1
|
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res 2024; 38:2406-2447. [PMID: 38433568 DOI: 10.1002/ptr.8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that maintains normal tissues and cell signaling pathways. EGFR is overactivated and overexpressed in many malignancies, including breast, lung, pancreatic, and kidney. Further, the EGFR gene mutations and protein overexpression activate downstream signaling pathways in cancerous cells, stimulating the growth, survival, resistance to apoptosis, and progression of tumors. Anti-EGFR therapy is the potential approach for treating malignancies and has demonstrated clinical success in treating specific cancers. The recent report suggests most of the clinically used EGFR tyrosine kinase inhibitors developed resistance to the cancer cells. This perspective provides a brief overview of EGFR and its implications in cancer. We have summarized natural products-derived anticancer compounds with the mechanistic basis of tumor inhibition via the EGFR pathway. We propose that developing natural lead molecules into new anticancer agents has a bright future after clinical investigation.
Collapse
Affiliation(s)
- Rutuja Damare
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Ma M, Zheng Y, Lu S, Pan X, Worley KC, Burrage LC, Blieden LS, Allworth A, Chen WL, Merla G, Mandriani B, Rosenfeld JA, Li-Kroeger D, Dutta D, Yamamoto S, Wangler MF, Glass IA, Strohbehn S, Blue E, Prontera P, Lalani SR, Bellen HJ. De novo variants in PLCG1 are associated with hearing impairment, ocular pathology, and cardiac defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.23300523. [PMID: 38260438 PMCID: PMC10802640 DOI: 10.1101/2024.01.08.23300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Current affiliation: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kim C. Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren S. Blieden
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wei-Liang Chen
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Current affiliation: Children’s National Medical Center and George Washington University, Washington DC 20010, USA
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Barbara Mandriani
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Li-Kroeger
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - Ian A. Glass
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Sam Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital of Perugia, Perugia 06129, Italy
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
4
|
Esperança-Martins M, Melo-Alvim C, Dâmaso S, Lopes-Brás R, Peniche T, Nogueira-Costa G, Abreu C, Luna Pais H, de Sousa RT, Torres S, Gallego-Paez LM, Martins M, Ribeiro L, Costa L. Breast Sarcomas, Phyllodes Tumors, and Desmoid Tumors: Turning the Magnifying Glass on Rare and Aggressive Entities. Cancers (Basel) 2023; 15:3933. [PMID: 37568749 PMCID: PMC10416994 DOI: 10.3390/cancers15153933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Breast sarcomas (BSs), phyllodes tumors (PTs), and desmoid tumors (DTs) are rare entities that arise from connective tissue. BSs can be classified as either primary or secondary, whether they develop de novo or after radiation exposure or lymphedema. PIK3CA seems to play an important common role in different BS. Malignant PTs show similar behavior to BSs, while DTs are locally aggressive but rarely metastasize. BSs usually present as unilateral, painless, rapidly growing masses with rare nodal involvement. The diagnosis should be based on magnetic resonance imaging and a core needle biopsy. Staging should comprise a chest computed tomography (CT) scan (except for benign PT and DT), while abdominal and pelvic CT scans and bone scans should be added in certain subtypes. The mainstay of treatment for localized BS is surgery, with margin goals that vary according to subtype. Radiotherapy and chemotherapy can be used as neoadjuvant or adjuvant approaches, but their use in these settings is not standard. Advanced BS should be treated with systemic therapy, consistent with recommendations for advanced soft tissue sarcomas of other topographies. Given the rarity and heterogeneity of these entities, multidisciplinary and multi-institutional collaboration and treatment at reference centers are critical.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Luis Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.P.); (L.M.G.-P.); (M.M.)
| | - Cecília Melo-Alvim
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Dâmaso
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
| | - Raquel Lopes-Brás
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
| | - Tânia Peniche
- Luis Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.P.); (L.M.G.-P.); (M.M.)
| | - Gonçalo Nogueira-Costa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Abreu
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Helena Luna Pais
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita Teixeira de Sousa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sofia Torres
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
| | - Lina Marcela Gallego-Paez
- Luis Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.P.); (L.M.G.-P.); (M.M.)
| | - Marta Martins
- Luis Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.P.); (L.M.G.-P.); (M.M.)
| | - Leonor Ribeiro
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal; (C.M.-A.); (S.D.); (R.L.-B.); (G.N.-C.); (C.A.); (H.L.P.); (R.T.d.S.); (S.T.); (L.R.)
- Luis Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.P.); (L.M.G.-P.); (M.M.)
- Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
5
|
Eurtivong C, Leung E, Sharma N, Leung IKH, Reynisson J. Phosphatidylcholine-Specific Phospholipase C as a Promising Drug Target. Molecules 2023; 28:5637. [PMID: 37570610 PMCID: PMC10420013 DOI: 10.3390/molecules28155637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Phosphatidylcholine-specific phospholipase C (PC-PLC) is an enzyme that catalyzes the formation of the important secondary messengers phosphocholine and diacylglycerol (DAG) from phosphatidylcholine. Although PC-PLC has been linked to the progression of many pathological conditions, including cancer, atherosclerosis, inflammation and neuronal cell death, studies of PC-PLC on the protein level have been somewhat neglected with relatively scarce data. To date, the human gene expressing PC-PLC has not yet been found, and the only protein structure of PC-PLC that has been solved was from Bacillus cereus (PC-PLCBc). Nonetheless, there is evidence for PC-PLC activity as a human functional equivalent of its prokaryotic counterpart. Additionally, inhibitors of PC-PLCBc have been developed as potential therapeutic agents. The most notable classes include 2-aminohydroxamic acids, xanthates, N,N'-hydroxyureas, phospholipid analogues, 1,4-oxazepines, pyrido[3,4-b]indoles, morpholinobenzoic acids and univalent ions. However, many medicinal chemistry studies lack evidence for their cellular and in vivo effects, which hampers the progression of the inhibitors towards the clinic. This review outlines the pathological implications of PC-PLC and highlights current progress and future challenges in the development of PC-PLC inhibitors from the literature.
Collapse
Affiliation(s)
- Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Si Ayutthaya Road, Ratchathewi, Bangkok 10400, Thailand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Nabangshu Sharma
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Scion (New Zealand Forest Research Institute), Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua 3010, New Zealand
| | - Ivanhoe K. H. Leung
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3052, Australia;
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
6
|
Phospholipase C-γ1 potentially facilitates subcellular localization of activated β-catenin, p-β-catenin(S552), during bovine herpesvirus 1 productive infection in MDBK cells. Vet Microbiol 2023; 276:109626. [PMID: 36502739 DOI: 10.1016/j.vetmic.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a significant risk factor for the bovine respiratory disease complex (BRDC), a severe disease causing great economic losses to the cattle industry worldwide. Previous studies have reported that both phospholipase C-γ1 (PLC-γ1) and β-catenin are activated during BoHV-1 infection for efficient replication. However, the interplay between PLC-γ1 and β-catenin as a consequence of virus infection remains to be elucidated. Here, we reported that PLC-γ1 interacted with β-catenin, which was enhanced following virus infection. PLC-γ1-specific inhibitor, U73122, significantly reduced the mRNA levels of β-catenin in BoHV-1-infected cells; however, the steady-state protein levels were not affected due to the virus infection. Interestingly, the treatment of virus-infected cells with U73122 reduced the accumulation of activated β-catenin [p-β-catenin(S552)] in fractions of the cytoplasmic membrane as that observed with the treatment of methyl-β-cyclodextrin (MβCD), which can disrupt cytoplasmic membrane structure via sequestering cholesterol. Nucleus accumulation of p-β-catenin(S552) was increased following U73122 treatment in virus-infected cells. In addition, the association of p-β-catenin(S552) with cytoplasmic membrane induced by the virus infection was significantly disrupted by the treatment of U73122 and MβCD. These data indicated that the PLC-γ1 signaling is potentially involved in the regulation of β-catenin signaling stimulated by BoHV-1 infection partially via affecting the subcellular localization of p-β-catenin(S552).
Collapse
|
7
|
Cruz-Duarte R, Rebelo de Almeida C, Negrão M, Fernandes A, Borralho P, Sobral D, Gallego-Paez LM, Machado D, Gramaça J, Vílchez J, Xavier AT, Ferreira MG, Miranda AR, Mansinho H, Brito MJ, Pacheco TR, Abreu C, Lucia-Costa A, Mansinho A, Fior R, Costa L, Martins M. Predictive and Therapeutic Implications of a Novel PLCγ1/SHP2-Driven Mechanism of Cetuximab Resistance in Metastatic Colorectal Cancer. Clin Cancer Res 2022; 28:1203-1216. [PMID: 34980600 PMCID: PMC9365369 DOI: 10.1158/1078-0432.ccr-21-1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/14/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Cetuximab is an EGFR-targeted therapy approved for the treatment of RAS wild-type (WT) metastatic colorectal cancer (mCRC). However, about 60% of these patients show innate resistance to cetuximab. To increase cetuximab efficacy, it is crucial to successfully identify responder patients, as well as to develop new therapeutic approaches to overcome cetuximab resistance. EXPERIMENTAL DESIGN We evaluated the value of EGFR effector phospholipase C gamma 1 (PLCγ1) in predicting cetuximab responses, by analyzing progression-free survival (PFS) of a multicentric retrospective cohort of 94 treated patients with mCRC (log-rank test and Cox regression model). Furthermore, we used in vitro and zebrafish xenotransplant models to identify and target the mechanism behind PLCγ1-mediated resistance to cetuximab. RESULTS In this study, levels of PLCγ1 were found increased in RAS WT tumors and were able to predict cetuximab responses in clinical samples and in vitro and in vivo models. Mechanistically, PLCγ1 expression was found to bypass cetuximab-dependent EGFR inhibition by activating ERK and AKT pathways. This novel resistance mechanism involves a noncatalytic role of PLCγ1 SH2 tandem domains in the propagation of downstream signaling via SH2-containing protein tyrosine phosphatase 2 (SHP2). Accordingly, SHP2 inhibition sensitizes PLCγ1-resistant cells to cetuximab. CONCLUSIONS Our discoveries reveal the potential of PLCγ1 as a predictive biomarker for cetuximab responses and suggest an alternative therapeutic approach to circumvent PLCγ1-mediated resistance to cetuximab in patients with RAS WT mCRC. In this way, this work contributes to the development of novel strategies in the medical management and treatment of patients with mCRC.
Collapse
Affiliation(s)
- Raquel Cruz-Duarte
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Magda Negrão
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Afonso Fernandes
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Borralho
- Institute of Pathology, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Sobral
- Universidade Nova Lisboa, UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Daniel Machado
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - João Gramaça
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - José Vílchez
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - Ana T. Xavier
- Oncology Division, Centro Hospitalar Barreiro-Montijo, Barreiro, Portugal
| | - Miguel Godinho Ferreira
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 UNS, Université Côte d'Azur, Nice, France
| | - Ana R. Miranda
- Hemato-Oncologia Division, Hospital Garcia de Orta, Almada, Portugal
| | - Helder Mansinho
- Hemato-Oncologia Division, Hospital Garcia de Orta, Almada, Portugal
| | - Maria J. Brito
- Pathology Division, Hospital Garcia de Orta, Almada, Portugal
| | - Teresa R. Pacheco
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ana Lucia-Costa
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - André Mansinho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Luís Costa
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Corresponding Authors: Marta Martins, Translational Oncology, Instituto de Medicina Molecular - João Lobo Antunes, Lisbon 1649-028, Portugal. E-mail: ; and Luís Costa, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal. E-mail:
| | - Marta Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Corresponding Authors: Marta Martins, Translational Oncology, Instituto de Medicina Molecular - João Lobo Antunes, Lisbon 1649-028, Portugal. E-mail: ; and Luís Costa, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal. E-mail:
| |
Collapse
|
8
|
Marvi MV, Mongiorgi S, Ramazzotti G, Follo MY, Billi AM, Zoli M, Mazzatenta D, Morandi L, Asioli S, Papa V, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Adv Biol Regul 2022; 83:100838. [PMID: 34819252 DOI: 10.1016/j.jbior.2021.100838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Veronica Papa
- Department of Motor Sciences and Wellness (DiSMeB), Università Degli Studi di Napoli "Parthenope,", 80133, Napoli, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea; School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Zeng L, Palaia I, Šarić A, Su X. PLCγ1 promotes phase separation of T cell signaling components. J Cell Biol 2021; 220:212040. [PMID: 33929486 PMCID: PMC8094118 DOI: 10.1083/jcb.202009154] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
The T cell receptor (TCR) pathway receives, processes, and amplifies the signal from pathogenic antigens to the activation of T cells. Although major components in this pathway have been identified, the knowledge on how individual components cooperate to effectively transduce signals remains limited. Phase separation emerges as a biophysical principle in organizing signaling molecules into liquid-like condensates. Here, we report that phospholipase Cγ1 (PLCγ1) promotes phase separation of LAT, a key adaptor protein in the TCR pathway. PLCγ1 directly cross-links LAT through its two SH2 domains. PLCγ1 also protects LAT from dephosphorylation by the phosphatase CD45 and promotes LAT-dependent ERK activation and SLP76 phosphorylation. Intriguingly, a nonmonotonic effect of PLCγ1 on LAT clustering was discovered. Computer simulations, based on patchy particles, revealed how the cluster size is regulated by protein compositions. Together, these results define a critical function of PLCγ1 in promoting phase separation of the LAT complex and TCR signal transduction.
Collapse
Affiliation(s)
- Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Ivan Palaia
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK.,Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK.,Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,Yale Cancer Center, Yale University, New Haven, CT
| |
Collapse
|
10
|
PIP 2 corrects cerebral blood flow deficits in small vessel disease by rescuing capillary Kir2.1 activity. Proc Natl Acad Sci U S A 2021; 118:2025998118. [PMID: 33875602 PMCID: PMC8092380 DOI: 10.1073/pnas.2025998118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cerebral small vessel diseases (SVDs) are a central link between stroke and dementia-two comorbidities without specific treatments. Despite the emerging consensus that SVDs are initiated in the endothelium, the early mechanisms remain largely unknown. Deficits in on-demand delivery of blood to active brain regions (functional hyperemia) are early manifestations of the underlying pathogenesis. The capillary endothelial cell strong inward-rectifier K+ channel Kir2.1, which senses neuronal activity and initiates a propagating electrical signal that dilates upstream arterioles, is a cornerstone of functional hyperemia. Here, using a genetic SVD mouse model, we show that impaired functional hyperemia is caused by diminished Kir2.1 channel activity. We link Kir2.1 deactivation to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid essential for Kir2.1 activity. Systemic injection of soluble PIP2 rapidly restored functional hyperemia in SVD mice, suggesting a possible strategy for rescuing functional hyperemia in brain disorders in which blood flow is disturbed.
Collapse
|
11
|
Lu ZF, Min J, Wu XC, Dong BH, Ye JM, Liu XB, Zhang L, Guo B, Gao ZJ. Andrographolide inhibits secretagogue-induced pseudo-allergic reaction. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1065-1077. [PMID: 31762317 DOI: 10.1080/10286020.2019.1681408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Many kinds of drugs induce pseudo-allergic reactions due to activation of mast cells. We investigated the anti-pseudo-allergic effect of andrographolide (Andro). The effects of Andro on pseudo-allergic reactions were investigated in vivo and in vitro. Andro suppressed compound 48/80 (C48/80) induced pseudo-allergic reactions in mice in a dose-dependent manner. Andro also inhibited C48/80-induced local inflammatory reactions in mice. In vitro studies revealed that Andro reduced C48/80-induced mast cells degranulation. Human phospho-kinase array kit and western blotting showed that Andro could inhibit pseudo-allergic responses via the calcium signaling pathway.
Collapse
Affiliation(s)
- Zhi-Fang Lu
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jie Min
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an No. 4 Hospital, Xi'an 710004, China
| | - Xu-Cai Wu
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bu-Huai Dong
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jiu-Min Ye
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiao-Bing Liu
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Li Zhang
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bin Guo
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zi-Jun Gao
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
12
|
The Role of Epidermal Growth Factor Receptor Signaling Pathway during Bovine Herpesvirus 1 Productive Infection in Cell Culture. Viruses 2020; 12:v12090927. [PMID: 32846937 PMCID: PMC7552022 DOI: 10.3390/v12090927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating studies have shown that the epidermal growth factor receptor (EGFR) signaling pathway plays an essential role in mediating cellular entry of numerous viruses. In this study, we report that bovine herpesvirus 1 (BoHV-1) productive infection in both the human lung carcinoma cell line A549 and bovine kidney (MDBK) cells leads to activation of EGFR, as demonstrated by the increased phosphorylation of EGFR at Tyr1068 (Y1068), which in turn plays important roles in virus infection. A time-of-addition assay supported that virus replication at post-entry stages was affected by the EGFR specific inhibitor Gefitinib. Interestingly, both phospholipase C-γ1 (PLC-γ1) and Akt, canonical downstream effectors of EGFR, were activated following virus infection in A549 cells, while Gefitinib could inhibit the activation of PLC-γ1 but not Akt. In addition, virus titers in A549 cells was inhibited by chemical inhibition of PLC-γ1, but not by the inhibition of Akt. However, the Akt specific inhibitor Ly294002 could significantly reduce the virus titer in MDBK cells. Taken together, our data suggest that PLC-γ1 is stimulated in part through EGFR for efficient replication in A549 cells, whereas Akt can be stimulated by virus infection independent of EGFR, and is not essential for virus productive infection, indicating that Akt modulates BoHV-1 replication in a cell type-dependent manner. This study provides novel insights on how BoHV-1 infection activates EGFR signaling transduction to facilitate virus replication.
Collapse
|
13
|
EPS8 phosphorylation by Src modulates its oncogenic functions. Br J Cancer 2020; 123:1078-1088. [PMID: 32641864 PMCID: PMC7525440 DOI: 10.1038/s41416-020-0976-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 11/15/2022] Open
Abstract
Background EPS8 is a scaffolding protein that regulates proliferation, actin dynamics and receptor trafficking. Its expression is increased in cancer, enhancing mitogenesis, migration and tumorigenesis. Src phosphorylates EPS8 at four tyrosine residues, although the function is unknown. Here we investigated the pro-oncogenic role of EPS8 tyrosine phosphorylation at Src target sites in HNSCC. Methods Plasmids expressing EPS8 Src-mediated phosphorylation site mutants (Y485F, Y525F, Y602F, Y774F and all four combined [FFFF]) were expressed in cells containing a normal endogenous level of EPS8. In addition, cells were treated with dasatinib to inhibit Src activity. EPS8 downstream targets were evaluated by western blotting. Wound closure, proliferation, immunofluorescence and tumorgenicity assays were used to investigate the impact of phenylalanine mutations on EPS8 biological functions. Results FOXM1, AURKA, and AURKB were decreased in cells expressing FFFF- and Y602F-EPS8 mutants, while cells harbouring the Y485F-, Y525F- and Y774F-EPS8 mutants showed no differences compared to controls. Consistent with this, dasatinib decreased the expression of EPS8 targets. Moreover, Y602F- and FFFF-EPS8 mutants reduced mitogenesis and motility. Strikingly though, FFFF- or Y602F-EPS8 mutants actually promoted tumorigenicity compared with control cells. Conclusions Phosphorylation of EPS8 at Y602 is crucial for signalling to the cell cycle and may provide insight to explain reduced efficacy of dasatinib treatment.
Collapse
|
14
|
Li L, Ji S, Shrestha C, Jiang Y, Liao L, Xu F, Liu Z, Bikle DD, Xie Z. p120-catenin suppresses proliferation and tumor growth of oral squamous cell carcinoma via inhibiting nuclear phospholipase C-γ1 signaling. J Cell Physiol 2020; 235:9399-9413. [PMID: 32356317 DOI: 10.1002/jcp.29744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
p120-catenin (p120) serves as a stabilizer of the calcium-dependent cadherin-catenin complex and loss of p120 expression has been observed in several types of human cancers. The p120-dependent E-cadherin-β-catenin complex has been shown to mediate calcium-induced keratinocyte differentiation via inducing activation of plasma membrane phospholipase C-γ1 (PLC-γ1). On the other hand, PLC-γ1 has been shown to interact with phosphatidylinositol 3-kinase enhancer in the nucleus and plays a critical role in epidermal growth factor-induced proliferation of oral squamous cell carcinoma (OSCC) cells. To determine whether p120 suppresses OSCC proliferation and tumor growth via inhibiting PLC-γ1, we examined effects of p120 knockdown or p120 and PLC-γ1 double knockdown on proliferation of cultured OSCC cells and tumor growth in xenograft OSCC in mice. The results showed that knockdown of p120 reduced levels of PLC-γ1 in the plasma membrane and increased levels of PLC-γ1 and its signaling in the nucleus in OSCC cells and OSCC cell proliferation as well as xenograft OSCC tumor growth. However, double knockdown of p120 and PLC-γ1 or knockdown of PLC-γ1 alone did not have any effect. Immunohistochemical analysis of OSCC tissue from patients showed a lower expression level of p120 and a higher expression level of PLC-γ1 compared with that of adjacent noncancerous tissue. These data indicate that p120 suppresses OSCC cell proliferation and tumor growth by inhibiting signaling mediated by nuclear PLC-γ1.
Collapse
Affiliation(s)
- Lusha Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shangli Ji
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chandrama Shrestha
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liyan Liao
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenming Liu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daniel D Bikle
- Endocrine Unit, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California
| | - Zhongjian Xie
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol 2020; 16:234-252. [PMID: 32029884 DOI: 10.1038/s41574-019-0312-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Vitamin D has a key role in stimulating calcium absorption from the gut and promoting skeletal health, as well as many other important physiological functions. Vitamin D is produced in the skin. It is subsequently metabolized to its hormonally active form, 1,25-dihydroxyvitamin D (1,25(OH)2D), by the 1-hydroxylase and catabolized by the 24-hydroxylase. In this Review, we pay special attention to the effect of mutations in these enzymes and their clinical manifestations. We then discuss the role of vitamin D binding protein in transporting vitamin D and its metabolites from their source to their targets, the free hormone hypothesis for cell entry and HSP70 for intracellular transport. This is followed by discussion of the vitamin D receptor (VDR) that mediates the cellular actions of 1,25(OH)2D. Cell-specific recruitment of co-regulatory complexes by liganded VDR leads to changes in gene expression that result in distinct physiological actions by 1,25(OH)2D, which are disrupted by mutations in the VDR. We then discuss the epidermis and hair follicle, to provide a non-skeletal example of a tissue that expresses VDR that not only makes vitamin D but also can metabolize it to its hormonally active form. This enables vitamin D to regulate epidermal differentiation and hair follicle cycling and, in so doing, to promote barrier function, wound healing and hair growth, while limiting cancer development.
Collapse
Affiliation(s)
- Daniel Bikle
- Departments of Medicine and Dermatology, University of California San Francisco, San Francisco, CA, USA.
- VA Medical Center, San Francisco, CA, USA.
| | - Sylvia Christakos
- Departments of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
16
|
Kovacs D, Maresca V, Flori E, Mastrofrancesco A, Picardo M, Cardinali G. Bovine colostrum induces the differentiation of human primary keratinocytes. FASEB J 2020; 34:6302-6321. [PMID: 32157742 DOI: 10.1096/fj.201900103rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/13/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022]
Abstract
Bovine colostrum, the first milk secreted by the mammary glands of cows shortly after they have given birth, provides a natural source of bioactive substances helpful to promote tissue development and repair, and to maintain a healthy immune system. Owing to its properties, the use of colostrum in the treatment of human diseases is under investigation. We evaluated the biological activity of colostrum on human primary keratinocytes, focusing on its effects with regard to a proliferation/differentiation balance. Using cellular and molecular approaches, we showed that colostrum favors a cell cycle withdrawal by increasing the expression of p21/WAF1 and p27/KIP1. It also promotes the transition of keratinocytes from a proliferating to a differentiating state, as assessed by a decrease in keratin 5 and an increase in keratin 16. We demonstrated the ability of colostrum to induce the expression of early and late differentiation markers (keratin 1, involucrin, and filaggrin) and the synthesis of caspase 14 and bleomycin hydrolase, the two main enzymes involved in filaggrin maturation. Moreover, we showed that bovine colostrum is able to promote keratinocyte stratification and terminal differentiation not only in two-dimensional (2D), but also in a more physiological system of three-dimensional (3D) skin equivalents. Finally, we demonstrated that colostrum stimulates cell differentiation through the PI3K/PLC-γ1/PKCα pathways mainly associated to tyrosine kinase receptors. These results suggest the possibility to benefit from colostrum properties for the treatment of skin diseases characterized by altered differentiation and perturbed barrier function.
Collapse
Affiliation(s)
- Daniela Kovacs
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Vittoria Maresca
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enrica Flori
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Lu X, Fu H, Chen R, Wang Y, Zhan Y, Song G, Hu T, Xia C, Tian X, Zhang B. Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro. Int J Biol Sci 2020; 16:1427-1440. [PMID: 32210730 PMCID: PMC7085223 DOI: 10.7150/ijbs.42962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the protein expression of PLCγ1 in human lung adenocarcinoma tissue using immunohistochemistry assay and the relationship between PLCG1 and autophagy in The Cancer Genome Atlas Network (TCGA) using Spearman correlation analysis and GSEA software. Furthermore, the interaction between PLCγ1 and autophagy-related signal molecules was investigated in human lung adenocarcinoma A549 cells treated with different inhibitors or transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vectors using MTT, clonogenicity, Transwell migration, RT-PCR, Caspase-3, mitochondrial transmembrane potential, and western blotting assays, as well as transmission electron microscope technique. Additionally, the effect of shRNA/PLCγ1 alone or combined with autophagic activator Lithium Chloride (LiCl) on tumor growth and metastasis was measured using immunohistochemistry and assays in A549 xenograft nude mouse model. The results showed that increased PLCγ1 expression occurred frequently in human lung adenocarcinoma tissue with higher grades of T in TNM staging classification. PLCγ1 significantly enriched in autophagic process and regulation, which negatively regulating autophagy was enriched in higher expression of PLCγ1. PLCγ1 inhibition partially reduced cell proliferation and migration of A549 cells, with an increased autophagic flux involving alterations of AMPKα, mTOR, and ERK levels. However, PLCγ1 inhibition-driven autophagy led to cell death without depending on Caspase-3 and RIP1. Additionally, the abrogation of PLCγ1 signaling by shRNA and combination with autophagic activator LiCl could efficaciously suppress tumor growth and metastasis in A549 xenograft nude mice, in combination with a decrease in P62 level. These findings collectively suggest that reduction of cell proliferation and migration by PLCγ1 inhibition could be partially attributed to PLCγ1 inhibition-driven autophagic cell death (ACD). It highlights the potential role of a combination between targeting PLCγ1 and autophagy pathway in anti-tumor therapy, which may be an efficacious new strategy to overcome the autophagy addition of tumor and acquired resistance to current therapy.
Collapse
Affiliation(s)
- Xiaohong Lu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Haijing Fu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Yue Wang
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Xuemei Tian
- School of Life Sciences, South China Normal University, 510631, Guangzhou, Gangdong, China
| | - Bing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| |
Collapse
|
18
|
Fukuyama T, Nakamura Y, Kanemaru K, Toyoda C, Jang HJ, Suh PG, Fukami K. Phospholipase Cγ1 is required for normal irritant contact dermatitis responses and sebaceous gland homeostasis. Exp Dermatol 2019; 28:1051-1057. [PMID: 31338881 DOI: 10.1111/exd.14009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte-specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.
Collapse
Affiliation(s)
- Takatsugu Fukuyama
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kaori Kanemaru
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Chiho Toyoda
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Korea Brain Reaseach Institute, Daegu, Korea
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
19
|
Sarode GS, Sarode SC, Maniyar N, Sharma N, Yerwadekar S, Patil S. Recent trends in predictive biomarkers for determining malignant potential of oral potentially malignant disorders. Oncol Rev 2019; 13:424. [PMID: 31565195 PMCID: PMC6747023 DOI: 10.4081/oncol.2019.424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Despite of the tremendous advancements in the field of cancer prevention, detection and treatment, the overall prognosis of oral squamous cell carcinoma (OSCC) still remains poor. This can be partly imparted to the lack of early detection of oral potentially malignant disorders (OPMDs), especially those at a higher risk of progression into OSCC. Over years, various specific and non-specific markers have been introduced that could predict the malignant transformation of OPMDs; however detail information on these OPMD markers in a concise manner is lacking. Moreover, their use on daily clinical basis still remains questionable. With continuous research in the field of cytology and genomics, several contemporary biomarkers have been discovered that are not yet foregrounded and proved to be more promising than those used conventionally. Here, in the present paper, we overview several recently concluded predictive biomarkers with special emphasis on their role in molecular pathogenesis of OSCC transformation. These markers can be used for risk assessment of malignant transformation in patients with OPMDs as well as for prophylactic conciliation and fair management of the high-risk OPMD patient group.
Collapse
Affiliation(s)
- Gargi S. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nikunj Maniyar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sujata Yerwadekar
- Department of Orthodontics and Dentofacial Orthopedics, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Tang W, Zhou Y, Sun D, Dong L, Xia J, Yang B. Oncogenic role of phospholipase C-γ1 in progression of hepatocellular carcinoma. Hepatol Res 2019; 49:559-569. [PMID: 30623526 DOI: 10.1111/hepr.13309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
AIM Phospholipase C-γ1 (PLCG1) was previously found to be involved in a variety of oncogenic behaviors such as cell motility, cell proliferation, cell migration, and invasion. However, its function in hepatocellular carcinoma (HCC) was unknown. Here, we explored the expression pattern and function of PLCG1 in HCC progression. METHODS Expression of PLCG1 was examined by western blotting in hepatoma cells and human tumor tissues. Expression was also detected by immunohistochemistry in 150 HCC clinical samples, and its clinical significance was analyzed. The influence of PLCG1 on HCC carcinogenesis were determined in vitro and in vivo. The underlying mechanisms were explored by detecting the expression of critical molecules of signaling pathways. RESULTS The results showed that PLCG1 was overexpressed in hepatoma cell lines and clinical HCC tissues. Increased PLCG1 expression in tumor tissues was remarkably correlated with poor clinical features of HCC. Patients with positive PLCG1 expression in tumor tissues had shorter overall survival and relapse-free survival. Phospholipase C gamma 1 could substantially promote cell proliferation, anchor growth, and cell invasion in vitro. The in vivo study showed that inhibition of PLCG1 in hepatoma cells significantly repressed tumor growth in nude mice. Furthermore, we showed that PLCG1 might exert its function by activating the mitogen-activated protein kinase and nuclear factor-κB signaling pathways. CONCLUSION Our data indicated that PLCG1 could act as an oncogene in HCC carcinogenesis and could serve as a valuable prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wenqing Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dalong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver disease, Fudan University, Shanghai, China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Che D, Hou Y, Zeng Y, Li C, Zhang Y, Wei D, Hu S, Liu R, An H, Wang Y, Zhang T. Dehydroandrographolide inhibits IgE-mediated anaphylactic reactions via calcium signaling pathway. Toxicol Appl Pharmacol 2019; 366:46-53. [DOI: 10.1016/j.taap.2019.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/23/2023]
|
22
|
Jang HJ, Suh PG, Lee YJ, Shin KJ, Cocco L, Chae YC. PLCγ1: Potential arbitrator of cancer progression. Adv Biol Regul 2018; 67:179-189. [PMID: 29174396 DOI: 10.1016/j.jbior.2017.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Phospholipase C (PLC) is an essential mediator of cellular signaling. PLC regulates multiple cellular processes by generating bioactive molecules such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). These products propagate and regulate cellular signaling via calcium (Ca2+) mobilization and activation of protein kinase C (PKC), other kinases, and ion channels. PLCγ1, one of the primary subtypes of PLC, is directly activated by membrane receptors, including receptor tyrosine kinases (RTKs), and adhesion receptors such as integrin. PLCγ1 mediates signaling through direct interactions with other signaling molecules via SH domains, as well as its lipase activity. PLCγ1 is frequently enriched and mutated in various cancers, and is involved in the processes of tumorigenesis, including proliferation, migration, and invasion. Although many studies have suggested that PLCγ functions in cell mobility rather than proliferation in cancer, questions remain as to whether PLCγ regulates mitogenesis and whether PLCγ promotes or inhibits proliferation. Moreover, how PLCγ regulates cancer-associated cellular processes and the interplay among other proteins involved in cancer progression have yet to be fully elucidated. In this review, we discuss the current understanding of the role of PLCγ1 in cancer mobility and proliferation.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yu Jin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
23
|
DAG/PKCδ and IP3/Ca²⁺/CaMK IIβ Operate in Parallel to Each Other in PLCγ1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway. Int J Mol Sci 2015; 16:28510-22. [PMID: 26633375 PMCID: PMC4691063 DOI: 10.3390/ijms161226116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide specific phospholipase Cγ (PLCγ) activates diacylglycerol (DAG)/protein kinase C (PKC) and inositol 1,4,5-trisphosphate (IP3)/Ca2+/calmodulin-dependent protein kinase II (CaMK II) axes to regulate import events in some cancer cells, including gastric adenocarcinoma cells. However, whether DAG/PKCδ and IP3/Ca2+/CaMK IIβ axes are simultaneously involved in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells and the underlying mechanism are not elucidated. Here, we investigated the role of DAG/PKCδ or CaMK IIβ in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells, using the BGC-823 cell line. The results indicated that the inhibition of PKCδ and CaMK IIβ could block cell proliferation and migration of BGC-823 cells as well as the effect of inhibiting PLCγ1, including the decrease of cell viability, the increase of apoptotic index, the down-regulation of matrix metalloproteinase (MMP) 9 expression level, and the decrease of cell migration rate. Both DAG/PKCδ and CaMK IIβ triggered protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/S6 pathway to regulate protein synthesis. The data indicate that DAG/PKCδ and IP3/Ca2+/CaMK IIβ operate in parallel to each other in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells through Akt/mTOR/S6 pathway, with important implication for validating PLCγ1 as a molecular biomarker in early gastric cancer diagnosis and disease surveillance.
Collapse
|
24
|
Jiang Y, Liao L, Shrestha C, Ji S, Chen Y, Peng J, Wang L, Liao E, Xie Z. Reduced expression of E-cadherin and p120-catenin and elevated expression of PLC-γ1 and PIKE are associated with aggressiveness of oral squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9042-51. [PMID: 26464646 PMCID: PMC4583878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most lethal malignant tumors. The cadherin/catenin cell-cell adhesion complex plays a major role in cancer development and progression. p120-catenin (p120) is a cytoplasmic molecule closely associated with E-cadherin which activates phospholipase C-γ1 (PLC-γ1). Our previous studies indicate that activation of PLC-γ1 plays a critical role in epidermal growth factor (EGF)-induced migration and proliferation of squamous cell carcinoma (SCC) cells and phosphatidylinositol 3-kinase enhancer (PIKE) is highly expressed in SCC cells and mediates EGFR-dependent SCC cell proliferation. Our current study was to determine whether the expression of E-cadherin, p120, PLC-γ1, and PIKE, is associated with OSCC. To address this issue, we assessed levels and localization of E-cadherin, p120, PLC-γ1, and PIKE in specimen of 92 patients with OSCC by immunohistochemistry. The results showed that the expression of E-cadherin, and p120 negatively correlated with the tumor differentiation and the expression of PLC-γ1 and PIKE positively correlated with the tumor differentiation. The expression of PLC-γ1 and PIKE in OSCC stage T3 + T4 or in OSCC with lymph node metastasis was significantly higher than that in OSCC stage T1 + T2 or in OSCC without lymph node metastasis. The expression of p120 positively correlated with levels of E-cadherin but negatively correlated with levels of PLC-γ1 and PIKE in OSCC. These data indicate that increased expression of PLC-γ1 and PIKE and decreased expression of E-cadherin and p120 are associated with the aggressiveness of OSCC.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Liyan Liao
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Chandrama Shrestha
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Shangli Ji
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing 100700, China
| | - Jian Peng
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Larry Wang
- Department of Pathology, Children’s Hospital Los Angeles, University of Southern CaliforniaLos Angeles, CA 90027, USA
| | - Eryuan Liao
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Zhongjian Xie
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
25
|
Jiang Y, Liao L, Shrestha C, Li D, Li M, Mu Y, Crumrine D, Wang L, Xie Z. Inhibition of 4-nitroquinoline-1-oxide-induced oral carcinogenesis by dietary calcium. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3529-3542. [PMID: 26097536 PMCID: PMC4466923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Calcium is a strong inducer of keratinocyte differentiation. We have previously demonstrated that extracellular calcium promotes keratinocyte differentiation via E-cadherin-catenin complex-mediated phospholipase C-γ1 (PLC-γ1) activation in the plasma membrane. However, it is unclear whether dietary calcium regulates keratinocyte proliferation, differentiation or carcinogenesis. To address this issue, the rates of oral tumor and levels of proliferation and differentiation in the oral epithelium were assessed in mice on different calcium diets and the carcinogen 4-nitroquinoline-1-oxide. The results showed that mice on the high calcium diet had lower rates of oral tumors, lower levels of proliferation and higher levels of differentiation in the normal oral epithelium than those on the normal calcium diet. Higher levels of E-cadherin, β-catenin, p120-catenin (p120), epidermal growth factor receptor (EGFR), and calcium and lower levels of PLC-γ1 were also noted in the normal oral epithelium in mice on high calcium diet than the control mice. In contrast, mice on low calcium diet had opposite effects. However, dietary calcium had no effect on the proliferation, differentiation or the levels of E-cadherin, β-catenin, p120, PLC-γ1 and EGFR in oral tumors. These data indicate that dietary calcium increases calcium levels in oral epithelium, suppresses oral carcinogenesis, inhibits proliferation and promotes differentiation of normal oral epithelium. Increased E-cadherin, β-catenin, p120 and EGFR and decreased PLC-γ1 may participate in the inhibitory effect of dietary calcium in oral carcinogenesis.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Liyan Liao
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Chandrama Shrestha
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Meirong Li
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Ying Mu
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Debra Crumrine
- Endocsrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of CaliforniaSan Francisco, CA 94121, USA
| | - Larry Wang
- Department of Pathology, Children’s Hospital Los Angeles, University of Southern CaliforniaLos Angeles, CA 90027, USA
| | - Zhongjian Xie
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Endocsrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of CaliforniaSan Francisco, CA 94121, USA
| |
Collapse
|
26
|
Zhu D, Tan Y, Yang X, Qiao J, Yu C, Wang L, Li J, Zhang Z, Zhong L. Phospholipase C gamma 1 is a potential prognostic biomarker for patients with locally advanced and resectable oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2014; 43:1418-26. [PMID: 25085076 DOI: 10.1016/j.ijom.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the prognostic and predictive values of phospholipase C gamma 1 (PLCG1) expression in patients with locally advanced and resectable oral squamous cell carcinoma (OSCC), who were treated in a prospective, randomized, phase 3 trial evaluating standard treatment with surgery and postoperative radiation preceded or not by induction docetaxel, cisplatin, and 5-fluorouracil (TPF). Immunohistochemical staining for PLCG1 was performed on the biopsies of 232 out of 256 OSCC patients at clinical stage III/IVA; the PLCG1 positive score was determined by immunoreactive scoring system. The survival analysis was performed by Kaplan-Meier method; hazard ratios were calculated using the Cox proportional hazards model. Patients with a low PLCG1 expression had a significantly better overall survival (P=0.022), and a trend towards better disease-free survival (P=0.087), loco-regional recurrence-free survival (P=0.058), distant metastasis-free survival (P=0.053), and a high response rate to TPF induction chemotherapy with regard to clinical response (P=0.052) and pathological response (P=0.061), compared to those with high PLCG1 expression. Our results suggest that PLCG1 expression could be used as a prognostic biomarker for patients with advanced OSCC; however, it was not an adequate predictive biomarker for TPF induction chemotherapy.
Collapse
Affiliation(s)
- D Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Tan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Qiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Yu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Zhong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Abstract
Phospholipases are enzymes that use phospholipids as substrate and are classified in three major classes A, C and D based on the reaction they catalyse. Phosphatidylinositol-specific Phospholipase C enzymes utilize phosphatidylinositol 4,5-bisphosphate as substrate and cleave the bond between the glycerol and the phosphate to produce important second messenger such as inositol trisphosphate and diacylglycerol. The Phospholipase C members are the most well-known phospholipases for their role in lipid signalling and cell proliferation and comprise 13 isoforms classified in 6 distinct sub-families. In particular, signalling activated by Phospholipase C γ, mostly activated by receptor and non-receptor tyrosine kinases, is well characterized in different cell systems. Increasing evidence suggest that Phospholipase C γ plays a key role in cell migration and invasion. Because of its role in cell growth and invasion, aberrant Phospholipase C γ signalling can contribute to carcinogenesis. A major challenge facing investigators who seek to target Phospholipase C γ directly is the fact that it is considered an "undruggable" protein. Indeed, isoform specificity and toxicity represents a big hurdle in the development of Phospholipase C γ small molecule inhibitors. Therefore, a future development in the field could be the identification of interacting partners as therapeutic targets that could be more druggable than Phospholipase C γ.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Aging Research Centre, G. d'Annunzio University Foundation, 66013 Chieti, Italy.
| | | | | |
Collapse
|
28
|
Mackenzie LS, Lymn JS, Hughes AD. Linking phospholipase C isoforms with differentiation function in human vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3006-3012. [PMID: 23954266 DOI: 10.1016/j.bbamcr.2013.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/23/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022]
Abstract
The phosphoinositol-phospholipase C (PLC) family of enzymes consists of a number of isoforms, each of which has different cellular functions. PLCγ1 is primarily linked to tyrosine kinase transduction pathways, whereas PLCδ1 has been associated with a number of regulatory proteins, including those controlling the cell cycle. Recent studies have shown a central role of PLC in cell organisation and in regulating a wide array of cellular responses. It is of importance to define the precise role of each isoform, and how this changes the functional outcome of the cell. Here we investigated differences in PLC isoform levels and activity in relation to differentiation of human and rat vascular smooth muscle cells. Using Western blotting and PLC activity assay, we show that PLCδ1 and PLCγ1 are the predominant isoforms in randomly cycling human vascular smooth muscle cells (HVSMCs). Growth arrest of HVSMCs for seven days of serum deprivation was consistently associated with increases in PLCδ1 and SM α-actin, whereas there were no changes in PLCγ1 immuno-reactivity. Organ culture of rat mesenteric arteries in serum free media (SFM), a model of de-differentiation, led to a loss of contractility as well as a loss of contractile proteins (SM α-actin and calponin) and PLCδ1, and no change in PLCγ1 immuno-reactivity. Taken together, these data indicate that PLCδ1 is the predominant PLC isoform in vascular smooth muscle, and confirm that PLCδ1 expression is affected by conditions that affect the cell cycle, differentiation status and contractile function.
Collapse
Affiliation(s)
- Louise S Mackenzie
- Department of Pharmacology, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK; Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK.
| | - Joanne S Lymn
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK; Institute of Cell Signalling, The School of Health Sciences, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Alun D Hughes
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK
| |
Collapse
|
29
|
Abstract
Tumorigenesis is the process by which normal cells evolve the capacity to evade and overcome the constraints usually placed upon their growth and survival. To ensure the integrity of organs and tissues, the balance of cell proliferation and cell death is tightly maintained. The proteins controlling this balance are either considered oncogenes, which promote tumorigenesis, or tumor suppressors, which prevent tumorigenesis. Phosphoinositide 3-kinase enhancer (PIKE) is a family of GTP-binding proteins that possess anti-apoptotic functions and play an important role in the central nervous system. Notably, accumulating evidence suggests that PIKE is a proto-oncogene involved in tumor progression. The PIKE gene (CENTG1) is amplified in a variety of human cancers, leading to the resistance against apoptosis and the enhancement of invasion. In this review, we will summarize the functions of PIKE proteins in tumorigenesis and discuss their potential implications in cancer therapy.
Collapse
|
30
|
Xie Z, Jiang Y, Liao EY, Chen Y, Pennypacker SD, Peng J, Chang SM. PIKE mediates EGFR proliferative signaling in squamous cell carcinoma cells. Oncogene 2012; 31:5090-8. [PMID: 22349826 DOI: 10.1038/onc.2012.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/30/2011] [Indexed: 11/08/2022]
Abstract
One of the key drivers for squamous cell carcinoma (SCC) proliferation is activation of the epidermal growth factor receptor (EGFR), a known proto-oncogene. However, the mechanism of EGFR-dependent SCC proliferation remains unclear. Our previous studies indicate that epidermal growth factor (EGF)-induced SCC cell proliferation requires the SH3 domain of phospholipase C-γ1 (PLC-γ1), but not its catalytic activity. The SH3 domain of PLC-γ1 is known to activate the short form of nuclear phosphatidylinositol 3-kinase enhancer (PIKE) that enhances the activity of nuclear class Ia phosphatidylinositol 3-kinase (PI3K) required for proliferation. However, PIKE has been described for more than a decade to be present exclusively in neuronal cells. In the present study, we found that PIKE was highly expressed in malignant human keratinocytes (SCC4 and SCC12B2) but had low expression in normal human keratinocytes. Immunohistochemical analysis showed strong nuclear staining of PIKE in human epidermal and tongue SCC specimens but little staining in the adjacent non-cancerous epithelium. Treatment of SCC4 cells with EGF-induced translocation of PLC-γ1 to the nucleus and binding of PLC-γ1 to the nuclear PIKE. Knockdown of PLC-γ1 or PIKE blocked EGF-induced activation of class Ia PI3K and protein kinase C-ζ and phosphorylation of nucleolin in the nucleus as well as EGF-induced SCC cell proliferation. However, inhibition of the catalytic activity of PLC-γ1 had little effect. These data suggest that PIKE has a critical role in EGF-induced SCC cell proliferation and may function as a proto-oncogene in SCC.
Collapse
Affiliation(s)
- Z Xie
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Peng J, Liao L, Chen Y, Pennypacker SD, Gao X, Zhou SH, Xie Z. Two distinct mechanisms by which phospholipase C-γ1 mediates epidermal growth factor-induced keratinocyte migration and proliferation. J Dermatol Sci 2012; 67:199-202. [DOI: 10.1016/j.jdermsci.2012.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 06/03/2012] [Accepted: 06/06/2012] [Indexed: 11/24/2022]
|
32
|
Abstract
Calcium is the major regulator of keratinocyte differentiation in vivo and in vitro. A calcium gradient within the epidermis promotes the sequential differentiation of keratinocytes as they traverse the different layers of the epidermis to form the permeability barrier of the stratum corneum. Calcium promotes differentiation by both outside-in and inside-out signaling. A number of signaling pathways involved with differentiation are regulated by calcium, including the formation of desmosomes, adherens junctions and tight junctions, which maintain cell-cell adhesion and play an important intracellular signaling role through their activation of various kinases and phospholipases that produce second messengers that regulate intracellular free calcium and PKC activity, critical for the differentiation process. The calcium receptor plays a central role by initiating the intracellular signaling events that drive differentiation in response to extracellular calcium. This review will discuss these mechanisms.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Administration Medical Center, University of California, San Francisco, CA, USA
| | - Zhongjian Xie
- Veterans Administration Medical Center, University of California, San Francisco, CA, USA
| | - Chia-Ling Tu
- Veterans Administration Medical Center, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Ma LW, Zhou ZT, He QB, Jiang WW. Phospholipase C-γ1 expression correlated with cancer progression of potentially malignant oral lesions. J Oral Pathol Med 2012; 42:47-52. [DOI: 10.1111/j.1600-0714.2012.01179.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Lindholm EM, Kristian A, Nalwoga H, Krüger K, Nygård S, Akslen LA, Mælandsmo GM, Engebraaten O. Effect of antiangiogenic therapy on tumor growth, vasculature and kinase activity in basal- and luminal-like breast cancer xenografts. Mol Oncol 2012; 6:418-27. [PMID: 22521242 DOI: 10.1016/j.molonc.2012.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/23/2012] [Accepted: 03/22/2012] [Indexed: 01/24/2023] Open
Abstract
Several clinical trials have investigated the efficacy of bevacizumab in breast cancer, and even if growth inhibiting effects have been registered when antiangiogenic treatment is given in combination with chemotherapy no gain in overall survival has been observed. One reason for the lack of overall survival benefit might be that appropriate criteria for selection of patients likely to respond to antiangiogenic therapy in combination with chemotherapy, are not available. To determine factors of importance for antiangiogenic treatment response and/or resistance, two representative human basal- and luminal-like breast cancer xenografts were treated with bevacizumab and doxorubicin alone or in combination. In vivo growth inhibition, microvessel density (MVD) and proliferating tumor vessels (pMVD = proliferative microvessel density) were analysed, while kinase activity was determined using the PamChip Tyrosine kinase microarray system. Results showed that both doxorubicin and bevacizumab inhibited basal-like tumor growth significantly, but with a superior effect when given in combination. In contrast, doxorubicin inhibited luminal-like tumor growth most effectively, and with no additional benefit of adding antiangiogenic therapy. In agreement with the growth inhibition data, vascular characterization verified a more pronounced effect of the antiangiogenic treatment in the basal-like compared to the luminal-like tumors, demonstrating total inhibition of pMVD and a significant reduction in MVD at early time points (three days after treatment) and sustained inhibitory effects until the end of the experiment (day 18). In contrast, luminal-like tumors only showed significant effect on the vasculature at day 10 in the tumors having received both doxorubicin and bevacizumab. Kinase activity profiling in both tumor models demonstrated that the most effective treatment in vivo was accompanied with increased phosphorylation of kinase substrates of growth control and angiogenesis, like EGFR, VEGFR2 and PLCγ1. This may be a result of regulatory feedback mechanisms contributing to treatment resistance, and may suggest response markers of value for the prediction of antiangiogenic treatment efficacy.
Collapse
Affiliation(s)
- Evita M Lindholm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Pb 4953 Nydalen, 0424 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Saeki Y, Nagashima T, Kimura S, Okada-Hatakeyama M. An ErbB receptor-mediated AP-1 regulatory network is modulated by STAT3 and c-MYC during calcium-dependent keratinocyte differentiation. Exp Dermatol 2012; 21:293-8. [DOI: 10.1111/j.1600-0625.2012.01453.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Xie Z, Peng J, Pennypacker SD, Chen Y. Critical role for the catalytic activity of phospholipase C-gamma1 in epidermal growth factor-induced cell migration. Biochem Biophys Res Commun 2010; 399:425-8. [PMID: 20674545 DOI: 10.1016/j.bbrc.2010.07.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 07/26/2010] [Indexed: 01/09/2023]
Abstract
Phospholipase C-gamma1 (PLC-gamma1), a tyrosine kinase substrate, has been implicated in the pathway for the epidermal growth factor receptor (EGFR)-induced cell migration. However, the underlying mechanism by which PLC-gamma1 mediates EGFR-induced cell migration remains elusive. In the present study, we sought to determine whether the lipase activity of PLC-gamma1 is required for EGFR-induced cell migration. We found that overexpression of PLC-gamma1 in squamous cell carcinoma SCC4 cells markedly enhanced EGF-induced PLC-gamma1 activation, intracellular calcium rise, and cell migration. This enhancement was abolished by mutational inactivation of the catalytic domain of PLC-gamma1. Inhibition of the downstream signaling processes mediated by the activity of phospholipase C (PLC) using IP(3) receptor inhibitor or intracellular calcium chelator blocked EGF-induced cell migration. These data indicate that EGF-induced cell migration is mediated by the lipase domain of PLC-gamma1 and the subsequent IP(3) generation and intracellular calcium mobilization.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
38
|
Xie Z, Chen Y, Pennypacker SD, Zhou Z, Peng D. The SH3 domain, but not the catalytic domain, is required for phospholipase C-gamma1 to mediate epidermal growth factor-induced mitogenesis. Biochem Biophys Res Commun 2010; 398:719-22. [PMID: 20621058 DOI: 10.1016/j.bbrc.2010.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
Abstract
Phospholipase C-gamma1 (PLC-gamma1) is a multiple-domain protein and plays an important role in epidermal growth factor (EGF)-induced cell mitogenesis, but the underlying mechanism is unclear. We have previously demonstrated that PLC-gamma1 is required for EGF-induced mitogenesis of squamous cell carcinoma (SCC) cells, but the mitogenic function of PLC-gamma1 is independent of its lipase activity. Earlier studies suggest that the Src homology 3 (SH3) domain of PLC-gamma1 possesses mitogenic activity. In the present study, we sought to determine the role of the SH3 domain of PLC-gamma1 in EGF-induced SCC cell mitogenesis. We examined the effect of overexpression of PLC-gamma1, a catalytically active PLC-gamma1 mutant lacking the SH3 domain or a catalytically inactive PLC-gamma1 mutant lacking the X domain on EGF-induced SCC4 (tongue squamous cell carcinoma) cell mitogenesis. We found that overexpression of PLC-gamma1 enhanced EGF-induced SCC4 cell mitogenesis. This enhancement was abolished by deletion of the SH3 domain but not by deletion of the X catalytic domain. These data suggest that the SH3 domain, but not the catalytic domain, is required for PLC-gamma1 to mediate EGF-induced SCC4 cell mitogenesis.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|