1
|
Haarmann A, Vollmuth C, Kollikowski AM, Heuschmann PU, Pham M, Stoll G, Neugebauer H, Schuhmann MK. Vasoactive Soluble Endoglin: A Novel Biomarker Indicative of Reperfusion after Cerebral Large-Vessel Occlusion. Cells 2023; 12:cells12020288. [PMID: 36672223 PMCID: PMC9856463 DOI: 10.3390/cells12020288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Now that mechanical thrombectomy has substantially improved outcomes after large-vessel occlusion stroke in up to every second patient, futile reperfusion wherein successful recanalization is not followed by a favorable outcome is moving into focus. Unfortunately, blood-based biomarkers, which identify critical stages of hemodynamically compromised yet reperfused tissue, are lacking. We recently reported that hypoxia induces the expression of endoglin, a TGF-β co-receptor, in human brain endothelium in vitro. Subsequent reoxygenation resulted in shedding. Our cell model suggests that soluble endoglin compromises the brain endothelial barrier function. To evaluate soluble endoglin as a potential biomarker of reperfusion (-injury) we analyzed its concentration in 148 blood samples of patients with acute stroke due to large-vessel occlusion. In line with our in vitro data, systemic soluble endoglin concentrations were significantly higher in patients with successful recanalization, whereas hypoxia alone did not induce local endoglin shedding, as analyzed by intra-arterial samples from hypoxic vasculature. In patients with reperfusion, higher concentrations of soluble endoglin additionally indicated larger infarct volumes at admission. In summary, we give translational evidence that the sequence of hypoxia and subsequent reoxygenation triggers the release of vasoactive soluble endoglin in large-vessel occlusion stroke and can serve as a biomarker for severe ischemia with ensuing recanalization/reperfusion.
Collapse
Affiliation(s)
- Axel Haarmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.H.); (M.K.S.)
| | - Christoph Vollmuth
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | | | - Peter U. Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, 97080 Würzburg, Germany
- Clinical Trial Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University of Würzburg, 97080 Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Hermann Neugebauer
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Michael K. Schuhmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.H.); (M.K.S.)
| |
Collapse
|
2
|
Haarmann A, Zimmermann L, Bieber M, Silwedel C, Stoll G, Schuhmann MK. Regulation and Release of Vasoactive Endoglin by Brain Endothelium in Response to Hypoxia/Reoxygenation in Stroke. Int J Mol Sci 2022; 23:ijms23137085. [PMID: 35806090 PMCID: PMC9267030 DOI: 10.3390/ijms23137085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
In large vessel occlusion stroke, recanalization to restore cerebral perfusion is essential but not necessarily sufficient for a favorable outcome. Paradoxically, in some patients, reperfusion carries the risk of increased tissue damage and cerebral hemorrhage. Experimental and clinical data suggest that endothelial cells, representing the interface for detrimental platelet and leukocyte responses, likely play a crucial role in the phenomenon referred to as ischemia/reperfusion (I/R)-injury, but the mechanisms are unknown. We aimed to determine the role of endoglin in cerebral I/R-injury; endoglin is a membrane-bound protein abundantly expressed by endothelial cells that has previously been shown to be involved in the maintenance of vascular homeostasis. We investigated the expression of membranous endoglin (using Western blotting and RT-PCR) and the generation of soluble endoglin (using an enzyme-linked immunosorbent assay of cell culture supernatants) after hypoxia and subsequent reoxygenation in human non-immortalized brain endothelial cells. To validate these in vitro data, we additionally examined endoglin expression in an intraluminal monofilament model of permanent and transient middle cerebral artery occlusion in mice. Subsequently, the effects of recombinant human soluble endoglin were assessed by label-free impedance-based measurement of endothelial monolayer integrity (using the xCELLigence DP system) and immunocytochemistry. Endoglin expression is highly inducible by hypoxia in human brain endothelial monolayers in vitro, and subsequent reoxygenation induced its shedding. These findings were corroborated in mice during MCAO; an upregulation of endoglin was displayed in the infarcted hemispheres under occlusion, whereas endoglin expression was significantly diminished after transient MCAO, which is indicative of shedding. Of note is the finding that soluble endoglin induced an inflammatory phenotype in endothelial monolayers. The treatment of HBMEC with endoglin resulted in a decrease in transendothelial resistance and the downregulation of VE-cadherin. Our data establish a novel mechanism in which hypoxia triggers the initial endothelial upregulation of endoglin and subsequent reoxygenation triggers its release as a vasoactive mediator that, when rinsed into adjacent vascular beds after recanalization, can contribute to cerebral reperfusion injury.
Collapse
Affiliation(s)
- Axel Haarmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
- Correspondence: (A.H.); (M.K.S.)
| | - Lena Zimmermann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
| | - Michael Bieber
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
| | - Christine Silwedel
- University Children’s Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Guido Stoll
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
| | - Michael K. Schuhmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
- Correspondence: (A.H.); (M.K.S.)
| |
Collapse
|
3
|
Smad-dependent pathways in the infarcted and failing heart. Curr Opin Pharmacol 2022; 64:102207. [DOI: 10.1016/j.coph.2022.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
|
4
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
5
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
6
|
Jeng KS, Sheen IS, Lin SS, Leu CM, Chang CF. The Role of Endoglin in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063208. [PMID: 33809908 PMCID: PMC8004096 DOI: 10.3390/ijms22063208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Endoglin (CD105) is a type-1 integral transmembrane glycoprotein and coreceptor for transforming growth factor-β (TGF-β) ligands. The endoglin/TGF-β signaling pathway regulates hemostasis, cell proliferation/migration, extracellular matrix (ECM) synthesis and angiogenesis. Angiogenesis contributes to early progression, invasion, postoperative recurrence, and metastasis in hepatocellular carcinoma (HCC), one of the most widespread malignancies globally. Endoglin is overexpressed in newly formed HCC microvessels. It increases microvessel density in cirrhotic and regenerative HCC nodules. In addition, circulating endoglin is present in HCC patients, suggesting potential for use as a diagnostic or prognostic factor. HCC angiogenesis is dynamic and endoglin expression varies by stage. TRC105 (carotuximab) is an antibody against endoglin, and three of its clinical trials were related to liver diseases. A partial response was achieved when combining TRC105 with sorafenib. Although antiangiogenic therapy still carries some risks, combination therapy with endoglin inhibitors or other targeted therapies holds promise.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - I-Shyan Sheen
- Department of Hepatogastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taoyuan city 33305, Taiwan;
| | - Shu-Sheng Lin
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei city 11221, Taiwan;
| | - Chiung-Fang Chang
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
- Correspondence: ; Tel.: +886-2-7728-4564
| |
Collapse
|
7
|
Du J, Yin G, Hu Y, Shi S, Jiang J, Song X, Zhang Z, Wei Z, Tang C, Lyu H. Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting angiogenesis via the TGFβ/ALK1/Smad1/5 signaling pathway. Aging (Albany NY) 2020; 13:877-893. [PMID: 33290255 PMCID: PMC7835068 DOI: 10.18632/aging.202194] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Background: Ischemic stroke is a devastating disease that causes long-term disability. However, its pathogenesis is unclear, and treatments for ischemic stroke are limited. Recent studies indicate that oxidative stress is involved in the pathological progression of ischemic stroke and that angiogenesis participates in recovery from ischemic stroke. Furthermore, previous studies have shown that Coicis Semen has antioxidative and anti-inflammatory effects in a variety of diseases. In the present study, we investigated whether Coicis Semen has a protective effect against ischemic stroke and the mechanism of this protective effect. Results: Coicis Semen administration significantly decreased the infarct volume and mortality and alleviated neurological deficits at 3, 7 and 14 days after MCAO. In addition, cerebral edema at 3 days poststroke was ameliorated by Coicis Semen treatment. DHE staining showed that ROS levels in the vehicle group were increased at 3 days after reperfusion and then gradually declined, but Coicis Semen treatment reduced ROS levels. The levels of GSH and SOD in the brain were increased by Coicis Semen treatment, while MDA levels were reduced. Furthermore, Coicis Semen treatment decreased the extravasation of EB dye in MCAO mouse brains and elevated expression of the tight junction proteins ZO-1 and Occludin. Double immunofluorescence staining and western blot analysis showed that the expression of angiogenesis markers and TGFβ pathway-related proteins was increased by Coicis Semen administration. Consistent with the in vivo results, cytotoxicity assays showed that Coicis Semen substantially promoted HUVEC survival following OGD/RX in vitro. Additionally, though LY2109761 inhibited the activation of TGFβ signaling in OGD/RX model animals, Coicis Semen cotreatment markedly reversed the downregulation of TGFβ pathway-related proteins and increased VEGF levels. Methods: Adult male wild-type C57BL/6J mice were used to develop a middle cerebral artery occlusion (MCAO) stroke model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7 and 14 after staining. In addition, changes in superoxide dismutase (SOD), GSH and malondialdehyde (MDA) levels were detected with a commercial kit. Blood-brain barrier (BBB) permeability was assessed with Evans blue (EB) dye. Western blotting was also performed to measure the levels of tight junction proteins of the BBB. Additionally, ELISA was performed to measure the level of VEGF in the brain. The colocalization of CD31, angiogenesis markers, and Smad1/5 was assessed by double immunofluorescent staining. TGFβ pathway-related proteins were measured by western blotting. Furthermore, the cell viability of human umbilical vein endothelial cells (HUVECs) following oxygen-glucose deprivation/reoxygenation (OGD/RX) was measured by Cell Counting Kit (CCK)-8 assay. Conclusions: Coicis Semen treatment alleviates brain damage induced by ischemic stroke through inhibiting oxidative stress and promoting angiogenesis by activating the TGFβ/ALK1 signaling pathway.
Collapse
Affiliation(s)
- Jin Du
- Department of Neurosurgery, The People’s Hospital of Chizhou, Chizhou 247000, Anhui, China
| | - Guobing Yin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Yida Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Si Shi
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jiazhen Jiang
- Department of Emergency, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Xiaoyan Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhetao Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Zeyuan Wei
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Haiyan Lyu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
8
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
9
|
S-endoglin expression is induced in hyperoxia and contributes to altered pulmonary angiogenesis in bronchopulmonary dysplasia development. Sci Rep 2020; 10:3043. [PMID: 32080296 PMCID: PMC7033222 DOI: 10.1038/s41598-020-59928-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Altered pulmonary angiogenesis contributes to disrupted alveolarization, which is the main characteristic of bronchopulmonary dysplasia (BPD). Transforming growth factor β (TGFβ) plays an important role during lung vascular development, and recent studies have demonstrated that endoglin is engaged in the modulation of TGFβ downstream signalling. Although there are two different isoforms of endoglin, L- and S-endoglin, little is known about the effect of S-endoglin in developing lungs. We analysed the expression of both L- and S-endoglin in the lung vasculature and its contribution to TGFβ-activin-like kinase (ALK)-Smad signalling with respect to BPD development. Hyperoxia impaired pulmonary angiogenesis accompanied by alveolar simplification in neonatal mouse lungs. S-endoglin, phosphorylated Smad2/3 and connective tissue growth factor levels were significantly increased in hyperoxia-exposed mice, while L-endoglin, phosphor-Smad1/5 and platelet-endothelial cell adhesion molecule-1 levels were significantly decreased. Hyperoxia suppressed the tubular growth of human pulmonary microvascular endothelial cells (ECs), and the selective inhibition of ALK5 signalling restored tubular growth. These results indicate that hyperoxia alters the balance in two isoforms of endoglin towards increased S-endoglin and that S-endoglin attenuates TGFβ-ALK1-Smad1/5 signalling but stimulates TGFβ-ALK5-Smad2/3 signalling in pulmonary ECs, which may lead to impaired pulmonary angiogenesis in developing lungs.
Collapse
|
10
|
Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020; 71:397-410. [PMID: 32077315 DOI: 10.1177/0003319720903586] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction is one of the earliest indicators of cardiovascular (CV) dysfunction, and its evaluation would be of considerable importance to stratify CV risk of many diseases and to assess the efficacy of atheroprotective treatments. Flow-mediated dilation is the most widely used method to study endothelial function. However, it is operator-dependent and can be influenced by physiological variations. Circulating biomarkers are a promising alternative. Due to the complexity of endothelial function, many of the biomarkers studied do not provide consistent information about the endothelium when measured alone. New circulating markers are being explored and some of them are thought to be suitable for the clinical setting. In this review, we focus on novel biomarkers of endothelial dysfunction, particularly endothelial microparticles, endocan, and endoglin, and discuss whether they fulfill the criteria to be applied in clinical practice.
Collapse
Affiliation(s)
- Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Marta Borges-Canha
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rita Cardoso
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João Sérgio Neves
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Ricardo Castro-Ferreira
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Serviço de Angiologia e Cirurgia Vascular, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Boen JRA, Gevaert AB, De Keulenaer GW, Van Craenenbroeck EM, Segers VFM. The role of endothelial miRNAs in myocardial biology and disease. J Mol Cell Cardiol 2019; 138:75-87. [PMID: 31756323 DOI: 10.1016/j.yjmcc.2019.11.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Jente R A Boen
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Andreas B Gevaert
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium.
| | - Emeline M Van Craenenbroeck
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
12
|
Spears JR. Reperfusion Microvascular Ischemia After Prolonged Coronary Occlusion: Implications And Treatment With Local Supersaturated Oxygen Delivery. HYPOXIA 2019; 7:65-79. [PMID: 31696129 PMCID: PMC6814765 DOI: 10.2147/hp.s217955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Following a prolonged coronary arterial occlusion, heterogeneously scattered, focal regions of low erythrocyte flow are commonly found throughout the reperfused myocardium. Experimental studies have also demonstrated the presence of widespread, focally patchy regions of microvascular ischemia during reperfusion (RMI). However, the potential contribution of RMI to tissue viability and function has received little attention in the absence of practical clinical methods for its detection. In this review, the anatomic/functional basis of RMI is summarized, along with the evidence for its presence in reperfused myocardium. Advances in microcirculation research related to obstructive responses of vascular endothelial cells and blood elements to the effects of hypoxia and low shear stress are discussed, and a potential cycle of intensification of RMI from such responses and progressive loss of functional capillary density is presented. In capillaries with impaired erythrocyte flow, compensatory increases in the delivery of oxygen, because of its low solubility in plasma, are effective only at high partial pressures. As discussed herein, attenuation of the cycle with oxygen at hyperbaric levels in plasma is, very likely, responsible for improved tissue level perfusion noted experimentally. Observed clinical benefits from intracoronary SuperSaturated oxygen (SSO2) delivery, including infarct size reduction, can be attributed to attenuation of RMI with improvement in microvascular blood flow.
Collapse
Affiliation(s)
- James Richard Spears
- Cardiovascular Research Laboratory, Department of Medicine, Division of Cardiology, Beaumont Heart & Vascular Center, Dearborn, MI 48124, USA
| |
Collapse
|
13
|
Kasprzak A, Adamek A. Role of Endoglin (CD105) in the Progression of Hepatocellular Carcinoma and Anti-Angiogenic Therapy. Int J Mol Sci 2018; 19:E3887. [PMID: 30563158 PMCID: PMC6321450 DOI: 10.3390/ijms19123887] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
The liver is perfused by both arterial and venous blood, with a resulting abnormal microenvironment selecting for more-aggressive malignancies. Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, the sixth most common cancer globally, and the third leading cause of cancer-related mortality worldwide. HCC is characterized by its hypervascularization. Improving the efficiency of anti-angiogenic treatment and mitigation of anti-angiogenic drug resistance are the top priorities in the development of non-surgical HCC therapies. Endoglin (CD105), a transmembrane glycoprotein, is one of the transforming growth factor β (TGF-β) co-receptors. Involvement of that protein in angiogenesis of solid tumours is well documented. Endoglin is a marker of activated endothelial cells (ECs), and is preferentially expressed in the angiogenic endothelium of solid tumours, including HCC. HCC is associated with changes in CD105-positive ECs within and around the tumour. The large spectrum of endoglin effects in the liver is cell-type- and HCC- stage-specific. High expression of endoglin in non-tumour tissue suggests that this microenvironment might play an especially important role in the progression of HCC. Evaluation of tissue expression, as well as serum concentrations of this glycoprotein in HCC, tends to confirm its role as an important biomarker in HCC diagnosis and prognosis. The role of endoglin in liver fibrosis and HCC progression also makes it an attractive therapeutic target. Despite these facts, the exact molecular mechanisms of endoglin functioning in hepatocarcinogenesis are still poorly understood. This review summarizes the current data concerning the role and signalling pathways of endoglin in hepatocellular carcinoma development and progression, and provides an overview of the strategies available for a specific targeting of CD105 in anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Poznań 60-781, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Poznań 61-285, Poland.
| |
Collapse
|
14
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
15
|
ETV-2 activated proliferation of endothelial cells and attenuated acute hindlimb ischemia in mice. In Vitro Cell Dev Biol Anim 2017; 53:616-625. [DOI: 10.1007/s11626-017-0151-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|
16
|
Varejckova M, Gallardo-Vara E, Vicen M, Vitverova B, Fikrova P, Dolezelova E, Rathouska J, Prasnicka A, Blazickova K, Micuda S, Bernabeu C, Nemeckova I, Nachtigal P. Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sci 2017; 175:52-60. [DOI: 10.1016/j.lfs.2017.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 01/01/2023]
|
17
|
Guignabert C, Bailly S, Humbert M. Restoring BMPRII functions in pulmonary arterial hypertension: opportunities, challenges and limitations. Expert Opin Ther Targets 2016; 21:181-190. [DOI: 10.1080/14728222.2017.1275567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Sabine Bailly
- INSERM U1036, Grenoble, France
- Laboratoire Biologie du Cancer et de l’Infection, Commissariat à l’Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Marc Humbert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France
| |
Collapse
|
18
|
Doerr M, Morrison J, Bergeron L, Coomber BL, Viloria-Petit A. Differential effect of hypoxia on early endothelial–mesenchymal transition response to transforming growth beta isoforms 1 and 2. Microvasc Res 2016; 108:48-63. [DOI: 10.1016/j.mvr.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023]
|
19
|
Wang H, Lindborg C, Lounev V, Kim JH, McCarrick-Walmsley R, Xu M, Mangiavini L, Groppe JC, Shore EM, Schipani E, Kaplan FS, Pignolo RJ. Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling. J Bone Miner Res 2016; 31:1652-65. [PMID: 27027798 PMCID: PMC5010462 DOI: 10.1002/jbmr.2848] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/10/2016] [Accepted: 03/27/2016] [Indexed: 12/12/2022]
Abstract
Hypoxia and inflammation are implicated in the episodic induction of heterotopic endochondral ossification (HEO); however, the molecular mechanisms are unknown. HIF-1α integrates the cellular response to both hypoxia and inflammation and is a prime candidate for regulating HEO. We investigated the role of hypoxia and HIF-1α in fibrodysplasia ossificans progressiva (FOP), the most catastrophic form of HEO in humans. We found that HIF-1α increases the intensity and duration of canonical bone morphogenetic protein (BMP) signaling through Rabaptin 5 (RABEP1)-mediated retention of Activin A receptor, type I (ACVR1), a BMP receptor, in the endosomal compartment of hypoxic connective tissue progenitor cells from patients with FOP. We further show that early inflammatory FOP lesions in humans and in a mouse model are markedly hypoxic, and inhibition of HIF-1α by genetic or pharmacologic means restores canonical BMP signaling to normoxic levels in human FOP cells and profoundly reduces HEO in a constitutively active Acvr1(Q207D/+) mouse model of FOP. Thus, an inflammation and cellular oxygen-sensing mechanism that modulates intracellular retention of a mutant BMP receptor determines, in part, its pathologic activity in FOP. Our study provides critical insight into a previously unrecognized role of HIF-1α in the hypoxic amplification of BMP signaling and in the episodic induction of HEO in FOP and further identifies HIF-1α as a therapeutic target for FOP and perhaps nongenetic forms of HEO. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Carter Lindborg
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Vitali Lounev
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Jung-Hoon Kim
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Ruth McCarrick-Walmsley
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Meiqi Xu
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Mangiavini
- Departments of Medicine and Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Ernestina Schipani
- Departments of Medicine and Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Pignolo
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Chen CH, Chuang HC, Lin YT, Fang FM, Huang CC, Chen CM, Lu H, Chien CY. Circulating CD105 shows significant impact in patients of oral cancer and promotes malignancy of cancer cells via CCL20. Tumour Biol 2016; 37:1995-2005. [PMID: 26334621 DOI: 10.1007/s13277-015-3991-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022] Open
Abstract
CD105 is rich in endothelium cells and is involved in angiogenesis. Higher microvascular density of tumor is also related to the prognosis in a variety of cancers. In this present study, patients with positive N classification, advanced T classification, advanced TNM stage, extracapsular spread of lymph nodes (ECS), and perineural invasion had significantly higher levels of peripheral vein (pCD105) and venous return from tumor (tCD105) in 71 patients with OSCC compared to 13 healthy volunteers. Those with higher pCD105 or tCD105 levels had significantly poorer 5-year disease-specific survival rate (DDS) and overall survival rate (OS). The tCD105 and pCD105 levels and ECS were the independent prognostic factors by the multivariate analysis according to the Cox regression model in 5-year DDS and OS rate. SAS and SCC4 cells treated with CD105 showed the increase in migration, invasion, and proliferation in vitro and in vivo. Furthermore, CCL20 expression participated in CD105-elicited cell motility in oral cancer cells. In conclusion, higher level of circulating CD105 is related to adverse pathological features among patients with OSCC. It is also a useful marker for evaluating the prognosis and targeting therapeutics of OSCC.
Collapse
Affiliation(s)
- Chang-Han Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Applied Chemistry and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taoyuan, Taiwan
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Mei Chen
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui Lu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Song District, Kaohsiung, 833, Taiwan.
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Gratchev A. TGF-β signalling in tumour associated macrophages. Immunobiology 2016; 222:75-81. [PMID: 26876591 DOI: 10.1016/j.imbio.2015.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Tumour associated macrophages (TAM) represent an important component of tumour stroma. They develop under the influence of tumour microenvironment where transforming growth factor (TGF)β is frequently present. Activities of TAM regulated by TGFβ stimulate proliferation of tumour cells and lead to tumour immune escape. Despite high importance of TGFβ-induction of TAM activities till now our understanding of the mechanism of this induction is limited. We have previously developed a model of type 2 macrophages (M2) resembling certain properties of TAM. We established that in M2 TGFβRII is regulated on the level of subcellular sorting by glucocorticoids. Further studies revealed that in M2 with high levels of TGFβRII on the surface TGFβ activates not only its canonical Smad2/3-mediated signaling, but also Smad1/5-mediated signaling, what is rather typical for bone morphogenetic protein (BMP) stimulation. Complexity of macrophage populations, however, allows assumption that TGFβ signalling may function in different ways depending on the functional state of the cell. To understand the peculiarities of TGFβ signalling in human TAMs experimental systems using primary cells have to be developed and used together with the modern mathematical modelling approaches.
Collapse
Affiliation(s)
- Alexei Gratchev
- Blokhin Cancer Research Center, Moscow, Russia; Laboratory for translational cellular and molecular biomedicine, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
22
|
Nguyen NT, Lindsey ML, Jin YF. Systems analysis of gene ontology and biological pathways involved in post-myocardial infarction responses. BMC Genomics 2015; 16 Suppl 7:S18. [PMID: 26100218 PMCID: PMC4474415 DOI: 10.1186/1471-2164-16-s7-s18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pathway analysis has been widely used to gain insight into essential mechanisms of the response to myocardial infarction (MI). Currently, there exist multiple pathway databases that organize molecular datasets and manually curate pathway maps for biological interpretation at varying forms of organization. However, inconsistencies among different databases in pathway descriptions, frequently due to conflicting results in the literature, can generate incorrect interpretations. Furthermore, although pathway analysis software provides detailed images of interactions among molecules, it does not exhibit how pathways interact with one another or with other biological processes under specific conditions. Methods We propose a novel method to standardize descriptions of enriched pathways for a set of genes/proteins using Gene Ontology terms. We used this method to examine the relationships among pathways and biological processes for a set of condition-specific genes/proteins, represented as a functional biological pathway-process network. We applied this algorithm to a set of 613 MI-specific proteins we previously identified. Results A total of 96 pathways from Biocarta, KEGG, and Reactome, and 448 Gene Ontology Biological Processes were enriched with these 613 proteins. The pathways were represented as Boolean functions of biological processes, delivering an interactive scheme to organize enriched information with an emphasis on involvement of biological processes in pathways. We extracted a network focusing on MI to demonstrate that tyrosine phosphorylation of Signal Transducer and Activator of Transcription (STAT) protein, positive regulation of collagen metabolic process, coagulation, and positive/negative regulation of blood coagulation have immediate impacts on the MI response. Conclusions Our method organized biological processes and pathways in an unbiased approach to provide an intuitive way to identify biological properties of pathways under specific conditions. Pathways from different databases have similar descriptions yet diverse biological processes, indicating variation in their ability to share similar functional characteristics. The coverages of pathways can be expanded with the incorporation of more biological processes, predicting involvement of protein members in pathways. Further, detailed analyses of the functional biological pathway-process network will allow researchers and scientists to explore critical routes in biological systems in the progression of disease.
Collapse
|
23
|
Ali A, Akhter MA, Haneef K, Khan I, Naeem N, Habib R, Kabir N, Salim A. Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells. Gene 2015; 555:448-457. [PMID: 25445267 DOI: 10.1016/j.gene.2014.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/29/2014] [Accepted: 10/26/2014] [Indexed: 01/31/2023]
Abstract
Various preconditioning strategies influence regeneration properties of stem cells. Preconditioned stem cells generally show better cell survival, increased differentiation, enhanced paracrine effects, and improved homing to the injury site by regulating the expression of tissue-protective cytokines and growth factors. In this study, we analyzed gene expression pattern of growth factors through RT-PCR after treatment of mesenchymal stem cells (MSCs) with a metabolic inhibitor, 2,4 dinitrophenol (DNP) and subsequent re-oxygenation for periods of 2, 6, 12 and 24h. These growth factors play important roles in cardiomyogenesis, angiogenesis and cell survival. Mixed pattern of gene expression was observed depending on the period of re-oxygenation. Of the 13 genes analyzed, ankyrin repeat domain 1 (Ankrd1) and GATA6 were downregulated after DNP treatment and subsequent re-oxygenations. Ankrd1 expression was, however, increased after 24h of re-oxygenation. Placental growth factor (Pgf), endoglin (Eng), neuropilin (Nrp1) and jagged 1 (Jag1) were up-regulated after DNP treatment. Gradual increase was observed as re-oxygenation advances and by the end of the re-oxygenation period the expression started to decrease and ultimately regained normal values. Epiregulin (Ereg) was not expressed in normal MSCs but its expression increased gradually from 2 to 24h after re-oxygenation. No change was observed in the expression level of connective tissue growth factor (Ctgf) at any time period after re-oxygenation. Kindlin3, kinase insert domain receptor (Kdr), myogenin (Myog), Tbx20 and endothelial tyrosine kinase (Tek) were not expressed either in normal cells or cells treated with DNP. It can be concluded from the present study that MSCs adjust their gene expression levels under the influence of DNP induced metabolic stress. Their levels of expression vary with varying re-oxygenation periods. Preconditioning of MSCs with DNP can be used for enhancing the potential of these cells for better regeneration.
Collapse
Affiliation(s)
- Anwar Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Aleem Akhter
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Kanwal Haneef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Nadia Naeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Rakhshinda Habib
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Nurul Kabir
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
24
|
Bandaru S, Grönros J, Redfors B, Çil Ç, Pazooki D, Salimi R, Larsson E, Zhou AX, Ömerovic E, Akyürek LM. Deficiency of filamin A in endothelial cells impairs left ventricular remodelling after myocardial infarction. Cardiovasc Res 2014; 105:151-9. [PMID: 25344364 DOI: 10.1093/cvr/cvu226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Actin-binding protein filamin A (FLNA) regulates signal transduction important for cell locomotion, but the role of FLNA after myocardial infarction (MI) has not been explored. The main purpose of this study was to determine the impact of endothelial deletion of FLNA on post-MI remodelling of the left ventricle (LV). METHODS AND RESULTS We found that FLNA is expressed in human and mouse endothelial cells (ECs) during MI. To determine the biological significance of endothelial expression of FLNA, we used mice that are deficient for endothelial FLNA by cross-breeding adult mice expressing floxed Flna (Flna(o/fl)) with mice expressing Cre under the vascular endothelial-specific cadherin promoter (VECadCre+). Male Flna(o/fl) and Flna(o/fl)/VECadCre+ mice were subjected to permanent coronary artery ligation to induce MI. Flna(o/fl)/VECadCre+ mice that were deficient for endothelial FLNA exhibited larger and thinner LV with impaired cardiac function as well as elevated plasma levels of NT-proBNP and decreased secretion of VEGF-A. The number of capillary structures within the infarcted areas was reduced in Flna(o/fl)/VECadCre+ hearts. ECs silenced for Flna mRNA expression exhibited impaired tubular formation and migration, secreted less VEGF-A, and produced lower levels of phosphorylated AKT and ERK1/2 as well as active RAC1. CONCLUSION Deletion of FLNA in ECs aggravated MI-induced LV dysfunction and cardiac failure as a result of defective endothelial response and increased scar formation by impaired endothelial function and signalling.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | | | - Björn Redfors
- Cardiovascular and Metabolic Research Center, University of Gothenburg, Gothenburg, Sweden Department of Cardiology, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| | - Çağlar Çil
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | - David Pazooki
- Department of Surgery, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| | - Reza Salimi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | - Alex-Xianghua Zhou
- Cardiovascular and Metabolic Research Center, University of Gothenburg, Gothenburg, Sweden
| | - Elmir Ömerovic
- Cardiovascular and Metabolic Research Center, University of Gothenburg, Gothenburg, Sweden Department of Cardiology, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| | - Levent M Akyürek
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden Department of Clinical Pathology and Genetics, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Jang YS, Choi IH. Contrasting roles of different endoglin forms in atherosclerosis. Immune Netw 2014; 14:237-40. [PMID: 25360074 PMCID: PMC4212084 DOI: 10.4110/in.2014.14.5.237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 12/01/2022] Open
Abstract
Endoglin (also known as CD105 or TGF-β type III receptor) is a co-receptor involved in TGF-β signaling. In atherosclerosis, TGF-β signaling is crucial in regulating disease progression owing to its anti-inflammatory effects as well as its inhibitory effects on smooth muscle cell proliferation and migration. Endoglin is a regulator of TGF-β signaling, but its role in atherosclerosis has yet to be defined. This review focuses on the roles of the various forms of endoglin in atherosclerosis. The expression of the two isoforms of endoglin (long-form and short-form) is increased in atherosclerotic lesions, and the expression of the soluble forms of endoglin is upregulated in sera of patients with hypercholesterolemia and atherosclerosis. Interestingly, long-form endoglin shows an atheroprotective effect via the induction of eNOS expression, while short-form and soluble endoglin enhance atherogenesis by inhibiting eNOS expression and TGF-β signaling. This review summarizes evidence suggesting that the different forms of endoglin have distinct roles in atherosclerosis.
Collapse
Affiliation(s)
- Young-Saeng Jang
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-749, Korea
| | - In-Hong Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-749, Korea
| |
Collapse
|
26
|
Yang J, Li X, Morrell NW. Id proteins in the vasculature: from molecular biology to cardiopulmonary medicine. Cardiovasc Res 2014; 104:388-98. [PMID: 25274246 DOI: 10.1093/cvr/cvu215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The inhibitors of differentiation (Id) proteins belong to the helix-loop-helix group of transcription factors and regulate cell differentiation and proliferation. Recent studies have reported that Id proteins play important roles in cardiogenesis and formation of the vasculature. We have also demonstrated that heritable pulmonary arterial hypertension (HPAH) patients have dysregulated Id gene expression in pulmonary artery smooth muscle cells. The interaction between bone morphogenetic proteins and other growth factors or cytokines regulates Id gene expression, which impacts on pulmonary vascular cell differentiation and proliferation. Exploration of the roles of Id proteins in vascular remodelling that occurs in PAH and atherosclerosis might provide new insights into the molecular basis of these diseases. In addition, current progress in identification of the interactors of Id proteins will further the understanding of the function of Ids in vascular cells and enable the identification of novel targets for therapy in PAH and other cardiovascular diseases.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 DongdanSantiao, Beijing 100005, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
27
|
Dyer LA, Pi X, Patterson C. The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab 2014; 25:472-80. [PMID: 24908616 PMCID: PMC4149816 DOI: 10.1016/j.tem.2014.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022]
Abstract
The bone morphogenetic protein (BMP) family of proteins has a multitude of roles throughout the body. In embryonic development, BMPs promote endothelial specification and subsequent venous differentiation. The BMP pathway also plays important roles in the adult vascular endothelium, promoting angiogenesis and mediating shear and oxidative stress. The canonical BMP pathway functions through the Smad transcription factors; however, other intracellular signaling cascades can be activated, and receptor complexes beyond the traditional type I and type II receptors add additional layers of regulation. Dysregulated BMP signaling has been linked to vascular diseases including pulmonary hypertension and atherosclerosis. This review addresses recent advances in the roles of BMP signaling in the endothelium and how BMPs affect endothelial dysfunction and human disease.
Collapse
MESH Headings
- Animals
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Bone Morphogenetic Protein Receptors/agonists
- Bone Morphogenetic Protein Receptors/genetics
- Bone Morphogenetic Protein Receptors/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Hypertension/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Mice, Transgenic
- Models, Biological
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- Oxidative Stress
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Shear Strength
- Signal Transduction
- Stress, Physiological
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
Collapse
Affiliation(s)
- Laura A Dyer
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Xinchun Pi
- New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| | - Cam Patterson
- New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| |
Collapse
|
28
|
Bhatt RS, Atkins MB. Molecular pathways: can activin-like kinase pathway inhibition enhance the limited efficacy of VEGF inhibitors? Clin Cancer Res 2014; 20:2838-45. [PMID: 24714770 DOI: 10.1158/1078-0432.ccr-13-2788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vascular endothelial growth factor (VEGF) pathway is critical for tumor angiogenesis. However, VEGF pathway inhibition has been limited by intrinsic and acquired resistance. Simultaneously targeting multiple steps involved in tumor angiogenesis is a potential means of overcoming this resistance. Activin like kinase 1 (ALK1) and endoglin (ENG) have effects on angiogenesis that are distinct from those of VEGF. Whereas VEGF is important for vessel initiation, ALK1 and endoglin are involved in vessel network formation. Thus, ALK1 and endoglin pathway inhibitors are attractive partners for VEGF-based combination antiangiogenic therapy. Genetic evidence supports a role for this receptor family and its ligands, bone morphogenetic proteins (BMP) 9 and 10, in vascular development. Patients with genetic alterations in ALK1 or endoglin develop hereditary hemorrhagic telangiectasia, a disorder characterized by abnormal vessel development. There are several inhibitors of the ALK1 pathway advancing in clinical development for treatment of various tumor types, including renal cell and ovarian carcinomas. Targeting of alternate angiogenic pathways, particularly in combination with VEGF pathway blockade, holds the promise of optimally inhibiting angiogenically driven tumor progression. Clin Cancer Res; 20(11); 2838-45. ©2014 AACR.
Collapse
Affiliation(s)
- Rupal S Bhatt
- Authors' Affiliations: Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts and Departments of Oncology and Medicine, Georgetown-Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Michael B Atkins
- Authors' Affiliations: Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts and Departments of Oncology and Medicine, Georgetown-Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| |
Collapse
|
29
|
Clasper S, Ogunbiyi SO, Baxter G, Turnbull L, Holt S. Is lymphatic endoglin expression a risk marker for breast cancer metastasis? Results of a pilot study. Lymphat Res Biol 2013; 11:20-5. [PMID: 23531181 DOI: 10.1089/lrb.2012.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Studies have identified endoglin as a biological marker that is overexpressed on the microvessels of certain solid cancers (breast, colorectal cancer, and head and neck squamous cell cancers). There is, at present, no immunohistochemical marker that can discriminate between lymph node-negative and or lymph node-positive breast cancer tissue. METHODS The expression of endoglin was quantified by immunohistochemistry and assessment of microvessel density in 53 surgical specimens. These were comprised of breast tumor tissue that had not spread to the regional lymph nodes (lymph node-negative breast tumor tissue: 20 specimens), breast tumor tissue had spread to regional lymph nodes (lymph node-positive breast tumor tissue: 21 specimens), and normal breast tissue as a control (12 specimens). RESULTS Significant difference was observed between the expression of endoglin on microvessels of lymph node-negative and lymph node-positive breast cancer tissue (p<0.05). This significant difference was shown to be due to endoglin expression on lymphatic vessels (p<0.02), rather than on blood vessels (p>0.05). CONCLUSIONS These findings are the first to suggest that endoglin expression on breast tumor lymphatic vessels may have diagnostic potential as a discriminator between lymph node-negative and lymph node-positive breast cancer. Further studies would be required to confirm this.
Collapse
Affiliation(s)
- S Clasper
- Research and Development Department, Dumfries and Galloway Royal Infirmary, Dumfries, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Seghers L, de Vries MR, Pardali E, Hoefer IE, Hierck BP, ten Dijke P, Goumans MJ, Quax PHA. Shear induced collateral artery growth modulated by endoglin but not by ALK1. J Cell Mol Med 2013; 16:2440-50. [PMID: 22436015 PMCID: PMC3823438 DOI: 10.1111/j.1582-4934.2012.01561.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) stimulates both ischaemia induced angiogenesis and shear stress induced arteriogenesis by signalling through different receptors. How these receptors are involved in both these processes of blood flow recovery is not entirely clear. In this study the role of TGF-β receptors 1 and endoglin is assessed in neovascularization in mice. Unilateral femoral artery ligation was performed in mice heterozygous for either endoglin or ALK1 and in littermate controls. Compared with littermate controls, blood flow recovery, monitored by laser Doppler perfusion imaging, was significantly hampered by maximal 40% in endoglin heterozygous mice and by maximal 49% in ALK1 heterozygous mice. Collateral artery size was significantly reduced in endoglin heterozygous mice compared with controls but not in ALK1 heterozygous mice. Capillary density in ischaemic calf muscles was unaffected, but capillaries from endoglin and ALK1 heterozygous mice were significantly larger when compared with controls. To provide mechanistic evidence for the differential role of endoglin and ALK1 in shear induced or ischaemia induced neovascularization, murine endothelial cells were exposed to shear stress in vitro. This induced increased levels of endoglin mRNA but not ALK1. In this study it is demonstrated that both endoglin and ALK1 facilitate blood flow recovery. Importantly, endoglin contributes to both shear induced collateral artery growth and to ischaemia induced angiogenesis, whereas ALK1 is only involved in ischaemia induced angiogenesis.
Collapse
Affiliation(s)
- Leonard Seghers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained after BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the up-regulation of the chemokine CXCL12/SDF1 and down-regulation of its receptor CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, the data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 nonresponsive paracrine state that represses endothelial cell migration and may promote vessel maturation.
Collapse
|
32
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Vecerova L, Strasky Z, Rathouska J, Slanarova M, Brcakova E, Micuda S, Nachtigal P. Activation of TGF-β Receptors and Smad Proteins by Atorvastatin is Related to Reduced Atherogenesis in ApoE/LDLR Double Knockout Mice. J Atheroscler Thromb 2012; 19:115-26. [DOI: 10.5551/jat.8185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Zakrzewski PK, Cygankiewicz AI, Mokrosiński J, Nowacka-Zawisza M, Semczuk A, Rechberger T, Krajewska WM. Expression of endoglin in primary endometrial cancer. Oncology 2011; 81:243-50. [PMID: 22116456 DOI: 10.1159/000334240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/04/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Alterations in the transforming growth factor-β (TGF-β) signaling cascade are engaged in the development of human neoplasms through the deregulation of proliferation, differentiation and migration. However, in endometrial cancer, the role of endoglin, which acts as an accessory receptor in the TGF-β pathway, is still unknown. The aim of our study was the evaluation of endoglin mRNA and protein expression levels in endometrial cancer as compared to normal endometrium. TGF-β(1) and TGF-β type II receptor were involved in the investigation since they directly cooperate with endoglin during signal propagation. Obtained results were correlated with clinicopathological parameters of studied material to determine endoglin contribution to tumor development and progression. METHODS mRNA level assessment was performed using real-time technique, whereas protein expression was determined by ELISA assay. RESULTS The endoglin mRNA level was not significantly altered in cancerous samples as compared to normal tissue, whereas its protein level demonstrated significant upregulation (p < 0.001) associated with increased tumor malignancy, assessed by histological grade and myometrium infiltration. CONCLUSIONS An increase in endoglin protein expression level may interfere with the oncogenic potential of TGF-β(1) and TGF-β type II receptor in endometrial cancer. Correlation of the endoglin level with pronounced cancer malignancy suggests that it may be regarded as a potential prognostic marker of primary endometrial cancer.
Collapse
|
35
|
Qiu J, Wang G, Zheng Y, Hu J, Peng Q, Yin T. Coordination of Id1 and p53 Activation by Oxidized LDL Regulates Endothelial Cell Proliferation and Migration. Ann Biomed Eng 2011; 39:2869-78. [DOI: 10.1007/s10439-011-0382-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
|
36
|
Rathouska J, Vecerova L, Strasky Z, Slanarova M, Brcakova E, Mullerova Z, Andrys C, Micuda S, Nachtigal P. Endoglin as a possible marker of atorvastatin treatment benefit in atherosclerosis. Pharmacol Res 2011; 64:53-9. [DOI: 10.1016/j.phrs.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
|
37
|
Ho CC, Zhou X, Mishina Y, Bernard DJ. Mechanisms of bone morphogenetic protein 2 (BMP2) stimulated inhibitor of DNA binding 3 (Id3) transcription. Mol Cell Endocrinol 2011; 332:242-52. [PMID: 21056086 DOI: 10.1016/j.mce.2010.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 01/01/2023]
Abstract
Bone morphogenetic protein 2 (BMP2) stimulates expression of the inhibitors of DNA binding (Id) 1, 2, and 3 in a variety of cell types. Here, we examined mechanisms mediating BMP2-stimulated Id3 transcription in murine gonadotropes. Using a combination of quantitative RT-PCR, promoter-reporter analyses, over-expression, and RNA interference approaches, we demonstrate that BMP2 signals via the BMPR2 and BMPR1A (ALK3) receptors and intracellular signaling proteins SMADs 1 and 5 to stimulate Id3 transcription. We further define a novel 6-bp cis-element mediating BMP2- and SMAD-dependent transcription, though this site does not appear to bind SMADs directly. A specific DNA binding protein complex binds to this element, but its constituent protein(s) remain undetermined. Recently, a more distal enhancer was shown to mediate BMP4-induction of the human ID3 gene in ovarian cancer cells. This enhancer is conserved in the murine gene and we demonstrate its role in BMP2-induced Id3 promoter activity in gonadotropes. Conversely, the proximal cis-element defined here is also conserved in human ID3 and we demonstrate its functional role in BMP2-induction of ID3 transcription. Finally, we show that the two regulatory elements also mediate BMP2-induction of Id3 promoter activity in murine fibroblasts. Collectively, we have defined a general mechanism whereby BMP2 regulates Id3/ID3 transcription in different cell types and in different species.
Collapse
Affiliation(s)
- Catherine C Ho
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
38
|
Strasky Z, Vecerova L, Rathouska J, Slanarova M, Brcakova E, Kudlackova Z, Andrys C, Micuda S, Nachtigal P. Cholesterol Effects on Endoglin and Its Downstream Pathways in ApoE/LDLR Double Knockout Mice. Circ J 2011; 75:1747-55. [DOI: 10.1253/circj.cj-10-1285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zbynek Strasky
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Lenka Vecerova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Jana Rathouska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Martina Slanarova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Eva Brcakova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Zdenka Kudlackova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital Hradec Kralove
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague
| |
Collapse
|
39
|
Cloning and characterization of the activin like receptor 1 homolog (Pf-ALR1) in the pearl oyster, Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:158-67. [PMID: 20226263 DOI: 10.1016/j.cbpb.2010.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/21/2010] [Accepted: 02/28/2010] [Indexed: 01/30/2023]
Abstract
The signal transduction mechanisms in mollusks are still elusive since the genome information is incomplete and cell lines are not available. In previous study, we cloned a highly conserved Smad3 homolog (designated as Pf-Smad3) from the pearl oyster, Pinctada fucata. It seems that transforming growth factor beta (TGFbeta) signaling may play similar roles in the oyster as in vertebrate. Here we report a cDNA encoding an activin like receptor 1 homolog (designated as Pf-ALR1) of the oyster, another kind of TGFbeta superfamily member. Compared to the activin receptor-like kinases (ALK) in human, the amino acid sequence of Pf-ALR1 is more similar to that of ALK1, especially the L45 loop. Reverse transcription-polymerase chain reaction results indicate that Pf-ALR1 mRNA is expressed ubiquitously in the adult oyster. Thus, Pf-ALR1 may be important for many physiological processes in the oyster. To lay a basis for further investigation of the TGFbeta signal pathway functions in the oyster shell formation, in this report, the Pf-ALR1 mRNA expression in the oyster mantle was detected by in situ hybridization. The results show that Pf-ALR1 in the oyster mantle is mainly expressed at the inner epithelial cells of the outer fold and the outer epithelial cells of the middle fold, similarly as Pf-Smad3. The mRNA levels of Pf-ALR1 and Pf-Smad3 are all changed after shell notching. These results indicate that both Pf-ALR1 and Pf-Smad3 may take part in shell formation and repair. The results of drug treatment experiments with in-vitro cultured oyster mantle tissue cells demonstrate that the mRNA expression levels of Pf-Smad3, Pf-ALR1 and two oyster nuclear factor-kappaB (NF-kB) members can be adjusted and correlated. All our observations suggest that there should be similar TGFbeta signal pathways in the oyster and vertebrate. However, the potential functions of Pf-ALR1 and the relations of TGFbeta and NF-kB members in the oyster all need to be thoroughly investigated.
Collapse
|
40
|
Blaha M, Cermanova M, Blaha V, Jarolim P, Andrys C, Blazek M, Maly J, Smolej L, Zajic J, Masin V, Zimova R, Rehacek V. Elevated serum soluble endoglin (sCD105) decreased during extracorporeal elimination therapy for familial hypercholesterolemia. Atherosclerosis 2007; 224:4-11. [PMID: 17540382 DOI: 10.1016/j.atherosclerosis.2012.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/21/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
Extracorporeal elimination is a method of LDL-lowering therapy that is used in severe familial hypercholesterolemia (FH) after other therapeutic approaches have failed. There are currently no universally accepted biomarkers that would allow determining necessary intensity of therapy and frequency of future therapeutic interventions. An ideal tool for immediate evaluation would be a readily measurable serum marker. We hypothesized that soluble endoglin (sCD105), a recently described indicator of endothelial dysfunction, may represent such a tool. Eleven patients with FH (three homozygous, eight heterozygous; Fredrickson type IIa, IIb) that have been monitored for 4.5+/-2.8 years were treated; eight by LDL-apheresis and three by hemorheopheresis. 40 sCD105 measurements were done, before and after two consecutive elimination procedures. Baseline serum sCD105 levels were significantly higher in the patients (5.74+/-1.47 microg/l in series I, 6.85+/-1.85 microg/l in series II) than in the control group (3.85+/-1.25 microg/l). They decreased to normal after LDL-elimination (p=0.0003) in all except for one patient. This return to normal was not due to a non-specific capture of endoglin in adsorption or filtration columns as demonstrated by measurement of sCD105 before and after passage through the elimination media. We conclude that the soluble endoglin levels in patients with severe FH remain elevated despite long-term intensive therapy and that they decrease after extracorporeal elimination. Endoglin can therefore serve as a marker for evaluation of the treatment efficacy and of the decreased atherosclerotic activity in patients with FH treated by extracorporeal LDL-cholesterol elimination.
Collapse
Affiliation(s)
- Milan Blaha
- 2nd Internal Clinic, Charles University School of Medicine and the Faculty Hospital, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|