas Islet-Releasing Factors on the Direction of Embryonic Stem Cells Towards Pdx1 Expressing Cells. Appl Biochem Biotechnol 2018; 186:371-383. [DOI: 10.1007/s12010-018-2733-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
|
9
|
Abstract
Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlike the BMSCs, ASCs can be easily harvested in large amounts with minimal invasive procedures. The combination of these properties suggests that these cells may be a useful tool in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Simone Ciuffi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci 2017; 74:2587-2600. [PMID: 28224204 PMCID: PMC11107561 DOI: 10.1007/s00018-017-2484-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Identification of reference genes for qPCR analysis during hASC long culture maintenance. PLoS One 2017; 12:e0170918. [PMID: 28182697 PMCID: PMC5300122 DOI: 10.1371/journal.pone.0170918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/12/2017] [Indexed: 01/15/2023] Open
Abstract
Up to now quantitative PCR based assay is the most common method for characterizing or confirming gene expression patterns and comparing mRNA levels in different sample populations. Since this technique is relative easy and low cost compared to other methods of characterization, e.g. flow cytometry, we used it to typify human adipose-derived stem cells (hASCs). hASCs possess several characteristics that make them attractive for scientific research and clinical applications. Accurate normalization of gene expression relies on good selection of reference genes and the best way to choose them appropriately is to follow the common rule of the “Best 3”, at least three reference genes, three different validation software and three sample replicates. Analysis was performed on hASCs cultivated until the eleventh cell confluence using twelve candidate reference genes, initially selected from literature, whose stability was evaluated by the algorithms NormFinder, BestKeeper, RefFinder and IdealRef, a home-made version of GeNorm. The best gene panel (RPL13A, RPS18, GAPDH, B2M, PPIA and ACTB), determined in one patient by IdealRef calculation, was then investigated in other four donors. Although patients demonstrated a certain gene expression variability, we can assert that ACTB is the most unreliable gene whereas ribosomal proteins (RPL13A and RPS18) show minor inconstancy in their mRNA expression. This work underlines the importance of validating reference genes before conducting each experiment and proposes a free software as alternative to those existing.
Collapse
|
12
|
Frese L, Dijkman PE, Hoerstrup SP. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus Med Hemother 2016; 43:268-274. [PMID: 27721702 DOI: 10.1159/000448180] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Petra E Dijkman
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Mehrfarjam Z, Esmaeili F, Shabani L, Ebrahimie E. Induction of pancreatic β cell gene expression in mesenchymal stem cells. Cell Biol Int 2016; 40:486-500. [DOI: 10.1002/cbin.10567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Zahra Mehrfarjam
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; P.O. Box 681499468 Khorramabad Iran
| | - Fariba Esmaeili
- Faculty of Basic Sciences; Department of Biology; University of Isfahan; P.O. Box 8174673441 Isfahan Iran
- Research Institute of Biotechnology; Shahrekord University; P.O. Box 115 Shahrekord Iran
| | - Leila Shabani
- Research Institute of Biotechnology; Shahrekord University; P.O. Box 115 Shahrekord Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology; Shiraz University; Shiraz Iran
- Division of Information Technology, Engineering & Environment; School of Information Technology and Mathematical Sciences; University of South Australia; Adelaide Australia
- Department of Genetics and Evolution; The University of Adelaide; Adelaide Australia
- Faculty of Science and Engineering; School of Biological Sciences; Flinders University; Adelaide Australia
| |
Collapse
|
14
|
Sahraneshin Samani F, Ebrahimi M, Zandieh T, Khoshchehreh R, Baghaban Eslaminejad M, Aghdami N, Baharvand H. In Vitro Differentiation of Human Umbilical Cord Blood CD133(+)Cells into Insulin Producing Cells in Co-Culture with Rat Pancreatic Mesenchymal Stem Cells. CELL JOURNAL 2015. [PMID: 26199900 PMCID: PMC4503835 DOI: 10.22074/cellj.2016.3717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective Pancreatic stroma plays an important role in the induction of pancreatic cells
by the use of close range signaling. In this respect, we presume that pancreatic mesenchymal cells (PMCs) as a fundamental factor of the stromal niche may have an effective
role in differentiation of umbilical cord blood cluster of differentiation 133+ (UCB-CD133+)
cells into newly-formed β-cells in vitro.
Materials and Methods This study is an experimental research. The UCB-CD133+cells
were purified by magnetic activated cell sorting (MACS) and differentiated into insulin
producing cells (IPCs) in co-culture, both directly and indirectly with rat PMCs. Immunocytochemistry and enzyme linked immune sorbent assay (ELISA) were used to determine
expression and production of insulin and C-peptide at the protein level.
Results Our results demonstrated that UCB-CD133+differentiated into IPCs. Cells in
islet-like clusters with (out) co-cultured with rat pancreatic stromal cells produced insulin
and C-peptide and released them into the culture medium at the end of the induction protocol. However they did not respond well to glucose challenges.
Conclusion Rat PMCs possibly affect differentiation of UCB-CD133+cells into IPCs by
increasing the number of immature β-cells.
Collapse
Affiliation(s)
- Fazel Sahraneshin Samani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tahereh Zandieh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reyhaneh Khoshchehreh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Wang J, Zhao G, Zhang P, Wang Z, Zhang Y, Gao D, Zhou P, Cao Y. Measurement of the biophysical properties of porcine adipose-derived stem cells by a microperfusion system. Cryobiology 2014; 69:442-50. [PMID: 25445459 DOI: 10.1016/j.cryobiol.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022]
Abstract
Adipose-derived stem cells (ADSCs), which are an accessible source of adult stem cells with capacities for self-renewal and differentiation into various cell types, have a promising potential in tissue engineering and regenerative medicine strategies. To meet the clinical demand for ADSCs, cryopreservation has been applied for long-term ADSC preservation. To optimize the addition, removal, freezing, and thawing of cryoprotective agents (CPAs) applied to ADSCs, we measured the transport properties of porcine ADSCs (pADSCs). The cell responses of pADSCs to hypertonic phosphate-buffered saline and common CPAs, dimethyl sulfoxide, ethylene glycol, and glycerol were measured by a microperfusion system at temperatures of 28, 18, 8, and -2°C. We determined the osmotically inactive cell volume (Vb), hydraulic conductivity (Lp), and CPA permeability (Ps) at various temperatures in a two-parameter model. Then, we quantitatively analyzed the effect of temperature on the transport properties of the pADSC membrane. Biophysical parameters were used to optimize CPA addition, removal, and freezing processes to minimize excessive shrinkage of pADSCs during cryopreservation. The biophysical properties of pADSCs have a great potential for effective optimization of cryopreservation procedures.
Collapse
Affiliation(s)
- Jianye Wang
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Gang Zhao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China.
| | - Pengfei Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhen Wang
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Dayong Gao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| | - Ping Zhou
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| | - Yunxia Cao
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| |
Collapse
|
16
|
Kočí Z, Turnovcová K, Dubský M, Baranovičová L, Holáň V, Chudíčková M, Syková E, Kubinová S. Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient's distal limbs with critical ischemia. Cell Biochem Funct 2014; 32:597-604. [PMID: 25251698 DOI: 10.1002/cbf.3056] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/16/2022]
Abstract
Adipose tissue is an abundant source of autologous adult stem cells that may bring new therapeutic perspectives on the treatment of diabetes and its complications. It is unclear whether adipose tissue-derived stromal cells (ASCs) of diabetic patients, constantly influenced by hyperglycaemia, have the same properties as non-diabetic controls. As an alternative source of ASCs, adipose tissue from distal limbs of diabetic patients with critical ischemia was isolated. ASCs were characterized in terms of cell surface markers, multilineage differentiation and the expression of vascular endothelial growth factor (VEGFA), chemokine-related genes and compared with non-diabetic controls. Flow cytometry analysis confirmed mesenchymal phenotypes in both diabetic and non-diabetic ASCs. Nevertheless, 40% of diabetic and 20% of non-diabetic ASC samples displayed high expressions of fibroblast marker, which inversely correlated with the expression of CD105. In diabetic patients, significantly decreased expression of VEGFA and chemokine receptor CXCR4 was found in fibroblast-positive ASCs, compared with their fibroblast-negative counterparts. Reduced osteogenic differentiation and the downregulation of chemokine CXCL12 were found in fibroblast-negative diabetic ASCs. Both diabetic and non-diabetic ASCs were differentiated into adipocytes and chondrocytes and did not reveal islet-like cell differentiation. According to this study, adipose tissue from distal limbs of diabetic patients is not satisfactory as an autologous ASC source. Hyperglycaemic milieu as well as other metabolic disorders linked to diabetes may have an influence on endogenous stem cell properties. The present study investigated the feasibility of autologous stem cell therapy in diabetic patients. ASCs isolated from the ischemic limb of diabetic patients were found to be less potent when compared phenotypically and functionally to control non-diabetic counterparts with no signs of limb ischemia. High expression of fibroblast markers associated with reduced expression of VEGFA as well as reduced osteogenic differentiation may have an impact on the effectiveness of autologous cell therapies in diabetic patients.
Collapse
Affiliation(s)
- Zuzana Kočí
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Science, Prague, Czech Republic; Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell Mol Immunol 2014; 12:444-55. [PMID: 25242276 DOI: 10.1038/cmi.2014.70] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 02/06/2023] Open
Abstract
Due to their hypoimmunogenicity and unique immunosuppressive properties, mesenchymal stem cells (MSCs) are considered one of the most promising adult stem cell types for cell therapy. Although many studies have shown that MSCs exert therapeutic effects on several acute and subacute conditions, their long-term effects are not confirmed in chronic diseases. Immunogenicity is a major limitation for cell replacement therapy, and it is not well understood in vivo. We evaluated the immunogenicity of allogeneic MSCs in vivo by transplanting MSCs into normal and diabetic rats via the tail vein or pancreas and found that MSCs exhibited low immunogenicity in normal recipients and even exerted some immunosuppressive effects in diabetic rats during the initial phase. However, during the later stage in the pancreas group, MSCs expressed insulin and MHC II, eliciting a strong immune response in the pancreas. Simultaneously, the peripheral blood mononuclear cells in the recipients in the pancreas group were activated, and alloantibodies developed in vivo. Conversely, in the tail vein group, MSCs remained immunoprivileged and displayed immunosuppressive effects in vivo. These data indicate that different transplanting routes and microenvironments can lead to divergent immunogenicity of MSCs.
Collapse
|
18
|
Mansouri A, Esmaeili F, Nejatpour A, Houshmand F, Shabani L, Ebrahimie E. Differentiation of P19 embryonal carcinoma stem cells into insulin-producing cells promoted by pancreas-conditioned medium. J Tissue Eng Regen Med 2014; 10:600-12. [DOI: 10.1002/term.1927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Akram Mansouri
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
| | - Fariba Esmaeili
- Research Institute of Biotechnology; Shahrekord University; Iran
- Department of Biology, Faculty of Basic Sciences; University of Isfahan; Iran
| | | | - Fariba Houshmand
- Department of Physiology, Faculty of Medical Sciences; Shahrekord University of Medical Sciences; Iran
| | - Leila Shabani
- Department of Biology, Faculty of Basic Sciences; Shahrekord University; Iran
- Research Institute of Biotechnology; Shahrekord University; Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology; Shiraz University; Shiraz Iran
- School of Molecular and Biomedical Science; The University of Adelaide; Adelaide Australia
| |
Collapse
|
19
|
Ebrahimie M, Esmaeili F, Cheraghi S, Houshmand F, Shabani L, Ebrahimie E. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer. PLoS One 2014; 9:e90885. [PMID: 24614166 PMCID: PMC3948699 DOI: 10.1371/journal.pone.0090885] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/03/2014] [Indexed: 01/15/2023] Open
Abstract
An attractive approach to replace the destroyed insulin-producing cells (IPCs) is the generation of functional β cells from stem cells. Embryonal carcinoma (EC) stem cells are pluripotent cells which can differentiate into all cell types. The present study was carried out to establish a simple nonselective inductive culture system for generation of IPCs from P19 EC cells by 1–2 weeks old mouse pancreas extract (MPE). Since, mouse pancreatic islets undergo further remodeling and maturation for 2–3 weeks after birth, we hypothesized that the mouse neonatal MPE contains essential factors to induce in vitro differentiation of pancreatic lineages. Pluripotency of P19 cells were first confirmed by expression analysis of stem cell markers, Oct3/4, Sox-2 and Nanog. In order to induce differentiation, the cells were cultured in a medium supplemented by different concentrations of MPE (50, 100, 200 and 300 µg/ml). The results showed that P19 cells could differentiate into IPCs and form dithizone-positive cell clusters. The generated P19-derived IPCs were immunoreactive to proinsulin, insulin and insulin receptor beta. The expression of pancreatic β cell genes including, PDX-1, INS1 and INS2 were also confirmed. The peak response at the 100 µg/ml MPE used for investigation of EP300 and CREB1 gene expression. When stimulated with glucose, these cells synthesized and secreted insulin. Network analysis of the key transcription factors (PDX-1, EP300, CREB1) during the generation of IPCs resulted in introduction of novel regulatory candidates such as MIR17, and VEZF1 transcription factors, as well as MORN1, DKFZp761P0212, and WAC proteins. Altogether, we demonstrated the possibility of generating IPCs from undifferentiated EC cells, with the characteristics of pancreatic β cells. The derivation of pancreatic cells from EC cells which are ES cell siblings would provide a valuable experimental tool in study of pancreatic development and function as well as rapid production of IPCs for transplantation.
Collapse
Affiliation(s)
- Marzieh Ebrahimie
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fariba Esmaeili
- Department of Biology, Faculty of Basic Sciences, University of Isfahan, Isfahan, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Somayeh Cheraghi
- Department of Biology, Faculty of Basic Sciences, Azad Islamic University of Shahrekord, Shahrekord, Iran
| | - Fariba Houshmand
- Department of Physiology, Faculty of Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Shabani
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
20
|
Gioviale MC, Bellavia M, Damiano G, Lo Monte AI. Beyond islet transplantation in diabetes cell therapy: from embryonic stem cells to transdifferentiation of adult cells. Transplant Proc 2014; 45:2019-24. [PMID: 23769099 DOI: 10.1016/j.transproceed.2013.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/24/2013] [Indexed: 12/22/2022]
Abstract
Exogenous insulin is, at the moment, the therapy of choice of diabetes, but does not allow tight regulation of glucose leading to long-term complications. Recently, pancreatic islet transplantation to reconstitute insulin-producing β cells, has emerged as an alternative promising therapeutic approach. Unfortunately, the number of donor islets is too low compared with the high number of patients needing a transplantation leading to a search for renewable sources of high-quality β-cells. This review, summarizes more recent promising approaches to the generation of new β-cells from embryonic stem cells for transdifferentiation of adult cells, particularly a critical examination of the seminal work by Lumelsky et al.
Collapse
Affiliation(s)
- M C Gioviale
- Transplant Unit, AOUP P. Giaccone, School of Medicine, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
21
|
Gnanasegaran N, Govindasamy V, Musa S, Kasim NHA. Different isolation methods alter the gene expression profiling of adipose derived stem cells. Int J Med Sci 2014; 11:391-403. [PMID: 24669199 PMCID: PMC3964446 DOI: 10.7150/ijms.7697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/20/2014] [Indexed: 12/22/2022] Open
Abstract
Human adipose stem cells (ASCs) has been in the limelight since its discovery as a suitable source of mesenchymal stem cells (MSCs) in regenerative medicine. Currently, two major techniques are used to isolate ASCs, namely liposuction and tissue biopsy. These two methods are relatively risk-free but the question as to which method could give a more efficient output remains unclear. Thus, this study was carried out to compare and contrast the output generated in regards to growth kinetics, differentiation capabilities in vitro, and gene expression profiling. It was found that ASCs from both isolation methods were comparable in terms of growth kinetics and tri-lineage differentiation. Furthermore, ASCs from both populations were reported as CD44(+), CD73(+), CD90(+), CD166(+), CD34(-), CD45(-) and HLA-DR(-). However, in regards to gene expression, a group of overlapping genes as well as distinct genes were observed. Distinct gene expressions indicated that ASCs (liposuction) has endoderm lineage propensity whereas ASCs (biopsy) has a tendency towards mesoderm/ectoderm lineage. This information suggests involvement in different functional activity in accordance to isolation method. In conclusion, future studies to better understand these gene functions should be carried out in order to contribute in the applicability of each respective cells in regenerative therapy.
Collapse
Affiliation(s)
- Nareshwaran Gnanasegaran
- 1. Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- 2. Hygieia Innovation Sdn. Bhd, Lot 1G-2G, Lanai Complex No.2, Persiaran Seri Perdana, Persint 10, Federal Territory of Putrajaya, Malaysia
| | - Sabri Musa
- 1. Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia ; 3. Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1. Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia ; 4. Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Xie H, Wang Y, Zhang H, Qi H, Zhou H, Li FR. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells. PLoS One 2013; 8:e76056. [PMID: 24058711 PMCID: PMC3776851 DOI: 10.1371/journal.pone.0076056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/24/2013] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs.
Collapse
Affiliation(s)
- Hongbin Xie
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Yunshuai Wang
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Hui Zhang
- Laboratory of Cancer Cell Proteomics, Nevada Cancer Institute, Las Vegas, Nevada, United States of America
| | - Hui Qi
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Hanxin Zhou
- Department of General Surgery, First Hospital (Shenzhen second People’s Hospital) of Shenzhen University, Shenzhen, China
| | - Fu-Rong Li
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
- Shenzhen Institute of Gerontology, Shenzhen, China
- * E-mail:
| |
Collapse
|
23
|
Bhang SH, Jung MJ, Shin JY, La WG, Hwang YH, Kim MJ, Kim BS, Lee DY. Mutual effect of subcutaneously transplanted human adipose-derived stem cells and pancreatic islets within fibrin gel. Biomaterials 2013; 34:7247-56. [PMID: 23827190 DOI: 10.1016/j.biomaterials.2013.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/12/2013] [Indexed: 01/08/2023]
Abstract
While subcutaneous tissue has been proposed as a potential site for pancreatic islet transplantation, concern remains that the microvasculature of subcutaneous tissue is too poor to support transplanted islets. In an effort to overcome this limitation, we evaluated whether fibrin gel with human adipose-derived stem cells (hADSCs) and rat pancreatic islets could cure diabetes mellitus when transplanted into the subcutaneous space of diabetic mice. Subcutaneously co-transplanted islets and hADSCs showed normalization of the diabetic recipient's blood glucose levels. The result was enhanced by co-treatment of fibroblast growth factor-2 (FGF2) in the fibrin gel. The hADSCs enhanced islet viability after transplantation by secreting various growth factors that can protect islets from hypoxic damage. Afterward, hADSCs could maintain islet viability by recruiting new microvasculature nearby the transplanted islets via overexpression of vascular endothelial growth factor (VEGF). The hADSCs did not directly differentiate into endothelial cells (no detection of biomarkers of human endothelial cells), but showed evidence of differentiation toward insulin-secreting cells (detection of human insulin). Mice receiving islet transplantation alone did not become normoglycemic. Collectively, co-transplantation of fibrin gel with islets and hADSCs will expand the indications for islet transplant therapy and the potential clinical application of cell-based therapy.
Collapse
Affiliation(s)
- Suk Ho Bhang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Karaoz E, Okcu A, Ünal ZS, Subasi C, Saglam O, Duruksu G. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo. Cytotherapy 2013; 15:557-70. [DOI: 10.1016/j.jcyt.2013.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/07/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
|
25
|
Abstract
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.
Collapse
|
26
|
Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J Physiol Biochem 2012; 69:451-8. [PMID: 23271274 DOI: 10.1007/s13105-012-0228-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022]
Abstract
Stem cells with the ability to differentiate into insulin-producing cells (IPCs) are becoming the most promising therapy for diabetes mellitus and reduce the major limitations of availability and allogeneic rejection of beta cell transplantations. Mesenchymal stem cells (MSCs) are pluripotent stromal cells with the ability to proliferate and differentiate into a variety of cell types including endocrine cells of the pancreas. This study sought to inspect the in vitro differentiation of human adipose-derived tissue stem cells into IPCs which could provide an abundant source of cells for the purpose of diabetic cell therapy in addition to avoid immunological rejection. Adipose-derived MSCs were obtained from liposuction aspirates and induced to differentiate into insulin-secreting cells under a three-stage protocol based on a combination of low-glucose DMEM medium, β-mercaptoethanol, and nicotinamide for pre-induction and high-glucose DMEM, β-mercaptoethanol, nicotinamide, and exendin-4 for induction stages of differentiation. Differentiation was evaluated by the analysis of morphology, dithizone staining, RT-PCR, and immunocytochemistry. Morphological changes including typical islet-like cell clusters were observed by phase-contrast microscope at the end of differentiation protocol. Based on dithizone staining, differentiated cells were positive and undifferentiated cells were not stained. Furthermore, RT-PCR results confirmed the expression of insulin, PDX1, Ngn3, PAX4, and GLUT2 in differentiated cells. Moreover, insulin production by the IPCs was confirmed by immunocytochemistry analysis. It is concluded that adipose-derived MSCs could differentiate into insulin-producing cells in vitro.
Collapse
|
27
|
Lee J, Kim SC, Kim SJ, Lee H, Jung EJ, Jung SH, Han DJ. Differentiation of human adipose tissue-derived stem cells into aggregates of insulin-producing cells through the overexpression of pancreatic and duodenal homeobox gene-1. Cell Transplant 2012; 22:1053-1060. [PMID: 23031216 DOI: 10.3727/096368912x657215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pancreatic and duodenal homeobox gene 1 (Pdx-1) plays a key role in normal pancreas development and is required for maintaining the normal function of islets. In this study, we examined whether human adipose tissue-derived stem cells (hASCs) could differentiate into insulin-producing cells by exogenously expressed Pdx-1. hASCs were infected with recombinant adenovirus encoding the mouse Pdx-1 gene and differentiated under high-glucose conditions. Insulin transcript levels and the expression of key transcription factors required for pancreatic development including FoxA2, Nkx2.2, and NeuroD were significantly increased by exogenous Pdx-1 overexpression. The expression of Nkx6.1 was found only in Pdx-1-induced hASCs. In addition to transcripts for transcription factors involved in pancreatic development, transcripts for the GLP-1 receptor, glucokinase, and glucose transporter, which are required for maintaining the function of pancreatic β-cells, were observed only in Pdx-1-induced hASCs. Pdx-1-induced hASCs exhibited insulin secretion in response to glucose challenge in vitro. When Pdx-1-induced hASCs were transplanted into streptozotocin (STZ)-induced diabetic mice, they reduced blood glucose levels, although they did not restore normoglycemia. These results demonstrate that the expression of exogenous Pdx-1 is sufficient to induce pancreatic differentiation in vitro but does not induce the fully functional, mature insulin-producing cells that are required for restoring normoglycemia in vivo.
Collapse
Affiliation(s)
- Jiyeon Lee
- Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Kauczok J, Opländer C, Pallua N. Autologes Lipofilling. JOURNAL FÜR ÄSTHETISCHE CHIRURGIE 2012; 5:125-130. [DOI: 10.1007/s12631-012-0186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Stem cells as a tool to improve outcomes of islet transplantation. J Transplant 2012; 2012:736491. [PMID: 22970344 PMCID: PMC3437295 DOI: 10.1155/2012/736491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/02/2012] [Indexed: 12/24/2022] Open
Abstract
The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation.
Collapse
|
30
|
Zhang S, Dai H, Wan N, Moore Y, Dai Z. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes. PLoS One 2011; 6:e29706. [PMID: 22216347 PMCID: PMC3247284 DOI: 10.1371/journal.pone.0029706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/01/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.
Collapse
Affiliation(s)
- Shuzi Zhang
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Hehua Dai
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Ni Wan
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Yolonda Moore
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| | - Zhenhua Dai
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, United States of America
| |
Collapse
|
31
|
Baer PC. Adipose-Derived Stem Cells and Their Potential to Differentiate into the Epithelial Lineage. Stem Cells Dev 2011; 20:1805-16. [DOI: 10.1089/scd.2011.0086] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, Frankfurt/M, Germany
| |
Collapse
|
32
|
Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 2011; 7:269-91. [PMID: 20853072 DOI: 10.1007/s12015-010-9193-7] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose stem cells (ASCs) are an attractive and abundant stem cell source with therapeutic applicability in diverse fields for the repair and regeneration of acute and chronically damaged tissues. Importantly, unlike the human bone marrow stromal/stem stem cells (BMSCs) that are present at low frequency in the bone marrow, ASCs can be retrieved in high number from either liposuction aspirates or subcutaneous adipose tissue fragments and can easily be expanded in vitro. ASCs display properties similar to that observed in BMSCs and, upon induction, undergo at least osteogenic, chondrogenic, adipogenic and neurogenic, differentiation in vitro. Furthermore, ASCs have been shown to be immunoprivileged, prevent severe graft-versus-host disease in vitro and in vivo and to be genetically stable in long-term culture. They have also proven applicability in other functions, such as providing hematopoietic support and gene transfer. Due to these characteristics, ASCs have rapidly advanced into clinical trials for treatment of a broad range of conditions. As cell therapies are becoming more frequent, clinical laboratories following good manufacturing practices are needed. At the same time as laboratory processes become more extensive, the need for control in the processing laboratory grows consequently involving a greater risk of complications and possibly adverse events for the recipient. Therefore, the safety, reproducibility and quality of the stem cells must thoroughly be examined prior to extensive use in clinical applications. In this review, some of the aspects of examination on ASCs in vitro and the utilization of ASCs in clinical studies are discussed.
Collapse
Affiliation(s)
- Bettina Lindroos
- Regea-Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | | | | |
Collapse
|
33
|
Insulin-producing cells from human pancreatic islet-derived progenitor cells following transplantation in mice. Cell Biol Int 2011; 35:483-90. [PMID: 21080910 DOI: 10.1042/cbi20100152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stem/progenitor cells hold promise for alleviating/curing type 1 diabetes due to the capacity to differentiate into functional insulin-producing cells. The current study aims to assess the differentiation potential of human pancreatic IPCs (islet-derived progenitor cells). IPCs were derived from four human donors and subjected to more than 2000-fold expansion before turning into ICCs (islet-like cell clusters). The ICCs expressed ISL-1 Glut2, PDX-1, ngn3, insulin, glucagon and somatostatin at the mRNA level and stained positive for insulin and glucagon by immunofluorescence. Following glucose challenge in vitro, C-peptide was detected in the sonicated ICCs, instead of in the conditioned medium. To examine the function of the cells in vivo, IPCs or ICCs were transplanted under the renal capsule of immunodeficient mice. One month later, 19 of 28 mice transplanted with ICCs and 4 of 14 mice with IPCs produced human C-peptide detectable in blood, indicating that the in vivo environment further facilitated the maturation of ICCs. However, among the hormone-positive mice, only 9 of 19 mice with ICCs and two of four mice with IPCs were able to secrete C-peptide in response to glucose.
Collapse
|
34
|
Choi JH, Lee MY, Kim Y, Shim JY, Han SM, Lee KA, Choi YK, Jeon HM, Baek KH. Isolation of genes involved in pancreas regeneration by subtractive hybridization. Biol Chem 2011; 391:1019-29. [PMID: 20536387 DOI: 10.1515/bc.2010.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The deterioration of β cells in the pancreas is a crucial factor in the progression of diabetes mellitus; therefore, the recovery of β cells is of vital importance for effective diabetic therapeutic strategies. Partially pancreatectomized rats have been used for the investigation of pancreatic regeneration. Because it was determined that tissue extract from the partially-dissected pancreas induces pancreatic differentiation in embryonic stem cells, paracrine factors were thought to be involved in the regeneration. In this study, we screened for genes that had higher mRNA levels 2 days after 60%-pancreatectomy. The genes were isolated using subtractive hybridization and DNA sequencing. Twelve genes (adipsin, Aplp2, Clu, Col1a2, Glul, Krt8, Lgmn, LOC299907, LOC502894, Pla2g1b, Reg3α and Xbp1) were identified, and RT-PCR and real-time PCR analyses were performed to validate their expression levels. Among the genes identified, three genes (Glul, Lgmn and Reg3a) were selected for further analyses. Assays revealed that Glul and Reg3α enhance cell growth. Glul, Lgmn and Reg3α change the expression level of islet marker genes, where NEUROD, NKX2.2, PAX4 and PAX6 are up-regulated and somatostatin is down-regulated. Thus, we believe that Glul, Lgmn and Reg3a can serve as novel targets in diabetes mellitus genetic therapy.
Collapse
Affiliation(s)
- Jong-Ho Choi
- College of Medicine, CHA University, CHA General Hospital, Seoul 135-081, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chandra V, G S, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, Bhonde RR. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One 2011; 6:e20615. [PMID: 21687731 PMCID: PMC3110196 DOI: 10.1371/journal.pone.0020615] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/07/2011] [Indexed: 12/14/2022] Open
Abstract
Background Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. Methodology/Principal Findings In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs) to differentiate into functional islet like cell aggregates (ICAs). Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17) and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3–4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. Conclusions h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.
Collapse
Affiliation(s)
- Vikash Chandra
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Swetha G
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Sudhakar Muthyala
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Amit K. Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Jayesh R. Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Prabha D. Nair
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh R. Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
36
|
Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.gmbhs.2011.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Reinisch CM, Mildner M, Petzelbauer P, Pammer J. Embryonic stem cell factors undifferentiated transcription factor-1 (UFT-1) and reduced expression protein-1 (REX-1) are widely expressed in human skin and may be involved in cutaneous differentiation but not in stem cell fate determination. Int J Exp Pathol 2011; 92:326-32. [PMID: 21446939 DOI: 10.1111/j.1365-2613.2011.00769.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Undifferentiated transcription factor-1 (UTF-1) and reduced expression protein-1 (REX-1) are used as markers for the undifferentiated state of pluripotent stem cells. Because no highly specific cytochemical marker for epidermal stem cells has yet been identified, we investigated the expression pattern of these markers in human epidermis and skin tumours by immunohistochemistry and in keratinocyte cell cultures. Both presumed stem cell markers were widely expressed in the epidermis and skin appendages. Distinct expression was found in the matrix cells of the hair shaft. Differentiation of human primary keratinocytes (KC) in vitro strongly downregulated UTF-1 and REX-1 expression. In addition, REX-1 was upregulated in squamous cell carcinomas, indicating a possible role of this transcription factor in malignant tumour formation. Our data point to a role for these proteins not only in maintaining KC stem cell populations, but also in proliferation and differentiation of matrix cells of the shaft and also suprabasal KC.
Collapse
|
38
|
Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice. Transplantation 2011; 90:1366-73. [PMID: 21076379 DOI: 10.1097/tp.0b013e3181ffba31] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Overcoming significant loss of transplanted islet mass is important for successful islet transplantation. Adipose tissue-derived stem cells (ADSCs) seem to have angiogenic potential and antiinflammatory properties. We hypothesized that the inclusion of ADSCs with islet transplantation should enhance the survival and insulin function of the islet graft. METHODS Syngeneic ADSCs and allogeneic islets were transplanted simultaneously under the kidney capsules of diabetic C57BL/6J mice. Rejection of the graft was examined by measurement of blood glucose level. Revascularization and inflammatory cell infiltration were examined by immunohistochemistry. RESULTS Transplantation of 400 islets only achieved normoglycemia with graft survival of 13.6±1.67 days (mean±standard deviation), whereas that of 100 or 200 allogeneic islets never reversed diabetes. Transplantation of 200 islets with 2×10(5) ADSCs reversed diabetes and significantly prolonged graft survival (13.0±5.48 days). Results of glucose tolerance tests performed on day 7 were significantly better in islets-ADSCs than islets-alone recipients. Immunohistochemical analysis confirmed the presence of insulin-stained islet grafts with well-preserved structure in islets-ADSCs transplant group. Significant revascularization (larger number of von Willebrand factor-positive cells) and marked inhibition of inflammatory cell infiltration, including CD4+ and CD8+ T cells and macrophages, were noted in the islets-ADSCs transplant group than islets-alone transplant group. CONCLUSIONS Our results indicated that cotransplantation of ADSCs with islet graft promoted survival and insulin function of the graft and reduced the islet mass required for reversal of diabetes. This innovative protocol may allow "one donor to one recipient" islet transplantation.
Collapse
|
39
|
Jung EJ, Kim SC, Wee YM, Kim YH, Choi MY, Jeong SH, Lee J, Lim DG, Han DJ. Bone marrow-derived mesenchymal stromal cells support rat pancreatic islet survival and insulin secretory function in vitro. Cytotherapy 2011; 13:19-29. [PMID: 21142900 DOI: 10.3109/14653249.2010.518608] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AIMS Recent evidence has suggested that transplanted bone marrow (BM)-derived mesenchymal stromal cells (MSC) are able to engraft and repair non-hematopoietic tissues successfully, including central nervous system, renal, pulmonary and skin tissue, and may possibly contribute to tissue regeneration. We examined the cytoprotective effect of BM MSC on co-cultured, isolated pancreatic islets. METHODS Pancreatic islets and MSC isolated from Lewis rats were divided into four experimental groups: (a) islets cultured alone (islet control); (b) islets cultured in direct contact with MSC (IM-C); (c) islets co-cultured with MSC in a Transwell system, which allows indirect cell contact through diffusible media components (IM-I); and (d) MSC cultured alone (MSC control). The survival and function of islets were measured morphologically and by analyzing insulin secretion in response to glucose challenge. Cytokine profiles were determined using a cytokine array and enzyme-linked immunosorbent assays. RESULTS Islets contact-cultured with MSC (IM-C) showed sustained survival and retention of glucose-induced insulin secretory function. In addition, the levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were decreased, and tissue inhibitor of metalloproteinases-1 (TIMP-1) and vascular endothelial growth factor (VEGF) levels were increased at 4 weeks in both the IM-C and IM-I groups. CONCLUSIONS These results indicate that contact co-culture is a major factor that contributes to islet survival, maintenance of cell morphology and insulin function. There might also be a synergic effect resulting from the regulation of inflammatory cytokine production. We propose that BM MSC are suitable for generating a microenvironment favorable for the repair and longevity of pancreatic islets.
Collapse
Affiliation(s)
- Eun-Jung Jung
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori H, Hanaoka J, Iwahashi S, Saito Y, Iwaguro H. Human adipose-derived stem cells: potential clinical applications in surgery. Surg Today 2010; 41:18-23. [PMID: 21191687 DOI: 10.1007/s00595-010-4415-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/05/2010] [Indexed: 12/18/2022]
Abstract
Regenerative medicine is emerging as a rapidly evolving field of research and therapeutics. Stem cells hold great promise for future translational research and clinical applications in many fields. Much research has focused on mesenchymal stem cells isolated from bone marrow in vitro and in vivo; however, bone marrow procurement causes considerable discomfort to the patient and yields a relatively small number of harvested cells. By contrast, adipose tissue represents an abundant and easily accessible source of adult stem cells, termed adipose-derived stem cells (ADSCs), with the ability to equally differentiate along multiple lineage pathways. These stem cells have angiogenic properties, possibly because of their secretion of cytokines. They may also play a role in healing acute and chronic tissue damage. Subsequently, they have a wide range of potential clinical implications. This article reviews the potential preclinical and clinical applications of mesenchymal stem cells, especially ADSCs, in surgery.
Collapse
Affiliation(s)
- Tohru Utsunomiya
- Cancer Clinical Cooperation Center, Tokushima University Hospital, 3-18-15 kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Karaoz E, Ayhan S, Okçu A, Aksoy A, Bayazıt G, Osman Gürol A, Duruksu G. Bone marrow-derived mesenchymal stem cells co-cultured with pancreatic islets display β cell plasticity. J Tissue Eng Regen Med 2010; 5:491-500. [PMID: 21604384 DOI: 10.1002/term.342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 06/28/2010] [Indexed: 01/19/2023]
Abstract
The direct co-culturing effect of rat bone-marrow-derived mesenchymal stem cells (rBM-MSCs) on the pancreatic-islets (PIs) was studied to obtain functional islet cells. MSCs were isolated from rat bone marrow and cultivated under standard conditions. Following their characterization, the rBM-MSCs were directly (with cell-islet contact) co-cultured with recovered PIs together with the single cell cultures of those cell cultures as a control. The effect of direct co-cultures of rBM-MSCs with the PIs of normal rats was investigated using immunophenotypical and functional methods. The change in the amount of insulin secretion was evaluated as an indicator for differentiation of rBM-MSCs. One approache for in vitro differentiation to achieve reprogramming for differentiation into suitable cell types by changing the microenvironment of the cells to provide signals that might activate metabolic pathways is to use co-cultures with the microenvironment of the specific cells of the desired cell type, tissue/organ extracts, extracellular matrix compounds or biologically absorbable materials. Differentiated rBM-MSCs were found to be immunopositive for the specific insulin-producing cell marker, insulin, but not in undifferentiated rBM-MSCs. The functionality tests by ELISA confirmed that insulin secretion of co-cultured MSCs with islets was higher than that of islets. These evidences indicated that PIs could be regarded as critical components of the stem cell niche, such that MSCs can be differentiated into insulin-producing cells (IPCs). Moreover, direct cell-to-cell contact might provide additional and independent support. This approach would circumvent the need for PI-stem cell co-culture and could potentially facilitate the production of functional IPCs for future clinical applications.
Collapse
Affiliation(s)
- Erdal Karaoz
- Centre for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli 41380, Turkey.
| | | | | | | | | | | | | |
Collapse
|
43
|
Farré-Guasch E, Martí-Pagès C, Hernández-Alfaro F, Klein-Nulend J, Casals N. Buccal Fat Pad, an Oral Access Source of Human Adipose Stem Cells with Potential for Osteochondral Tissue Engineering: An In Vitro Study. Tissue Eng Part C Methods 2010; 16:1083-94. [DOI: 10.1089/ten.tec.2009.0487] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Elisabet Farré-Guasch
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, International University of Catalonia, Barcelona, Spain
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia, Barcelona, Spain
| | - Carles Martí-Pagès
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, International University of Catalonia, Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
| | - Federico Hernández-Alfaro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, International University of Catalonia, Barcelona, Spain
- Institute of Maxillofacial Surgery and Implantology, Teknon Medical Center, Barcelona, Spain
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Research Institute MOVE, ACTA-University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia, Barcelona, Spain
- CIBER Institute of Physiopathology of Obesity and Nutrition (CB06/03), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Lin G, Wang G, Liu G, Yang LJ, Chang LJ, Lue TF, Lin CS. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 2009; 18:1399-406. [PMID: 19245309 PMCID: PMC2862049 DOI: 10.1089/scd.2009.0010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Due to the limited supply of donor pancreas, it is imperative that we identify alternative cell sources that can be used to treat diabetes mellitus (DM). Multipotent adipose tissue-derived stem cells (ADSC) can be abundantly and safely isolated for autologous transplantation and therefore are an ideal candidate. Here, we report the derivation of insulin-producing cells from human or rat ADSC by transduction with the pancreatic duodenal homeobox 1 (Pdx1) gene. RT-PCR analyses showed that native ADSC expressed insulin, glucagon, and NeuroD genes that were up-regulated following Pdx1 transduction. ELISA analyses showed that the transduced cells secreted increasing amount of insulin in response to increasing concentration of glucose. Transplantation of these cells under the renal capsule of streptozotocin-induced diabetic rats resulted in lowered blood glucose, higher glucose tolerance, smoother fur, and less cataract. Histological examination showed that the transplanted cells formed tissue-like structures and expressed insulin. Thus, ADSC-expressing Pdx1 appear to be suitable for treatment of DM.
Collapse
Affiliation(s)
- Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.
| | - Gang Liu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida.
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida.
| | - Tom F. Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.
| | - Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.
| |
Collapse
|