1
|
Trusca VG, Dumitrescu M, Fenyo IM, Tudorache IF, Simionescu M, Gafencu AV. The Mechanism of Bisphenol A Atherogenicity Involves Apolipoprotein A-I Downregulation through NF-κB Activation. Int J Mol Sci 2019; 20:E6281. [PMID: 31842455 PMCID: PMC6941038 DOI: 10.3390/ijms20246281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein component of high-density lipoproteins (HDL), mediating many of its atheroprotective properties. Increasing data reveal the pro-atherogenic effects of bisphenol A (BPA), one of the most prevalent environmental chemicals. In this study, we investigated the mechanisms by which BPA exerts pro-atherogenic effects. For this, LDLR-/- mice were fed with a high-fat diet and treated with 50 µg BPA/kg body weight by gavage. After two months of treatment, the area of atherosclerotic lesions in the aorta, triglycerides and total cholesterol levels were significantly increased, while HDL-cholesterol was decreased in BPA-treated LDLR-/- mice as compared to control mice. Real-Time PCR data showed that BPA treatment decreased hepatic apoA-I expression. BPA downregulated the activity of the apoA-I promoter in a dose-dependent manner. This inhibitory effect was mediated by MEKK1/NF-κB signaling pathways. Transfection experiments using apoA-I promoter deletion mutants, chromatin immunoprecipitation, and protein-DNA interaction assays demonstrated that treatment of hepatocytes with BPA induced NF-κB signaling and thus the recruitment of p65/50 proteins to the multiple NF-κB binding sites located in the apoA-I promoter. In conclusion, BPA exerts pro-atherogenic effects downregulating apoA-I by MEKK1 signaling and NF-κB activation in hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (V.G.T.); (M.D.); (I.M.F.); (I.F.T.); (M.S.)
| |
Collapse
|
2
|
Mogilenko DA, Shavva VS, Dizhe EB, Orlov SV. Characterization of Distal and Proximal Alternative Promoters of the Human ApoA-I Gene. Mol Biol 2019. [DOI: 10.1134/s0026893319030129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Bogomolova AM, Shavva VS, Nikitin AA, Nekrasova EV, Dizhe EB, Larionova EE, Kudriavtsev IV, Orlov SV. Hypoxia as a Factor Involved in the Regulation of the apoA-1, ABCA1, and Complement C3 Gene Expression in Human Macrophages. BIOCHEMISTRY (MOSCOW) 2019; 84:529-539. [DOI: 10.1134/s0006297919050079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Tumor necrosis factor α stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-κB, and nuclear receptors PPARα and LXRs. Mol Cell Biochem 2018; 448:211-223. [PMID: 29442267 DOI: 10.1007/s11010-018-3327-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Apolipoprotein A-I (ApoA-I) is the main structural and functional protein component of high-density lipoprotein. ApoA-I has been shown to regulate lipid metabolism and inflammation in macrophages. Recently, we found the moderate expression of endogenous apoA-I in human monocytes and macrophages and showed that pro-inflammatory cytokine tumor necrosis factor α (TNFα) increases apoA-I mRNA and stimulates ApoA-I protein secretion by human monocytes and macrophages. Here, we present data about molecular mechanisms responsible for the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. This activation depends on JNK and MEK1/2 signaling pathways in human monocytes, whereas inhibition of NFκB, JNK, or p38 blocks an increase of apoA-I gene expression in the macrophages treated with TNFα. Nuclear receptor PPARα is a ligand-dependent regulator of apoA-I gene, whereas LXRs stimulate apoA-I mRNA transcription and ApoA-I protein synthesis and secretion by macrophages. Treatment of human macrophages with PPARα or LXR synthetic ligands as well as knock-down of LXRα, and LXRβ by siRNAs interfered with the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. At the same time, TNFα differently regulated the levels of PPARα, LXRα, and LXRβ binding to the apoA-I gene promoter in THP-1 cells. Obtained results suggest a novel tissue-specific mechanism of the TNFα-mediated regulation of apoA-I gene in monocytes and macrophages and show that endogenous ApoA-I might be positively regulated in macrophage during inflammation.
Collapse
|
5
|
Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Oleinikova GN, Lapikov IA, Tanyanskiy DA, Perevozchikov AP, Orlov SV. FOXO1 and LXRα downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells. Cell Stress Chaperones 2017; 22:123-134. [PMID: 27896567 PMCID: PMC5225066 DOI: 10.1007/s12192-016-0749-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species damage various cell components including DNA, proteins, and lipids, and these impairments could be a reason for severe human diseases including atherosclerosis. Forkhead box O1 (FOXO1), an important metabolic transcription factor, upregulates antioxidant and proapoptotic genes during oxidative stress. Apolipoprotein A-I (ApoA-I) forms high density lipoprotein (HDL) particles that are responsible for cholesterol transfer from peripheral tissues to liver for removal in bile in vertebrates. The main sources for plasma ApoA-I in mammals are liver and jejunum. Hepatic apoA-I transcription depends on a multitude of metabolic transcription factors. We demonstrate that ApoA-I synthesis and secretion are decreased during H2O2-induced oxidative stress in human hepatoma cell line HepG2. Here, we first show that FOXO1 binds to site B of apoA-I hepatic enhancer and downregulates apoA-I gene activity in HepG2 cells. Moreover, FOXO1 and LXRα transcription factors participate in H2O2-triggered downregulation of apoA-I gene together with Src, JNK, p38, and AMPK kinase cascades. Mutations of sites B or C as well as the administration of siRNAs against FOXO1 or LXRα to HepG2 cells abolished the hydrogen peroxide-mediated suppression of apoA-I gene.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| | | | - Artemy A Nikitin
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Ella B Dizhe
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Galina N Oleinikova
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Ivan A Lapikov
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Fundamental Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Andrej P Perevozchikov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey V Orlov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
6
|
van der Krieken SE, Popeijus HE, Konings M, Dullens SP, Mensink RP, Plat J. C/EBP-β Is Differentially Affected by PPARα Agonists Fenofibric Acid and GW7647, But Does Not Change Apolipoprotein A-I Production During ER-Stress and Inflammation. J Cell Biochem 2016; 118:754-763. [DOI: 10.1002/jcb.25731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Sophie E. van der Krieken
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Herman E. Popeijus
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Maurice Konings
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Stefan P.J. Dullens
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Ronald P. Mensink
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Jogchum Plat
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| |
Collapse
|
7
|
Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Tanyanskiy DA, Efremov AM, Oleinikova GN, Perevozchikov AP, Orlov SV. Insulin-Mediated Downregulation of Apolipoprotein A-I Gene in Human Hepatoma Cell Line HepG2: The Role of Interaction Between FOXO1 and LXRβ Transcription Factors. J Cell Biochem 2016; 118:382-396. [PMID: 27404023 DOI: 10.1002/jcb.25651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is a key component of high density lipoproteins which possess anti-atherosclerotic and anti-inflammatory properties. Insulin is a crucial mediator of the glucose and lipid metabolism that has been implicated in atherosclerotic and inflammatory processes. Important mediators of insulin signaling such as Liver X Receptors (LXRs) and Forkhead Box A2 (FOXA2) are known to regulate apoA-I expression in liver. Forkhead Box O1 (FOXO1) is a well-known target of insulin signaling and a key mediator of oxidative stress response. Low doses of insulin were shown to activate apoA-I expression in human hepatoma HepG2 cells. However, the detailed mechanisms for these processes are still unknown. We studied the possible involvement of FOXO1, FOXA2, LXRα, and LXRβ transcription factors in the insulin-mediated regulation of apoA-I expression. Treatment of HepG2 cells with high doses of insulin (48 h, 100 nM) suppresses apoA-I gene expression. siRNAs against FOXO1, FOXA2, LXRβ, or LXRα abrogated this effect. FOXO1 forms a complex with LXRβ and insulin treatment impairs FOXO1/LXRβ complex binding to hepatic enhancer and triggers its nuclear export. Insulin as well as LXR ligand TO901317 enhance the interaction between FOXA2, LXRα, and hepatic enhancer. These data suggest that high doses of insulin downregulate apoA-I gene expression in HepG2 cells through redistribution of FOXO1/LXRβ complex, FOXA2, and LXRα on hepatic enhancer of apoA-I gene. J. Cell. Biochem. 118: 382-396, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Artemy A Nikitin
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Ella B Dizhe
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Fundamental Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander M Efremov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Galina N Oleinikova
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Andrej P Perevozchikov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey V Orlov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
8
|
Shavva VS, Mogilenko DA, Bogomolova AM, Nikitin AA, Dizhe EB, Efremov AM, Oleinikova GN, Perevozchikov AP, Orlov SV. PPARγ Represses Apolipoprotein A-I Gene but Impedes TNFα-Mediated ApoA-I Downregulation in HepG2 Cells. J Cell Biochem 2016; 117:2010-22. [DOI: 10.1002/jcb.25498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Vladimir S. Shavva
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
- Department of Embryology; St. Petersburg State University; St. Petersburg Russia
| | - Denis A. Mogilenko
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
- Department of Embryology; St. Petersburg State University; St. Petersburg Russia
| | | | - Artemy A. Nikitin
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
- Department of Biochemistry; St. Petersburg State University; St. Petersburg Russia
| | - Ella B. Dizhe
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
| | - Alexander M. Efremov
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
- Department of Embryology; St. Petersburg State University; St. Petersburg Russia
| | - Galina N. Oleinikova
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
| | - Andrej P. Perevozchikov
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
- Department of Embryology; St. Petersburg State University; St. Petersburg Russia
| | - Sergey V. Orlov
- Department of Biochemistry; Institute of Experimental Medicine; Russian Academy of Medical Sciences; St. Petersburg Russia
- Department of Embryology; St. Petersburg State University; St. Petersburg Russia
| |
Collapse
|
9
|
Fan A, Wang Q, Yuan Y, Cheng J, Chen L, Guo X, Li Q, Chen B, Huang X, Huang Q. Liver X receptor-α and miR-130a-3p regulate expression of sphingosine 1-phosphate receptor 2 in human umbilical vein endothelial cells. Am J Physiol Cell Physiol 2015; 310:C216-26. [PMID: 26669941 DOI: 10.1152/ajpcell.00102.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that activation of liver X receptors (LXRs) attenuates the development of atherosclerosis, not only by regulating lipid metabolism but also by suppressing inflammatory signaling. Sphingosine 1-phosphate receptor 2 (S1PR2), an important inflammatory gene product, plays a role in the development of various inflammatory diseases. It was proposed that S1PR2 might be regulated by LXR-α. In the present study, the effect of LXR-α on tumor necrosis factor-α (TNF-α)-induced S1PR2 expression in human umbilical vein endothelial cells (HUVECs) was investigated and the underlying mechanism was explored. The results demonstrated that TNF-α led to an increase in S1PR2 expression and triggered a downregulation of LXR-α expression in HUVECs as well. Downregulation of LXR-α with specific small interfering RNA (siRNA) remarkably enhanced the primary as well as TNF-α-induced expression of S1PR2 in HUVECs. Activation of LXR-α by agonist GW3965 inhibited both primary and TNF-α-induced S1PR2 expression. GW3965 also attenuated S1PR2-induced endothelial barrier dysfunction. The data further showed that TNF-α induced a significant decrease in miR-130a-3p expression. Overexpression of miR-130a-3p with mimic product reduced S1PR2 protein expression, and inhibition of miR-130a-3p by specific inhibitor resulted in an increase in S1PR2 protein expression. Furthermore, activation of LXRs with agonist enhanced the expression of miR-130a-3p, and knockdown of LXR-α by siRNA suppressed miR-130a-3p expression. These results suggest that LXR-α might downregulate S1PR2 expression via miR-130a-3p in quiescent HUVECs. Stimulation of TNF-α attenuates the activity of LXR-α and results in enhanced S1PR2 expression.
Collapse
Affiliation(s)
- Aihui Fan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China; Department of Physiology, Guangdong Medical College, Dongguan, People's Republic of China; and
| | - Qian Wang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Yongjun Yuan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Jilun Cheng
- Department of Pharmacology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Lixian Chen
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohua Guo
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Chen
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuliang Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China;
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Tofighi A, Rahmani F, Jamali Qarakhanlou B, Babaei S. The effect of regular aerobic exercise on reverse cholesterol transport A1 and apo lipoprotein a-I gene expression in inactive women. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e26321. [PMID: 26023346 PMCID: PMC4443300 DOI: 10.5812/ircmj.17(4)2015.26321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease is currently a cause of mortality in some parts of the world. The ATP-Binding Cassette Transporter (ABCA1) gene prepares instructions to produce the ATP-binding cassette transporter protein whose operation is for export of phospholipids and cholesterol, outside cells where they are limited to Apolipoprotein A1 (apoA1). Increased ABCA1 activity could inhibit atherosclerosis. OBJECTIVES In the present study, the effect of aerobic exercise was investigated on gene expression and biochemical parameters. PATIENTS AND METHODS The participants included 36 inactive women, which were randomly assigned to control (CON) and experimental (EX) groups. The EX group performed 12 weeks of aerobic exercise and the CON group remained inactive. Fasting blood samples were collected 24 hours before the first session and 48 hours after completion of the course. The ABCA1 and APOA1 gene expressions were measured using semi-quantitative-RT-PCR. Data were analyzed by the SPSS software (version 18). RESULTS A significant increase in blood ABCA1 (EX group P < 0.002, t = - 9.876) and Apo A-I (EX group P < 0.05, t = 2.76) gene expression was shown following the 12 weeks of training. Plasma high-density lipoprotein-cholesterol (HDL-C) concentration increased (P < 0.001, t = 4.90 respectively) while plasma low-density lipoprotein-cholesterol (LDL-C) concentration decreased (P < 0.001, t = 4.27) in the EX group compared with the CON group. CONCLUSIONS Aerobic exercises can increase ABCA1 and APO-A1 gene expression. Induction of these genes can effectively prevent cardiovascular disease.
Collapse
Affiliation(s)
- Asghar Tofighi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Urmia University, Urmia, IR Iran
| | - Fatemeh Rahmani
- Institute of Biotechnology, Urmia University, Urmia, IR Iran
| | | | - Solmaz Babaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Urmia University, Urmia, IR Iran
- Corresponding Author: Solmaz Babaei, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Urmia University, Urmia, IR Iran. Tel: +98-9143215066, Fax: +98-4133369696, E-mail:
| |
Collapse
|
11
|
Du Y, Wang L, Si S, Yang Y, Hong B. A novel compound 4010B-30 upregulates apolipoprotein A-I gene expression through activation of PPARγ in HepG2 cells. Atherosclerosis 2015; 239:589-98. [DOI: 10.1016/j.atherosclerosis.2015.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 01/31/2023]
|
12
|
Kaysen GA, Dalrymple LS, Grimes B, Chertow GM, Kornak J, Johansen KL. Changes in serum inflammatory markers are associated with changes in apolipoprotein A1 but not B after the initiation of dialysis. Nephrol Dial Transplant 2013; 29:430-7. [PMID: 24009290 DOI: 10.1093/ndt/gft370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have examined the changes in lipoproteins over time and how inflammation is associated with lipoprotein concentrations among patients with end-stage renal disease on dialysis. One possible explanation for the association of low LDL cholesterol concentration and adverse outcomes is that inflammation reduces selected apolipoprotein concentrations. METHODS Serum samples were collected from a subsample of patients enrolled into the Comprehensive Dialysis Study every 3 months for up to 1 year. We examined the relation between temporal patterns in levels of inflammatory markers and changes in apolipoproteins (apo) A1 and B and the apo B/A1 ratio using linear mixed effects modeling and adjusting for potential confounders. RESULTS We enrolled 266 participants from 56 dialysis facilities. The mean age was 62 years, 45% were women and 26% were black. Apo A1 was lower among patients with higher Quetelet's (body mass) index (BMI), diabetes mellitus and atherosclerosis. Apo B was lower among older patients, patients with higher serum creatinine and patients with lower BMI. Over the course of a year, apo A1 changed inversely with serum concentrations of the acute phase proteins C-reactive protein (CRP) and α1 acid glycoprotein (α1AG), while apo B did not. Changes in α1AG were more strongly associated with changes in apolipoprotein concentrations than were changes in CRP; increases in α1AG were associated with decreases in apo A1 and increases in the apo B/A1 ratio. CONCLUSIONS Changes in inflammatory markers were associated with changes in apo A1, but not apo B over 1 year, suggesting that reductions in high-density lipoprotein cholesterol are associated with inflammation, either of which could mediate cardiovascular risk, but not supporting a hypothesis linking increased risk of low levels of apo B containing lipoproteins to the risk associated with inflammation.
Collapse
Affiliation(s)
- George A Kaysen
- Department of Medicine, University of California Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Shavva VS, Mogilenko DA, Dizhe EB, Oleinikova GN, Perevozchikov AP, Orlov SV. Hepatic nuclear factor 4α positively regulates complement C3 expression and does not interfere with TNFα-mediated stimulation of C3 expression in HepG2 cells. Gene 2013; 524:187-92. [PMID: 23628799 DOI: 10.1016/j.gene.2013.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Complement C3 is involved in various protective and regulatory mechanisms of immune system. Recently it was established that C3 expression is regulated by nuclear receptors. Hepatic nuclear factor 4α (HNF4α) is a nuclear receptor critical for hepatic development and metabolism. We have shown that HNF4α is a positive regulator of C3 gene expression, realizing its effects through binding to two HNF4-response elements within the C3 promoter in HepG2 cells. TNFα is a well established positive regulator of C3 expression in hepatocytes during acute phase of inflammation. TNFα decreases the amount of HNF4α protein in HepG2 cells through NF-κB and MEK1/2 pathways thereby leading to a decrease in HNF4α bound to the C3 promoter. TNFα and HNF4α act in a synergetic way resulting in the potent activation of C3 transcription. These results suggest a novel mechanism of C3 regulation during acute phase response in HepG2 cells and display the mechanism of interaction of TNFα-induced pathways and HNF4α in transcriptional regulation of C3 gene.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg 197376, Russia.
| | | | | | | | | | | |
Collapse
|
14
|
Lim WS, Ng DL, Kor SB, Wong HK, Tengku-Muhammad TS, Choo QC, Chew CH. Tumour necrosis factor alpha down-regulates the expression of peroxisome proliferator activated receptor alpha (PPARα) in human hepatocarcinoma HepG2 cells by activation of NF-κB pathway. Cytokine 2012; 61:266-74. [PMID: 23141142 DOI: 10.1016/j.cyto.2012.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/27/2012] [Accepted: 10/10/2012] [Indexed: 01/17/2023]
Abstract
Peroxisome proliferator activated receptor-alpha (PPARα) plays a major role in the regulation of lipid and glucose homeostasis, and inflammatory responses. The objectives of the study were to systematically investigate the effects of TNF-α and its regulatory pathway on PPARα expression in HepG2 cells using Real-Time RT-PCR and western blot analysis. Here, TNF-α suppressed PPARα mRNA expression in a dose- and time-dependent manner at the level of gene transcription. Pre-treatment of cells with 10μM of Wedelolactone for 2h was sufficient to restore PPARα expression to basal levels and also affected the expression of PPARα-regulated genes. This study also demonstrated that TNF-α represses PPARα expression by augmenting the activity of canonical NF-κB signalling pathway. This was shown by the abrogation of TNF-α-mediated PPARα down-regulation, after both p65 and p50 were knocked down via siRNA. The IKK contributes to IκBα degradation and mediates inducible phosphorylation of p105 at Ser933. Surprisingly, phosphorylation of p65 at Ser468 and Ser536 were severely abrogated with Wedelolactone inhibition, suggesting that Ser468 and Ser536, but not Ser276, may mediate the TNF-α inhibitory action on PPARα gene expression. These results suggest that TNF-α might, at least in part, suppress PPARα expression through activation of IKK/p50/p105/p65 pathway. Furthermore, phosphorylation of p65 at Ser468 and Ser536 may play a crucial role in the mechanism that limits PPARα production in the human HepG2 cells.
Collapse
Affiliation(s)
- Wyi Sian Lim
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | | | | | | | | | | | | |
Collapse
|
15
|
Miyazato T, Ishikawa T, Michiue T, Maeda H. Molecular pathology of pulmonary surfactants and cytokines in drowning compared with other asphyxiation and fatal hypothermia. Int J Legal Med 2012; 126:581-7. [PMID: 22552475 DOI: 10.1007/s00414-012-0698-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Takako Miyazato
- Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, Osaka, 545-8585, Japan
| | | | | | | |
Collapse
|
16
|
Mogilenko DA, Orlov SV, Trulioff AS, Ivanov AV, Nagumanov VK, Kudriavtsev IV, Shavva VS, Tanyanskiy DA, Perevozchikov AP. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J 2012; 26:2019-30. [PMID: 22271762 DOI: 10.1096/fj.11-193946] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is the main functional protein component of human high-density lipoproteins. ApoA-I shows various anti-inflammatory and atheroprotective properties toward macrophages; however, endogenous apoA-I expression has not been investigated in macrophages. We have shown that endogenous apoA-I gene is expressed in human macrophages at both mRNA and protein levels. Endogenous ApoA-I is localized in intracellular vesicles and at the external side of the plasma membrane in association with ATP-binding cassette transporter A1 (ABCA1) and lipid rafts in macrophages. We have shown that endogenous ApoA-I stabilizes ABCA1, moreover, down-regulation of ApoA-I by siRNA results in an increase of Toll-like receptor 4 (TLR4) mRNA and membrane surface protein expression, as well as an enhancement of bacterial lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and inducible nitric oxide synthase (NOS2) genes in human macrophages. TNF-α stimulates ApoA-I expression and secretion (1.2±0.2 vs. 4.3±0.9 ng/mg total protein) in macrophages. Obtained results suggest that endogenous ApoA-I has anti-inflammatory properties, presumably due to ABCA1 stabilization in macrophages; these results elucidate the cell type-specific mechanism of the TNF-α-mediated regulation of apoA-I gene expression in monocytes and macrophages.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Department of Biochemistry, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review describes the evidence that supports the hypothesis that high-density lipoprotein (HDL) is atheroprotective due to its antiinflammatory effects and benefits on vascular health. RECENT FINDINGS Recent investigations have shown that HDL may inhibit atherosclerosis by promoting healthy endothelial function and by limiting or inhibiting the activation of macrophage and other immune cells. Receptors for HDL clearly regulate immune system function as well as cellular stress. Recent studies also suggest that participation of HDL in the process of reverse cholesterol transport may inhibit growth factor and cytokine receptor signaling by depleting cholesterol from lipid rafts. However, inflammation can also be associated with circulating dysfunctional HDL, which often possesses both prooxidative and proinflammatory properties. SUMMARY These studies suggest that HDL-based therapeutics have potential in treating both acute and chronic conditions associated with inflammation. These studies also reveal several other pathways that may be targeted for therapeutic drug development.
Collapse
|