1
|
Nakagami S, Notaguchi M, Kondo T, Okamoto S, Ida T, Sato Y, Higashiyama T, Tsai AYL, Ishida T, Sawa S. Root-knot nematode modulates plant CLE3-CLV1 signaling as a long-distance signal for successful infection. SCIENCE ADVANCES 2023; 9:eadf4803. [PMID: 37267361 PMCID: PMC10413670 DOI: 10.1126/sciadv.adf4803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.
Collapse
Affiliation(s)
- Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tatsuhiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoru Okamoto
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, 332-0012, Japan
| | - Takanori Ida
- Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Allen Yi-Lun Tsai
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
3
|
Zhang Z, Liu L, Kucukoglu M, Tian D, Larkin RM, Shi X, Zheng B. Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Genomics 2020; 21:709. [PMID: 33045986 PMCID: PMC7552357 DOI: 10.1186/s12864-020-07114-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Background The CLV3/ESR-RELATED (CLE) gene family encodes small secreted peptides (SSPs) and plays vital roles in plant growth and development by promoting cell-to-cell communication. The prediction and classification of CLE genes is challenging because of their low sequence similarity. Results We developed a machine learning-aided method for predicting CLE genes by using a CLE motif-specific residual score matrix and a novel clustering method based on the Euclidean distance of 12 amino acid residues from the CLE motif in a site-weight dependent manner. In total, 2156 CLE candidates—including 627 novel candidates—were predicted from 69 plant species. The results from our CLE motif-based clustering are consistent with previous reports using the entire pre-propeptide. Characterization of CLE candidates provided systematic statistics on protein lengths, signal peptides, relative motif positions, amino acid compositions of different parts of the CLE precursor proteins, and decisive factors of CLE prediction. The approach taken here provides information on the evolution of the CLE gene family and provides evidence that the CLE and IDA/IDL genes share a common ancestor. Conclusions Our new approach is applicable to SSPs or other proteins with short conserved domains and hence, provides a useful tool for gene prediction, classification and evolutionary analysis.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science (HILIFE), University of Helsinki, 00014, Helsinki, Finland.,Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Gregory EF, Dao TQ, Alexander MA, Miller MJ, Fletcher JC. The signaling peptide-encoding genes CLE16, CLE17 and CLE27 are dispensable for Arabidopsis shoot apical meristem activity. PLoS One 2018; 13:e0202595. [PMID: 30114285 PMCID: PMC6095548 DOI: 10.1371/journal.pone.0202595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
The shoot apical meristem produces all of the leaves, stems and flowers of a flowering plant from a reservoir of stem cells at its growing tip. In Arabidopsis, the small polypeptide signaling molecule CLAVATA3 (CLV3), a member of the CLV3/EMBRYO SURROUNDING REGION-RELATED (CLE) gene family, is a key component of a negative feedback loop that maintains stem cell activity in shoot and floral meristems throughout development. Because in some plant species multiple CLE genes are involved in regulating shoot apical meristem activity, we tested the hypothesis that CLE genes other than CLV3 might function in stem cell homeostasis in Arabidopsis. We identified three Arabidopsis CLE genes expressed in the post-embryonic shoot apical meristem, generated loss-of-function alleles using genome editing, and analyzed the meristem phenotypes of the resulting mutant plants. We found that null mutations in CLE16, CLE17 or CLE27 affected neither vegetative nor reproductive shoot meristem activity under normal growth conditions, although CLE27 appears to slightly prolong vegetative growth. Our results indicate that the CLE16, CLE17 and CLE27 genes have largely redundant roles in the Arabidopsis shoot apical meristem and/or regulate meristem activity only under specific environmental conditions.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Thai Q. Dao
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Martin A. Alexander
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Mark J. Miller
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
5
|
Kim HJ, Wu CY, Yu HM, Sheen J, Lee H. Dual CLAVATA3 Peptides in Arabidopsis Shoot Stem Cell Signaling. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2017; 60:506-512. [PMID: 30310351 PMCID: PMC6176727 DOI: 10.1007/s12374-017-0083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant shoot stem cell pool is constantly maintained by a negative feedback loop through peptide-receptor mediated signaling pathway. CLAVATA3 (CLV3) encode a 96 amino-acid protein which is processed to 12-amino-acid or arabinosylated 13-amino-acid peptides, acting as a ligand signal to regulate stem cell homeostasis in the shoot apical meristem (SAM). Although arabinosylated 13-amino-acid CLV3 peptide (CLV3p) shows more significant binding affinity to its receptors and biological activities in the SAM, the physiological function of two mature forms of CLV3p remained an unresolved puzzle in the past decade due to the technical difficulties of arabinosylation modification in the peptide synthesis. Here, we analyzed the role of two mature CLV3 peptides with newly synthesized arabinosylated peptide. Beside shoot meristem phenotypes, arabinosylated CLV3p showed the conventional trait of CLV2-dependent root growth inhibition. Moreover, both 12-amino-acid and arabinosylated 13-amino-acid CLV3 peptides have analogous activities in shoot stem cell signaling. Notably, we demonstrated that non-arabinosylated 12-amino acid CLV3p can affect shoot stem cell signaling at the physiological level unlike previously suggested (Ohyama et al., 2009; Shinohara and Matsubayashi, 2013; Shinohara and Matsubayashi, 2015). Therefore, these results support the physiological role of the 12-amino-acid CLV3p in shoot stem cell signaling in the deficient condition of arabinosylated 13-amino-acid CLV3p in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hyeon-Ji Kim
- Department of Pre-PharmMed, College of Natural Sciences, Duksung Women’s University, Seoul 01369, South Korea
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Massachusetts 02114, USA
- To whom correspondence should be addressed. Horim Lee, Tel: +82-2-901-8753, ;
| | - Horim Lee
- Department of Pre-PharmMed, College of Natural Sciences, Duksung Women’s University, Seoul 01369, South Korea
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Massachusetts 02114, USA
- To whom correspondence should be addressed. Horim Lee, Tel: +82-2-901-8753, ;
| |
Collapse
|
6
|
Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions. PLoS One 2017; 12:e0175317. [PMID: 28384649 PMCID: PMC5383425 DOI: 10.1371/journal.pone.0175317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Tracheary Element Differentiation Inhibitory Factor (TDIF) belongs to the family of post-translationally modified CLE (CLAVATA3/embryo surrounding region (ESR)-related) peptide hormones that control root growth and define the delicate balance between stem cell proliferation and differentiation in SAM (shoot apical meristem) or RAM (root apical meristem). In Arabidopsis, Tracheary Element Differentiation Inhibitory Factor Receptor (TDR) and its ligand TDIF signaling pathway is involved in the regulation of procambial cell proliferation and inhibiting its differentiation into xylem cells. Here we present the crystal structures of the extracellular domains (ECD) of TDR alone and in complex with its ligand TDIF resolved at 2.65 Ǻ and 2.75 Ǻ respectively. These structures provide insights about the ligand perception and specific interactions between the CLE peptides and their cognate receptors. Our in vitro biochemical studies indicate that the interactions between the ligands and the receptors at the C-terminal anchoring site provide conserved binding. While the binding interactions occurring at the N-terminal anchoring site dictate differential binding specificities between different ligands and receptors. Our studies will open different unknown avenues of TDR-TDIF signaling pathways that will enhance our knowledge in this field highlighting the receptor ligand interaction, receptor activation, signaling network, modes of action and will serve as a structure function relationship model between the ligand and the receptor for various similar leucine-rich repeat receptor-like kinases (LRR-RLKs).
Collapse
|
7
|
Cryptic bioactivity capacitated by synthetic hybrid plant peptides. Nat Commun 2017; 8:14318. [PMID: 28165456 PMCID: PMC5303819 DOI: 10.1038/ncomms14318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022] Open
Abstract
Evolution often diversifies a peptide hormone family into multiple subfamilies, which exert distinct activities by exclusive interaction with specific receptors. Here we show that systematic swapping of pre-existing variation in a subfamily of plant CLE peptide hormones leads to a synthetic bifunctional peptide that exerts activities beyond the original subfamily by interacting with multiple receptors. This approach provides new insights into the complexity and specificity of peptide signalling.
Collapse
|
8
|
Czyzewicz N, Wildhagen M, Cattaneo P, Stahl Y, Pinto KG, Aalen RB, Butenko MA, Simon R, Hardtke CS, De Smet I. Antagonistic peptide technology for functional dissection of CLE peptides revisited. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5367-5374. [PMID: 26136270 PMCID: PMC4526918 DOI: 10.1093/jxb/erv284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Mari Wildhagen
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Pietro Cattaneo
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Karine Gustavo Pinto
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Reidunn B Aalen
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
9
|
Czyzewicz N, Shi CL, Vu LD, Van De Cotte B, Hodgman C, Butenko MA, De Smet I. Modulation of Arabidopsis and monocot root architecture by CLAVATA3/EMBRYO SURROUNDING REGION 26 peptide. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5229-43. [PMID: 26188203 PMCID: PMC4526925 DOI: 10.1093/jxb/erv360] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant roots are important for a wide range of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface with the soil environment. Several small signalling peptides and receptor kinases have been shown to affect primary root growth, but very little is known about their role in lateral root development. In this context, the CLE family, a group of small signalling peptides that has been shown to affect a wide range of developmental processes, were the focus of this study. Here, the expression pattern during lateral root initiation for several CLE family members is explored and to what extent CLE1, CLE4, CLE7, CLE26, and CLE27, which show specific expression patterns in the root, are involved in regulating root architecture in Arabidopsis thaliana is assessed. Using chemically synthesized peptide variants, it was found that CLE26 plays an important role in regulating A. thaliana root architecture and interacts with auxin signalling. In addition, through alanine scanning and in silico structural modelling, key residues in the CLE26 peptide sequence that affect its activity are pinpointed. Finally, some interesting similarities and differences regarding the role of CLE26 in regulating monocot root architecture are presented.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Chun-Lin Shi
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| |
Collapse
|
10
|
Yadava SK, Paritosh K, Panjabi-Massand P, Gupta V, Chandra A, Sodhi YS, Pradhan AK, Pental D. Tetralocular ovary and high silique width in yellow sarson lines of Brassica rapa (subspecies trilocularis) are due to a mutation in Bra034340 gene, a homologue of CLAVATA3 in Arabidopsis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2359-2369. [PMID: 25205130 DOI: 10.1007/s00122-014-2382-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Genetic locus for tetralocular ovary (tet-o) in Brassica rapa was identified and it was shown that the number of locules and width of silique are associated. Brassica rapa is a highly polymorphic species containing many vegetables and oleiferous types. An interesting group of oleiferous types is the yellow sarson group (subspecies trilocularis) grown mostly in eastern India. This group contains lines that have bilocular ovaries, a defining trait of Brassicaceae, but also lines that have tetralocular ovaries. Yellow sarson lines commonly have high silique width which is further enhanced in the tetralocular types. We mapped the locus influencing tetralocular ovary in B. rapa using three mapping populations (F2, F6 and F7) derived from a cross between Chiifu (subspecies pekinensis, having bilocular ovary) and Tetralocular (having tetralocular ovary). QTL mapping of silique width was undertaken using the three mapping populations and a F2 population derived from a cross between Chiifu and YSPB-24 (a bilocular line belonging to yellow sarson group). Qualitative mapping of the trait governing locule number (tet-o) in B. rapa mapped the locus to linkage group A4. QTL mapping for silique width detected a major QTL on LG A4, co-mapping with the tet-o locus in bilocular/tetralocular cross. This QTL was not detected in the bilocular/bilocular cross. Saturation mapping of the tet-o region with SNP markers identified Bra034340, a homologue of CLAVATA3 of Arabidopsis thaliana, as the candidate gene for locule number. A C → T transition at position 176 of the coding sequence of Bra034340 revealed co-segregation with the tetralocular phenotype. The study of silique related traits is of interest both for understanding evolution under artificial selection and for breeding of cultivated Brassica species.
Collapse
Affiliation(s)
- Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Murphy E, De Smet I. Understanding the RALF family: a tale of many species. TRENDS IN PLANT SCIENCE 2014; 19:664-71. [PMID: 24999241 DOI: 10.1016/j.tplants.2014.06.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 05/02/2023]
Abstract
Small secreted peptides are gaining importance as signalling molecules in plants. Among the 1000 open reading frames (ORFs) in the Arabidopsis (Arabidopsis thaliana) genome potentially encoding small secreted peptides, the members of the RAPID ALKALINIZATION FACTOR (RALF) family of peptides have been linked to several physiological and developmental processes. Here, we provide a comprehensive overview of current knowledge on the RALF family. Discovered in tobacco (Nicotiana tabacum), the role of RALF peptides has been investigated in numerous plant species. Together, these observations suggest that RALF peptides impact on acidification and cell expansion during growth and development. Although few components of the signalling pathway have been revealed, the recent identification of FERONIA (FER) as a RALF receptor and plasma membrane H(+)-ATPase 2 as a downstream target provide a major step forward.
Collapse
Affiliation(s)
- Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
12
|
Matsubayashi Y. Posttranslationally modified small-peptide signals in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:385-413. [PMID: 24779997 DOI: 10.1146/annurev-arplant-050312-120122] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell-to-cell signaling is essential for many processes in plant growth and development, including coordination of cellular responses to developmental and environmental cues. Cumulative studies have demonstrated that peptide signaling plays a greater-than-anticipated role in such intercellular communication. Some peptides act as signals during plant growth and development, whereas others are involved in defense responses or symbiosis. Peptides secreted as signals often undergo posttranslational modification and proteolytic processing to generate smaller peptides composed of approximately 10 amino acid residues. Such posttranslationally modified small-peptide signals constitute one of the largest groups of secreted peptide signals in plants. The location of the modification group incorporated into the peptides by specific modification enzymes and the peptide chain length defined by the processing enzymes are critical for biological function and receptor interaction. This review covers 20 years of research into posttranslationally modified small-peptide signals in plants.
Collapse
|
13
|
Xu TT, Song XF, Ren SC, Liu CM. The sequence flanking the N-terminus of the CLV3 peptide is critical for its cleavage and activity in stem cell regulation in Arabidopsis. BMC PLANT BIOLOGY 2013; 13:225. [PMID: 24369789 PMCID: PMC3878228 DOI: 10.1186/1471-2229-13-225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/20/2013] [Indexed: 05/27/2023]
Abstract
BACKGROUND Although it is known that CLAVATA3 (CLV3) acts as 12- and/or 13-amino acid (AA) secreted peptides to regulate the number of stem cells in shoot apical meristems (SAMs), how functional CLV3 peptides are generated and if any particular sequences are required for the processing remain largely unknown. RESULTS We developed a mass spectrometry (MS)-based in vitro assay to monitor the cleavage of heterologously produced CLV3 fusion protein. Through co-cultivation of the fusion protein with Arabidopsis seedlings, we identified two cleavage sites: the previously reported one before Arg70 and a new one before Met39. Using synthetic peptides together with MALDI-Tof-MS analyses, we demonstrated that the non-conserved 5-AA motifs flanking N-termini of the CLV3 and its orthologous CLE1 peptides were critical for their cleavages and optimal activities in vitro. We also found that substitutions of Leu69 by Ala in fusion protein and in synthetic peptide of CLV3 compromised their cleavages, leading to significantly reduced activities in regulating the sizes of shoot and root meristems. CONCLUSIONS These results suggest that 5-AA residues flanking the N-terminus of CLV3 peptide are required for proper cleavages and optimal function in stem cell regulation.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Shi-Chao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| |
Collapse
|
14
|
Zhang Z, Thomma BPHJ. Structure-function aspects of extracellular leucine-rich repeat-containing cell surface receptors in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1212-23. [PMID: 23718712 DOI: 10.1111/jipb.12080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/23/2013] [Indexed: 05/08/2023]
Abstract
Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specifically summarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed. [Figure: see text] Bart P.H.J. Thomma (Corresponding author).
Collapse
Affiliation(s)
- Zhao Zhang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
15
|
Aalen RB. Maturing peptides open for communication. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5231-5235. [PMID: 24259454 DOI: 10.1093/jxb/ert378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Song XF, Xu TT, Ren SC, Liu CM. Individual amino acid residues in CLV3 peptide contribute to its stability in vitro. PLANT SIGNALING & BEHAVIOR 2013; 8:25344. [PMID: 23803748 PMCID: PMC4002601 DOI: 10.4161/psb.25344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 05/29/2023]
Abstract
CLV3 acts as a peptide ligand to interact with leucine-rich repeat (LRR) receptor kinases in neighboring cells to restrict the size of shoot apical meristems (SAMs) in Arabidopsis. To examine contributions of individual amino acid residues in CLV3 peptide in SAM maintenance, 12 synthetic Ala-substituted CLV3 peptides were applied to clv3-2 seedlings cultured in vitro, and the sizes of SAMs were measured after 9 d. The result showed that Pro-9 and His-11 are the most critical residues, while Val-3 and Ser-5 are the least important ones for CLV3 functions in SAMs in vitro. With MALDI-TOF mass spectrum analyses, we further showed that Ala substitution in His-11 led to a greatly reduced stability of the peptide, leading to a complete degradation of the peptide after cultured with seedlings for only one hour. The substitution of Pro-9 by Ala also led to a complete degradation of the peptides after 2 d incubation. In contrast, Ala substitutions in Val-3 or Ser-5 gave very little changes on peptide stabilities. These results suggested that stabilities of Ala-substituted CLV3 peptides are positively correlated with their activities in SAMs. We thus propose that the stability of CLV3 may partially contribute to its function in SAM maintenance.
Collapse
Affiliation(s)
- Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| | - Ting-Ting Xu
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
- Graduate School of Chinese Academy of Sciences; Beijing, PR China
| | - Shi-Chao Ren
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
- Graduate School of Chinese Academy of Sciences; Beijing, PR China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China
| |
Collapse
|
17
|
Reid DE, Li D, Ferguson BJ, Gresshoff PM. Structure-function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1575-85. [PMID: 23386683 PMCID: PMC3617822 DOI: 10.1093/jxb/ert008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Legumes control the nitrogen-fixing root nodule symbiosis in response to external and internal stimuli, such as nitrate, and via systemic autoregulation of nodulation (AON). Overexpression of the CLV3/ESR-related (CLE) pre-propeptide-encoding genes GmNIC1 (nitrate-induced and acting locally) and GmRIC1 (Bradyrhizobium-induced and acting systemically) suppresses soybean nodulation dependent on the activity of the nodulation autoregulation receptor kinase (GmNARK). This nodule inhibition response was used to assess the relative importance of key structural components within and around the CLE domain sequences of these genes. Using a site-directed mutagenesis approach, mutants were produced at each amino acid within the CLE domain (RLAPEGPDPHHN) of GmRIC1. This approach identified the Arg1, Ala3, Pro4, Gly6, Pro7, Asp8, His11, and Asn12 residues as critical to GmRIC1 nodulation suppression activity (NSA). In contrast, none of the mutations in conserved residues outside of the CLE domain showed compromised NSA. Chimeric genes derived from combinations of GmRIC1 and GmNIC1 domains were used to determine the role of each pre-propeptide domain in NSA differences that exist between the two peptides. It was found that the transit peptide and CLE peptide regions of GmRIC1 significantly enhanced activity of GmNIC1. In contrast, the comparable GmNIC1 domains reduced the NSA of GmRIC1. Identification of these critical residues and domains provides a better understanding of how these hormone-like peptides function in plant development and regulation.
Collapse
Affiliation(s)
- Dugald E. Reid
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Dongxue Li
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Brett J. Ferguson
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Peter M. Gresshoff
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Lee C, Clark SE. Core pathways controlling shoot meristem maintenance. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:671-84. [PMID: 24014453 DOI: 10.1002/wdev.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Essential to the function of shoot meristems in plants to act as sites of continuous organ and tissue formation is the ability of cells within the meristem to remain undifferentiated and proliferate indefinitely. These are characteristics of the stem cells within meristems that are critical for their growth properties. Stem cells are found in tight association with the stem cell niche-those cells that signal to maintain stem cells. Shoot meristems are unique among stem cell systems in that the stem cell niche is a constantly changing population of recent daughter stem cells. Recent progress from Arabidopsis and other systems have uncovered a large number of genes with defined roles in meristem structure and maintenance. This review will focus on well-studied pathways that represent signaling between the stem cells and the niche, that prevent ectopic differentiation of stem cells, that regulate the chromatin status of stem cell factors, and that reveal intersection of hormone signaling and meristem maintenance.
Collapse
Affiliation(s)
- Chunghee Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
19
|
Gao X, Guo Y. CLE peptides in plants: proteolytic processing, structure-activity relationship, and ligand-receptor interaction. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:738-45. [PMID: 22925455 DOI: 10.1111/j.1744-7909.2012.01154.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ligand-receptor signaling initiated by the CLAVATA3/ ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants. Biologically active CLE peptides are released from precursor proteins via proteolytic processing. The mature form of CLE ligands consists of 12-13 amino acids with several post-translational modifications. This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides, the molecular structure and function of mature CLE ligands, and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).
Collapse
Affiliation(s)
- Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China
| | | |
Collapse
|
20
|
Stahl Y, Simon R. Peptides and receptors controlling root development. Philos Trans R Soc Lond B Biol Sci 2012; 367:1453-60. [PMID: 22527387 DOI: 10.1098/rstb.2011.0235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The growth of a plant's root system depends on the continued activity of the root meristem, and the generation of new meristems when lateral roots are initiated. Plants have developed intricate signalling systems that employ secreted peptides and plasma membrane-localized receptor kinases for short- and long-range communication. Studies on growth of the vascular system, the generation of lateral roots, the control of cell differentiation in the root meristem and the interaction with invading pathogens or symbionts has unravelled a network of peptides and receptor systems with occasionally shared functions. A common theme is the employment of conserved modules, consisting of a short signalling peptide, a receptor-like kinase and a target transcription factor, that control the fate and proliferation of stem cells during root development. This review intends to give an overview of the recent advances in receptor and peptide ligand-mediated signalling involved in root development.
Collapse
Affiliation(s)
- Yvonne Stahl
- Institute of Developmental Genetics, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | | |
Collapse
|
21
|
Song XF, Yu DL, Xu TT, Ren SC, Guo P, Liu CM. Contributions of individual amino acid residues to the endogenous CLV3 function in shoot apical meristem maintenance in Arabidopsis. MOLECULAR PLANT 2012; 5:515-23. [PMID: 22259020 DOI: 10.1093/mp/ssr120] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As a peptide hormone, CLV3 restricts the stem cell number in shoot apical meristem (SAM) by interacting with CLV1/CLV2/CRN/RPK2 receptor complexes. To elucidate how the function of the CLV3 peptide in SAM maintenance is established at the amino acid (AA) level, alanine substitutions were performed by introducing point mutations to individual residues in the peptide-coding region of CLV3 and its flanking sequences. Constructs carrying such substitutions, expressed under the control of CLV3 regulatory elements, were transformed to the clv3-2 null mutant to evaluate their efficiencies in complementing its defects in SAMs in vivo. These studies showed that aspartate-8, histidine-11, glycine-6, proline-4, arginine-1, and proline-9, arranged in an order of importance, were critical, while threonine-2, valine-3, serine-5, and the previously assigned hydroxylation and arabinosylation residue proline-7 were trivial for the endogenous CLV3 function in SAM maintenance. In contrast, substitutions of flanking residues did not impose much damage on CLV3. Complementation of different alanine-substituted constructs was confirmed by measurements of the sizes of SAMs and the WUS expression levels in transgenic plants. These studies established a complete contribution map of individual residues in the peptide-coding region of CLV3 for its function in SAM, which may help to understand peptide hormones in general.
Collapse
Affiliation(s)
- Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
22
|
Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM. Molecular mechanisms controlling legume autoregulation of nodulation. ANNALS OF BOTANY 2011; 108:789-95. [PMID: 21856632 PMCID: PMC3177682 DOI: 10.1093/aob/mcr205] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/17/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND High input costs and environmental pressures to reduce nitrogen use in agriculture have increased the competitive advantage of legume crops. The symbiotic relationship that legumes form with nitrogen-fixing soil bacteria in root nodules is central to this advantage. SCOPE Understanding how legume plants maintain control of nodulation to balance the nitrogen gains with their energy needs and developmental costs will assist in increasing their productivity and relative advantage. For this reason, the regulation of nodulation has been extensively studied since the first mutants exhibiting increased nodulation were isolated almost three decades ago. CONCLUSIONS Nodulation is regulated primarily via a systemic mechanism known as the autoregulation of nodulation (AON), which is controlled by a CLAVATA1-like receptor kinase. Multiple components sharing homology with the CLAVATA signalling pathway that maintains control of the shoot apical meristem in arabidopsis have now been identified in AON. This includes the recent identification of several CLE peptides capable of activating nodule inhibition responses, a low molecular weight shoot signal and a role for CLAVATA2 in AON. Efforts are now being focused on directly identifying the interactions of these components and to identify the form that long-distance transport molecules take.
Collapse
|
23
|
Abstract
Cell-to-cell communication is integral to the evolution of multicellularity. In plant development, peptide signals relay information coordinating cell proliferation and differentiation. These peptides are often encoded by gene families and bind to corresponding families of receptors. The precise spatiotemporal expression of signals and their cognate receptors underlies developmental patterning, and expressional and biochemical changes over evolutionary time have likely contributed to the refinement and complexity of developmental programs. Here, we discuss two major plant peptide families which have central roles in plant development: the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide family and the EPIDERMAL PATTERNING FACTOR (EPF) family. We discuss how specialization has enabled the CLE peptides to modulate stem cell differentiation in various tissue types, and how differing activities of EPF peptides precisely regulate the stomatal developmental program, and we examine the contributions of these peptide families to plant development from an evolutionary perspective.
Collapse
Affiliation(s)
- Leron Katsir
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
24
|
Guo Y, Ni J, Denver R, Wang X, Clark SE. Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode Globodera rostochiensis. PLANT PHYSIOLOGY 2011; 157:476-84. [PMID: 21750229 PMCID: PMC3165893 DOI: 10.1104/pp.111.180554] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/07/2011] [Indexed: 05/19/2023]
Abstract
Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry.
Collapse
|
25
|
Reid DE, Ferguson BJ, Gresshoff PM. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:606-18. [PMID: 21198362 DOI: 10.1094/mpmi-09-10-0207] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Systemic autoregulation of nodulation in legumes involves a root-derived signal (Q) that is perceived by a CLAVATA1-like leucine-rich repeat receptor kinase (e.g. GmNARK). Perception of Q triggers the production of a shoot-derived inhibitor that prevents further nodule development. We have identified three candidate CLE peptide-encoding genes (GmRIC1, GmRIC2, and GmNIC1) in soybean (Glycine max) that respond to Bradyrhizobium japonicum inoculation or nitrate treatment. Ectopic overexpression of all three CLE peptide genes in transgenic roots inhibited nodulation in a GmNARK-dependent manner. The peptides share a high degree of amino acid similarity in a 12-amino-acid C-terminal domain, deemed to represent the functional ligand of GmNARK. GmRIC1 was expressed early (12 h) in response to Bradyrhizobium-sp.-produced nodulation factor while GmRIC2 was induced later (48 to 72 h) but was more persistent during later nodule development. Neither GmRIC1 nor GmRIC2 were induced by nitrate. In contrast, GmNIC1 was strongly induced by nitrate (2 mM) treatment but not by Bradyrhizobium sp. inoculation and, unlike the other two GmCLE peptides, functioned locally to inhibit nodulation. Grafting demonstrated a requirement for root GmNARK activity for nitrate regulation of nodulation whereas Bradyrhizobium sp.-induced regulation was contingent on GmNARK function in the shoot.
Collapse
Affiliation(s)
- Dugald E Reid
- Australian Research Council Centre of Excellence for Integrative Legume Research, John Hines Building, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
26
|
Abstract
The RLK/Pelle class of proteins kinases is composed of over 600 members in Arabidopsis. Many of the proteins in this family are receptor-like kinases (RLK), while others have lost their extracellular domains and are found as cytoplasmic kinases. Proteins in this family that are RLKs have a variety of extracellular domains that drive function in a large number of processes, from cell wall interactions to disease resistance to developmental control. This review will briefly cover the major subclasses of RLK/Pelle proteins and their roles. In addition, two specific groups on RLKs will be discussed in detail, relating recent findings in Arabidopsis and how well these conclusions have been able to be translated to agronomically important species. Finally, some details on kinase activity and signal transduction will be addressed, along with the mystery of RLK/Pelle members lacking kinase enzymatic activity.
Collapse
Affiliation(s)
- Lindsey A Gish
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
27
|
Kondo T, Yokomine K, Nakagawa A, Sakagami Y. Analogs of the CLV3 peptide: synthesis and structure-activity relationships focused on proline residues. PLANT & CELL PHYSIOLOGY 2011; 52:30-6. [PMID: 20926417 PMCID: PMC3023850 DOI: 10.1093/pcp/pcq146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CLAVATA3 (CLV3) is a plant peptide hormone in which the proline residues are post-translationally hydroxylated and glycosylated. CLV3 plays a key role in controlling the stem cell mass in the shoot meristem of Arabidopsis thaliana. In a previous report, we identified a dodecapeptide (MCLV3) from CLV3-overexpressing Arabidopsis calli; MCLV3 was the smallest functional peptide derived from the CLV3 precursor. Here, we designed a series of MCLV3 analogs in which proline residues were substituted with proline derivatives or N-substituted glycines (peptoids). Peptoid substitution at Pro9 decreased bioactivity without affecting specific binding to the CLV1-related protein in cauliflower membrane. These findings suggest that peptoid-substituted peptides would be lead compounds for developing potential agonists and antagonists of CLV3.
Collapse
Affiliation(s)
- Tatsuhiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
- These authors contributed equally to this work
| | - Kenjiro Yokomine
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
- These authors contributed equally to this work
| | - Aya Nakagawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Youji Sakagami
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
- *Corresponding author: E-mail, ; Fax, +81-52-789-4118
| |
Collapse
|
28
|
Ni J, Guo Y, Jin H, Hartsell J, Clark SE. Characterization of a CLE processing activity. PLANT MOLECULAR BIOLOGY 2011; 75:67-75. [PMID: 21052783 DOI: 10.1007/s11103-010-9708-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/19/2010] [Indexed: 05/29/2023]
Abstract
Proteins containing a conserved motif known as the CLE domain are found widely distributed across land plants. While the functions of most CLE proteins are unknown, specific CLE proteins have been shown to control shoot meristem, root and vascular development. This has been best studied for CLV3 which is required for stem cell differentiation at shoot and flower meristems. In vivo evidence indicates that the CLE domain is the functional region for CLV3, and that it is proteolytically processed from the CLV3 precursor protein. But the mechanism and activity responsible for this processing is poorly understood. Here we extend analysis of an in vitro CLE processing activity and show that in vitro cleavage occurs at Arg70, exactly matching in vivo maturation. We provide evidence that related processing activities are present in multiple tissues and species. We show that efficient protease recognition can occur with as little as four residues upstream of the CLE domain, and that the conserved arginine at position +1 and conserved acidic residues at positions -2 and/or -3 are required for efficient cleavage. Finally, we provide evidence that the N-terminal processing enzyme is a secreted serine protease while C-terminal processing may occur via a progressive carboxypeptidase.
Collapse
Affiliation(s)
- Jun Ni
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | |
Collapse
|
29
|
Jun J, Fiume E, Roeder AH, Meng L, Sharma VK, Osmont KS, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, Fletcher JC. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1721-36. [PMID: 20884811 PMCID: PMC2996011 DOI: 10.1104/pp.110.163683] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Intercellular signaling is essential for the coordination of growth and development in higher plants. Although hundreds of putative receptors have been identified in Arabidopsis (Arabidopsis thaliana), only a few families of extracellular signaling molecules have been discovered, and their biological roles are largely unknown. To expand our insight into the developmental processes potentially regulated by ligand-mediated signal transduction pathways, we undertook a systematic expression analysis of the members of the Arabidopsis CLAVATA3/ESR-RELATED (CLE) small signaling polypeptide family. Using reporter constructs, we show that the CLE genes have distinct and specific patterns of promoter activity. We find that each Arabidopsis tissue expresses at least one CLE gene, indicating that CLE-mediated signaling pathways are likely to play roles in many biological processes during the plant life cycle. Some CLE genes that are closely related in sequence have dissimilar expression profiles, yet in many tissues multiple CLE genes have overlapping patterns of promoter-driven reporter activity. This observation, plus the general absence of detectable morphological phenotypes in cle null mutants, suggest that a high degree of functional redundancy exists among CLE gene family members. Our work establishes a community resource of CLE-related biological materials and provides a platform for understanding and ultimately manipulating many different plant signaling systems.
Collapse
|
30
|
Guo Y, Han L, Hymes M, Denver R, Clark SE. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:889-900. [PMID: 20626648 PMCID: PMC2974754 DOI: 10.1111/j.1365-313x.2010.04295.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
CLAVATA1 (CLV1), CLV2, CLV3, CORYNE (CRN), BAM1 and BAM2 are key regulators that function at the shoot apical meristem (SAM) of plants to promote differentiation by limiting the size of the organizing center that maintains stem cell identity in neighboring cells. Previous results have indicated that the extracellular domain of the receptor kinase CLV1 binds to the CLV3-derived CLE ligand. The biochemical role of the receptor-like protein CLV2 has remained largely unknown. Although genetic analysis suggested that CLV2, together with the membrane kinase CRN, acts in parallel with CLV1, recent studies using transient expression indicated that CLV2 and CRN from a complex with CLV1. Here, we report detection of distinct CLV2-CRN heteromultimeric and CLV1-BAM multimeric complexes in transient expression in tobacco and in Arabidopsis meristems. Weaker interactions between the two complexes were detectable in transient expression. We also find that CLV2 alone generates a membrane-localized CLE binding activity independent of CLV1. CLV2, CLV1 and the CLV1 homologs BAM1 and BAM2 all bind to the CLV3-derived CLE peptide with similar kinetics, but BAM receptors show a broader range of interactions with different CLE peptides. Finally, we show that BAM and CLV1 overexpression can compensate for the loss of CLV2 function in vivo. These results suggest two parallel ligand-binding receptor complexes controlling stem cell specification in Arabidopsis.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| | - Linqu Han
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| | | | - Robert Denver
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| | - Steven E. Clark
- Department of Molecular, Cellular and Developmental Biologym, University of Michigan, Ann Arbor, MI 48109-1048
| |
Collapse
|
31
|
Song X, Guo P, Li C, Liu CM. The cysteine pairs in CLV2 are not necessary for sensing the CLV3 peptide in shoot and root meristems. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:774-781. [PMID: 20738721 DOI: 10.1111/j.1744-7909.2010.00978.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Receptor-like proteins (RLPs) are involved in both plant defense and developmental processes. Previous genetic and biochemical studies show that the leucine-rich repeat (LRR) receptor-like protein CLAVATA2 (CLV2) functions together with CLAVATA1 (CLV1) and CORYNE (CRN) in Arabidopsis to limit the stem cell number in shoot apical meristem, while in root it acts with CRN to trigger a premature differentiation of the stem cells after sensing the exogenously applied peptides of CLV3p, CLE19p or CLE40p. It has been proposed that disulfide bonds might be formed through two cysteine pairs in the extracellular LRR domains of CLV1 and CLV2 to stabilize the receptor complex. Here we tested the hypothesis by replacing these cysteines with alanines and showed that depletions of one or both of the cysteine pairs do not hamper the function of CLV2 in SAM maintenance. In vitro peptide assay also showed that removal of the cysteine pairs did not affect the perception of CLV3 peptides in roots. These observations allow us to conclude that the formation of disulfide bonds is not needed for the function of CLV2.
Collapse
Affiliation(s)
- Xiufen Song
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
32
|
Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol 2009; 336:1-9. [DOI: 10.1016/j.ydbio.2009.09.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 12/13/2022]
|
33
|
Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM. Plant peptides in signalling: looking for new partners. TRENDS IN PLANT SCIENCE 2009; 14:255-263. [PMID: 19362511 DOI: 10.1016/j.tplants.2009.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 01/11/2023]
Abstract
A novel candidate ligand-receptor system, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the related receptor-like kinases (RLKs) HAESA (HAE) and HAESA-LIKE (HSL)2, has been shown to control floral abscission in Arabidopsis thaliana. Furthermore, several IDA-LIKE (IDL) proteins, which contain a conserved C-terminal domain resembling that of the CLAVATA (CLV)3-ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) protein family, have been shown to be partially redundant with IDA. Here, we use the genetic similarities between the IDA and CLV3 signalling systems to hypothesize that closely related peptide ligands are likely to interact with families of closely related RLKs. Guided by this hypothesis and with the aid of genetics and novel methods, ligand-receptor systems can be identified to improve our understanding of developmental processes in plants.
Collapse
Affiliation(s)
- Melinka A Butenko
- Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|