1
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Toyoda JH, Martino J, Speer RM, Meaza I, Lu H, Williams AR, Bolt AM, Kouokam JC, Aboueissa AEM, Wise JP. Hexavalent Chromium Targets Securin to Drive Numerical Chromosome Instability in Human Lung Cells. Int J Mol Sci 2023; 25:256. [PMID: 38203427 PMCID: PMC10778806 DOI: 10.3390/ijms25010256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.
Collapse
Affiliation(s)
- Jennifer H. Toyoda
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Julieta Martino
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Rachel M. Speer
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Idoia Meaza
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Haiyan Lu
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Aggie R. Williams
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA;
| | - Joseph Calvin Kouokam
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| | | | - John Pierce Wise
- Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, USA (R.M.S.); (H.L.); (J.C.K.)
| |
Collapse
|
3
|
Berkay EG, Karaman B, Başaran S. A rare ring chromosome 21 abnormality is associated with azoospermia in two different phenotypically normal cases. Syst Biol Reprod Med 2023; 69:387-393. [PMID: 37401907 DOI: 10.1080/19396368.2023.2225682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
Azoospermia can be diagnosed with spermiogram analysis, and karyotyping is the golden standard to explain the etiology. In this study, we investigated two male cases with azoospermia and male infertility for chromosomal abnormalities. Their phenotypes and physical and hormonal examinations were both normal. In karyotyping G-banding and NOR staining, a rare ring chromosome 21 abnormality was detected in the cases and no microdeletion in chromosome Y. Ring abnormality, deletion size, and deleted regions were shown with subtelomeric FISH (.ish r(21)(p13q22.3?)(D21S1446-)) and array CGH analyses. Due to the findings, bioinformatics, protein, and pathway analyses were done to detect a candidate gene through common genes in two cases' deleted regions or ring chromosome 21.
Collapse
Affiliation(s)
- Ezgi Gizem Berkay
- Istanbul Medical Faculty, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
- Dentistry Faculty, Department of Basic Sciences, Istanbul Kent University, Istanbul, Turkey
| | - Birsen Karaman
- Istanbul Medical Faculty, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
- Child Health Institute, Basic Pediatric Science, Istanbul University, Istanbul, Turkey
| | - Seher Başaran
- Istanbul Medical Faculty, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
5
|
Estrogens—Origin of Centrosome Defects in Human Cancer? Cells 2022; 11:cells11030432. [PMID: 35159242 PMCID: PMC8833882 DOI: 10.3390/cells11030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Estrogens are associated with a variety of diseases and play important roles in tumor development and progression. Centrosome defects are hallmarks of human cancers and contribute to ongoing chromosome missegragation and aneuploidy that manifest in genomic instability and tumor progression. Although several mechanisms underlie the etiology of centrosome aberrations in human cancer, upstream regulators are hardly known. Accumulating experimental and clinical evidence points to an important role of estrogens in deregulating centrosome homeostasis and promoting karyotype instability. Here, we will summarize existing literature of how natural and synthetic estrogens might contribute to structural and numerical centrosome defects, genomic instability and human carcinogenesis.
Collapse
|
6
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
7
|
Dehghan Tezerjani M, Vahidi Mehrjardi MY, Hozhabri H, Rahmanian M. A Novel PCNT Frame Shift Variant (c.7511delA) Causing Osteodysplastic Primordial Dwarfism of Majewski Type 2 (MOPD II). Front Pediatr 2020; 8:340. [PMID: 32671003 PMCID: PMC7330014 DOI: 10.3389/fped.2020.00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/22/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is an autosomal recessive and skeletal disorder included wide spectrum of clinical abnormalities such as fetal growth restriction, disproportionate face, microcephaly, post-natal growth retardation, adult height under 100 cm, abnormal skin pigmentation, insulin resistance, and susceptibility to cerebrovascular and hematologic abnormalities. Due to heterogeneous feature of MOPDs diseases and common clinical features among the different subtypes, mutation analysis can be considered as fundamental in the accurate diagnosis and confirmation of the MOPD II disease. Some studies revealed that, variants of gene encoding Pericentrin protein, PCNT, were associated with MOPD II. Methods: We performed whole exome sequencing based on the next generation sequencing (Illumina platform), to perform correct diagnosis in a 17-year-old girl with an unknown disease who was referred to the Diabetes Research Center in Yazd, Iran. The clinical features of the patient were short stature, generalized brachydactyly, gradual deterioration of brain functioning, menstrual irregularity, clitoromegaly, acanthosis nigricans, diabetes mellitus, hyperinsulinemia, insulin resistance, and dyslipidemia. Accordingly, her parents were also first cousin with no background disease. After identifying the novel variant, it was confirmed in the proband and her family using bi-directional Sanger sequencing, and its pathogenicity was also checked by different online tools. Results: Our study revealed a novel frame-shift variant in PCNT gene (c.7511delA, p.K2504Sfs*27), which causes premature termination of Pericentrin protein. The result disclosed that, the proband was affected by MOPD II disease. In addition, the Sanger sequencing confirmed the novel homozygote variant in the proband and heterozygote one in her parents, and the extended family perfectly segregated among them. Online tools such as Varsome and MutationTaster also showed a high level of pathogenicity for the variant identified. Conclusion: A novel variant was identified in the proband and her extended family, which emphasized the importance of PCNT gene mutations analysis in the screening and accurate identification of MOPD II disease, especially in prenatal diagnosis.
Collapse
Affiliation(s)
- Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mohammad Yahya Vahidi Mehrjardi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Hozhabri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Masoud Rahmanian
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Hata S, Pastor Peidro A, Panic M, Liu P, Atorino E, Funaya C, Jäkle U, Pereira G, Schiebel E. The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nat Cell Biol 2019; 21:1138-1151. [DOI: 10.1038/s41556-019-0382-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
|
9
|
Chen C, Xu Z, Zhang T, Lin L, Lu M, Xie C, Yu X. Cep85 Relays Plk1 Activity to Phosphorylated Nek2A for Its Timely Activation in Centrosome Disjunction. iScience 2018; 11:114-133. [PMID: 30611117 PMCID: PMC6317306 DOI: 10.1016/j.isci.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Timely centrosome separation is critical for accurate chromosome separation. It is initiated by Nek2A at the onset of mitosis, but the mechanism for the strict requirement of phosphorylated Nek2A for its own activation remains unclear. In this study, we have found that Plk1 interacts with Cep85 and forms a ternary complex with Cep85-Nek2A. Nek2A binding, but not its kinase activity, is pre-required for Cep85 to be phosphorylated by Plk1. Nek2A-dependent Cep85 phosphorylation, in turn, leads to the dissociation of phosphorylated Cep85 exclusively from phospho-Nek2A, thereby increasing the freed phospho-Nek2A activity. Both kinases are also required for phosphorylating endogenous Cep85 in cells, and timely phosphorylation of Cep85 and Nek2A is crucial for initiating centrosome disjunction at G2/M. Overall, our study has uncovered a previously unrecognized role of Plk1 and Nek2A and identified Cep85 as a missing piece directly relaying Plk1 activity to Nek2A for its activation in centrosome disjunction. Cep85 prevents centrosome separation by binding to and inhibiting Nek2A in interphase Plk1 binds to Cep85 and forms a ternary Plk1-Cep85-Nek2A complex in late G2 Nek2A-assisting Cep85 phosphorylation by Plk1 releases phospho-Nek2A from Cep85 Freed phospho-Nek2A initiates centrosome separation in G2/M
Collapse
Affiliation(s)
- Canhe Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhenping Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Liping Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianwen Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
10
|
Makiyama T, Higashi S, Sakane H, Nogami S, Shirataki H. γ-Taxilin temporally regulates centrosome disjunction in a Nek2A-dependent manner. Exp Cell Res 2018; 362:412-423. [DOI: 10.1016/j.yexcr.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
|
11
|
Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R, Leone M, Hirth S, Ricciardi F, Falk N, Giessl A, Just S, Braun T, Weidinger G, Engel FB. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife 2015; 4. [PMID: 26247711 PMCID: PMC4541494 DOI: 10.7554/elife.05563] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/30/2015] [Indexed: 12/23/2022] Open
Abstract
Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI:http://dx.doi.org/10.7554/eLife.05563.001 Muscle cells in the heart contract in regular rhythms to pump blood around the body. In humans, rats and other mammals, the vast majority of heart muscle cells lose the ability to divide shortly after birth. Therefore, the heart is unable to replace cells that are lost over the life of the individual, for example, during a heart attack. If too many of these cells are lost, the heart will be unable to pump effectively, which can lead to heart failure. Currently, the only treatment option in humans with heart failure is to perform a heart transplant. Some animals, such as newts and zebrafish, are able to replace lost heart muscle cells throughout their lifetimes. Thus, these species are able to fully regenerate their hearts even after 20% has been removed. This suggests that it might be possible to manipulate human heart muscle cells to make them divide and regenerate the heart. Recent research has suggested that structures called centrosomes, known to be required to separate copies of the DNA during cell division, are used as a hub to integrate the initial signals that determine whether a cell should divide or not. Here, Zebrowski et al. studied the centrosomes of heart muscle cells in rats, newts and zebrafish. The experiments show that the centrosomes in rat heart muscle cells are dissembled shortly after birth. Centrosomes are made of several proteins and, in the rat cells, these proteins moved to the membrane that surrounded the nucleus. On the other hand, the centrosomes in the heart muscle cells of the adult newts and zebrafish remained intact. Further experiments found that that breaking apart the centrosomes of heart muscle cells taken from newborn rats stops these cells from dividing. Zebrowski et al.'s findings suggest that the loss of centrosomes after birth is a possible reason why the hearts of adult humans and other mammals are unable to regenerate after injury. In the future, these findings may aid the development of methods to regenerate human heart muscle and new treatments that may limit division of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.05563.002
Collapse
Affiliation(s)
- David C Zebrowski
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chi-Chung Wu
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Tanja Piatkowski
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sofia Hirth
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Filomena Ricciardi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathalie Falk
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Giessl
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Just
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Fujita H, Yoshino Y, Chiba N. Regulation of the centrosome cycle. Mol Cell Oncol 2015; 3:e1075643. [PMID: 27308597 PMCID: PMC4905396 DOI: 10.1080/23723556.2015.1075643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022]
Abstract
The centrosome, consisting of mother and daughter centrioles surrounded by the pericentriolar matrix (PCM), functions primarily as a microtubule organizing center (MTOC) in most animal cells. In dividing cells the centrosome duplicates once per cell cycle and its number and structure are highly regulated during each cell cycle to organize an effective bipolar spindle in the mitotic phase. Defects in the regulation of centrosome duplication lead to a variety of human diseases, including cancer, through abnormal cell division and inappropriate chromosome segregation. At the end of mitosis the daughter centriole disengages from the mother centriole. This centriole disengagement is an important licensing step for centrosome duplication. In S phase, one new daughter centriole forms perpendicular to each centriole. The centrosome recruits further PCM proteins in the late G2 phase and the two centrosomes separate at mitotic entry to form a bipolar spindle. Here, we summarize research findings in the field of centrosome biology, focusing on the mechanisms of regulation of the centrosome cycle in human cells.
Collapse
Affiliation(s)
- Hiroki Fujita
- Laboratory of Cancer Biology, Graduate School of Life Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Japan; Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , 4-1 Seiryomachi Aoba-ku Sendai, Japan
| |
Collapse
|
13
|
Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, Yu X. Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction. J Cell Sci 2015. [PMID: 26220856 PMCID: PMC4582193 DOI: 10.1242/jcs.171637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nek2 has been implicated in centrosome disjunction at the onset of mitosis to promote bipolar spindle formation, and hyperactivation of Nek2 leads to the premature centrosome separation. Its activity, therefore, needs to be strictly regulated. In this study, we report that Cep85, an uncharacterized centrosomal protein, acts as a binding partner of Nek2A. It colocalizes with isoform A of Nek2 (Nek2A) at centrosomes and forms a granule meshwork enveloping the proximal ends of centrioles. Opposite to the effects of Nek2A, overexpression of Cep85 in conjunction with inhibition of the motor protein Eg5 (also known as KIF11) leads to the failure of centrosome disjunction. By contrast, depletion of Cep85 results in the precocious centrosome separation. We also define the Nek2A binding and centrosome localization domains within Cep85. Although the Nek2A-binding domain alone is sufficient to inhibit Nek2A kinase activity in vitro, both domains are indispensable for full suppression of centrosome disjunction in cells. Thus, we propose that Cep85 is a bona fide Nek2A-binding partner that surrounds the proximal ends of centrioles where it cooperates with PP1γ (also known as PPP1CC) to antagonize Nek2A activity in order to maintain the centrosome integrity in interphase in mammalian cells. Summary: Cep85 acts as a binding partner of Nek2A to prevent premature centrosome separation in interphase by inhibiting Nek2A activity.
Collapse
Affiliation(s)
- Canhe Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fang Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lin Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhe Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengtao Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianwen Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
14
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
15
|
Pagan JK, Marzio A, Jones MJ, Saraf A, Jallepalli PV, Florens L, Washburn MP, Pagano M. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat Cell Biol 2015; 17:31-43. [PMID: 25503564 PMCID: PMC4415623 DOI: 10.1038/ncb3076] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Abstract
An intercentrosomal linker keeps a cell's two centrosomes joined together until it is dissolved at the onset of mitosis. A second connection keeps daughter centrioles engaged to their mothers until they lose their orthogonal arrangement at the end of mitosis. Centriole disengagement is required to license centrioles for duplication. We show that the intercentrosomal linker protein Cep68 is degraded in prometaphase through the SCF(βTrCP) (Skp1-Cul1-F-box protein) ubiquitin ligase complex. Cep68 degradation is initiated by PLK1 phosphorylation of Cep68 on Ser 332, allowing recognition by βTrCP. We also found that Cep68 forms a complex with Cep215 (also known as Cdk5Rap2) and PCNT (also known as pericentrin), two PCM (pericentriolar material) proteins involved in centriole engagement. Cep68 and PCNT bind to different pools of Cep215. We propose that Cep68 degradation allows Cep215 removal from the peripheral PCM preventing centriole separation following disengagement, whereas PCNT cleavage mediates Cep215 removal from the core of the PCM to inhibit centriole disengagement and duplication.
Collapse
Affiliation(s)
- Julia K. Pagan
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Antonio Marzio
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Mathew J.K. Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Anita Saraf
- The Stowers Institute of Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Prasad V. Jallepalli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Laurence Florens
- The Stowers Institute of Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Michael P. Washburn
- The Stowers Institute of Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | - Michele Pagano
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
- Howard Hughes Medical Institute, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
16
|
Beveridge RD, Staples CJ, Patil AA, Myers KN, Maslen S, Skehel JM, Boulton SJ, Collis SJ. The leukemia-associated Rho guanine nucleotide exchange factor LARG is required for efficient replication stress signaling. Cell Cycle 2014; 13:3450-9. [PMID: 25485589 DOI: 10.4161/15384101.2014.956529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders.
Collapse
Affiliation(s)
- Ryan D Beveridge
- a Genome Stability Group ; Department of Oncology ; Academic Unit of Molecular Oncology ; University of Sheffield Medical School ; Sheffield , UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Agircan FG, Schiebel E. Sensors at centrosomes reveal determinants of local separase activity. PLoS Genet 2014; 10:e1004672. [PMID: 25299182 PMCID: PMC4191886 DOI: 10.1371/journal.pgen.1004672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023] Open
Abstract
Separase is best known for its function in sister chromatid separation at the metaphase-anaphase transition. It also has a role in centriole disengagement in late mitosis/G1. To gain insight into the activity of separase at centrosomes, we developed two separase activity sensors: mCherry-Scc1(142-467)-ΔNLS-eGFP-PACT and mCherry-kendrin(2059-2398)-eGFP-PACT. Both localize to the centrosomes and enabled us to monitor local separase activity at the centrosome in real time. Both centrosomal sensors were cleaved by separase before anaphase onset, earlier than the corresponding H2B-mCherry-Scc1(142-467)-eGFP sensor at chromosomes. This indicates that substrate cleavage by separase is not synchronous in the cells. Depletion of the proteins astrin or Aki1, which have been described as inhibitors of centrosomal separase, did not led to a significant activation of separase at centrosomes, emphasizing the importance of direct separase activity measurements at the centrosomes. Inhibition of polo-like kinase Plk1, on the other hand, decreased the separase activity towards the Scc1 but not the kendrin reporter. Together these findings indicate that Plk1 regulates separase activity at the level of substrate affinity at centrosomes and may explain in part the role of Plk1 in centriole disengagement.
Collapse
Affiliation(s)
- Fikret Gurkan Agircan
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
18
|
Galletta BJ, Guillen RX, Fagerstrom CJ, Brownlee CW, Lerit DA, Megraw TL, Rogers GC, Rusan NM. Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies. Mol Biol Cell 2014; 25:2682-94. [PMID: 25031429 PMCID: PMC4161505 DOI: 10.1091/mbc.e13-10-0617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pericentrin is a critical centrosomal protein required for organizing pericentriolar material (PCM) in mitosis. Mutations in pericentrin cause the human genetic disorder Majewski/microcephalic osteodysplastic primordial dwarfism type II, making a detailed understanding of its regulation extremely important. Germaine to pericentrin's function in organizing PCM is its ability to localize to the centrosome through the conserved C-terminal PACT domain. Here we use Drosophila pericentrin-like-protein (PLP) to understand how the PACT domain is regulated. We show that the interaction of PLP with calmodulin (CaM) at two highly conserved CaM-binding sites in the PACT domain controls the proper targeting of PLP to the centrosome. Disrupting the PLP-CaM interaction with single point mutations renders PLP inefficient in localizing to centrioles in cultured S2 cells and Drosophila neuroblasts. Although levels of PCM are unaffected, it is highly disorganized. We also demonstrate that basal body formation in the male testes and the production of functional sperm does not rely on the PLP-CaM interaction, whereas production of functional mechanosensory neurons does.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodrigo X Guillen
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chris W Brownlee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Dorothy A Lerit
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
19
|
Xia YY, Ding YB, Liu XQ, Chen XM, Cheng SQ, Li LB, Ma MF, He JL, Wang YX. Allelic methylation status of CpG islands on chromosome 21q in patients with Trisomy 21. Mol Med Rep 2014; 9:1681-8. [PMID: 24573226 DOI: 10.3892/mmr.2014.1985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 01/30/2014] [Indexed: 11/05/2022] Open
Abstract
Trisomy 21 is a chromosomal condition caused by the presence of all or part of an extra 21st chromosome. There has been limited research into the DNA methylation status of CpG islands (CGIs) in trisomy 21, therefore, exploring the DNA methylation status of CGIs in 21q is essential for the development of a series of potential epigenetic biomarkers for prenatal screening of trisomy 21. First, DNA sequences of CGIs in 21q from the USCS database were obtained and 149 sequences and 148 pairs of primers in the BGI YH database were aligned. All 300 cases were analyzed by a heavy methyl-polymerase chain reaction (HM-PCR) assay and a comparison of the DNA methylation status of CGIs was made between trisomy 21 and the control. The HM-PCR assay results did not show a difference in the DNA methylation status between individuals with trisomy 21 and the control. In total, there were 11 CGIs that showed various DNA methylation statuses between Japanese and Chinese patients. Subsequently, bisulfite genomic sequencing found variations in the methylation status of CpG dinucleotides in CGIs (nos. 14, 75, 109, 134 and 146) between trisomy 21 and the control. The different DNA methylation status of CpG dinucleotides in CGIs may be a potential epigenetic marker for diagnosing trisomy 21. No difference was identified in the DNA methylation status of 21q CGIs among Chinese individuals with trisomy 21 and the control. The homogeneity of the DNA methylation status of 21q CGIs in Chinese patients indicates that DNA methylation is likely to be an epigenetic marker distinguishing ethnicities.
Collapse
Affiliation(s)
- Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu-Bing Ding
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue-Qing Liu
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue-Mei Chen
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shu-Qun Cheng
- Department of Occupational and Environmental Hygiene, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lian-Bing Li
- Chongqing Key Laboratory of Birth Defects and Reproductive Health, Institute for Science and Technology Research of Chongqing Population and Family Planning, Chongqing 400016, P.R. China
| | - Ming-Fu Ma
- Chongqing Key Laboratory of Birth Defects and Reproductive Health, Institute for Science and Technology Research of Chongqing Population and Family Planning, Chongqing 400016, P.R. China
| | - Jun-Lin He
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying-Xiong Wang
- Department of Reproductive Biology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
20
|
Pihan GA. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 2013; 3:277. [PMID: 24282781 PMCID: PMC3824400 DOI: 10.3389/fonc.2013.00277] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/19/2022] Open
Abstract
The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker's precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegregated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.
Collapse
Affiliation(s)
- German A Pihan
- Department of Pathology and Laboratory Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
21
|
Abstract
The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.
Collapse
Affiliation(s)
- Balca R Mardin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, 69117 Heidelberg, Germany
| | | |
Collapse
|
22
|
Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr Biol 2012; 22:915-21. [PMID: 22542101 DOI: 10.1016/j.cub.2012.03.048] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/13/2012] [Accepted: 03/16/2012] [Indexed: 11/17/2022]
Abstract
The centrosome, consisting of a pair of centrioles surrounded by pericentriolar material, directs the formation of bipolar spindles during mitosis. Aberrant centrosome number can promote chromosome instability, which is implicated in tumorigenesis. Thus, centrosome duplication needs to be tightly regulated to occur only once per cell cycle. Separase, a cysteine protease that triggers sister chromatid separation, is involved in centriole disengagement, which licenses centrosomes for the next round of duplication. However, at least two questions remain unsolved: what is the substrate relevant to the disengagement, and how does separase, activated at anaphase onset, act on the disengagement that occurs during late mitosis. Here, we show that kendrin, also named pericentrin, is cleaved by activated separase at a consensus site in vivo and in vitro, and this leads to the delayed release of kendrin from the centrosome later in mitosis. Furthermore, we demonstrate that expression of a noncleavable kendrin mutant suppresses centriole disengagement and subsequent centriole duplication. Based on these results, we propose that kendrin is a novel and crucial substrate for separase at the centrosome, protecting the engaged centrioles from premature disengagement and thereby blocking reduplication until the cell passes through mitosis.
Collapse
Affiliation(s)
- Kazuhiko Matsuo
- Faculty of Pharmaceutical Science, Teikyo Heisei University, Ichihara, Japan
| | | | | | | | | | | |
Collapse
|