1
|
Li B, Lun Y, Yao K, Tang C. Deep Eutectic Solvent Extraction Assisted Ligand Affinity Assay for α-Glucosidase Inhibitors Screening From the Plasma of Rats Administrated Pueraria lobata Extracts. J Sep Sci 2025; 48:e70169. [PMID: 40349126 DOI: 10.1002/jssc.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 03/28/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
In this work, for the first time, a deep eutectic solvent assisted ligand affinity assay was proposed. Several critical parameters affecting the analysis performance were investigated and the optimized DES extract conditions were as follows: the solution of tetrabutylammonium chloride-ethylene glycol (1:2) was prepared as an extract solution. A total of 1.4 mol/L sodium citrate (pH = 6.6) was used for phase separation, and the vortex extraction time was 5 min. Analytes could be enriched in the phase of deep eutectic solvent after phase separation. Then, they could be analyzed by α-glucosidase immobilized magnetic beads affinity assay directly. Results showed the proposed method could detect luteolin (a positive control) from plasma selectively. The LOD was 2 µg/mL. The intraday precision and the interday precision were 7.86% and 6.66%, respectively. By using the proposed method as a tool, plasma of the rats that administrated the extract of Pueraria lobata was analyzed. The bio-active flavonoids absorbed in the body such as puerarin, daidzin, daidzein, and a metabolite of puerarin (puerarin glucuronide) were found. The method has the benefits of a simplified analytic process, high resolution, and is a reliable method.
Collapse
Affiliation(s)
- Bing Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yidan Lun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Kun Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Štekláč M, Malček M, Gajdoš P, Vevericová S, Čertík M, Valko M, Brezová V, Malček Šimunková M. Antioxidant effect, DNA-binding, and transport of the flavonoid acacetin influenced by the presence of redox-active Cu(II) ion: Spectroscopic and in silico study. J Inorg Biochem 2025; 264:112802. [PMID: 39671744 DOI: 10.1016/j.jinorgbio.2024.112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Acacetin (AC) is a natural polyphenol from the group of flavonoids. It is well established that the behavior of flavonoids depends on the presence of redox-active substances; therefore, we aim to investigate their biological activity following the interaction with Cu(II) ion. Our study demonstrates that AC can effectively bind Cu(II) ions, as confirmed by UV-Vis and EPR spectroscopy as well as DFT calculations. AC appears as a potent scavenger against the model ABTS radical cation by itself, but this ability is significantly limited upon Cu(II) coordination. The possible mild synergistic effect of AC in the presence of vitamin C and glutathione was also shown by the ABTS•+ test. In contrast, an inhibitory effect was observed in the presence of Cu(II) ions. The equimolar addition of AC to the model Fenton-like system containing Cu(II) did not have a noticeable effect on the concentration of hydroxyl radicals produced, but in its excess the formation of •OH decreased, as proved by EPR spin trapping. Absorption titrations and gel electrophoresis revealed effective binding to calf thymus (CT)-DNA with a stronger interaction for the Cu(II)-AC complex. The detailed mode of binding to biomolecules was described using molecular docking and molecular dynamics. Obtained results indicate that the double helix of DNA unwinds after interaction with the Cu(II)-AC complex. Fluorescence spectroscopy, employing human serum albumin (HSA), suggested a potential transport capacity for both AC and its Cu(II) complex.
Collapse
Affiliation(s)
- Marek Štekláč
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic; Computing Center, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta č. 9, SK-845 35 Bratislava, Slovakia, Slovak Republic
| | - Michal Malček
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Peter Gajdoš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Simona Vevericová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Milan Čertík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Marián Valko
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Miriama Malček Šimunková
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Ahmed M, Sudhanshu, Malhotra SS, Alsubaie AS, El-Bahy SM, Mohapatra RK, Ansari A. Structures, bonding aspects and spectroscopic parameters of morin, myricetin, and quercetin with copper/zinc complexes: DFT and TDDFT exploration. J Mol Model 2025; 31:75. [PMID: 39907807 DOI: 10.1007/s00894-025-06296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
CONTEXT In the present work, DFT/TDDFT techniques is used to analyze structure, bonding, reactivity and electronic transitions of quercetin, morin, myricetin with their metal (Cu and Zn) complexes. In order to comprehend metal complexes and ligands reactivity patterns, we calculated energy gaps between frontier molecular orbitals. Global reactivity characteristics, such as ionization potential, electronegativity (χ), hardness (η), softness (S), electrophilicity index (ω) electron affinity, and chemical potential (μ), were computed based on the FMO energies. Molecular electrostatic potential (MEP) maps were used to identify nucleophilic and electrophilic sites in complexes. Within the examined complexes, TDDFT and NBO analysis shed light on bonding, electronic transitions and stabilizing interactions. Ligands morin, myricetin, and quercetin exhibited higher HOMO-LUMO gap than their corresponding metal complexes, suggesting electron transfer may be faster in the metal complexes. The metal complexes displayed more negative electrostatic potentials. The absorption spectra of the ligands ranged from 258 to 360 nm, whereas their complexes exhibited a broader range from 252 to 1035 nm. These spectra provided important insights into charge transfer and electronic transitions, enhancing our knowledge of electronic and bonding characteristics of such compounds. METHODS G16 software is used to optimize all species. B3LYP functional was employed in combination with LanL2DZ basis set for Cu and Zn, and 6-311G(d,p) basis set for other atoms (C, H and O). Natural bond orbital examination was conducted in order to investigate interactions between the filled orbitals of one unit and empty orbitals of other unit. ORCA software was utilized to compute spectral features, incorporating ZORA method to account for relativistic effects. TDDFT studies is carried out using B3LYP functional to calculate excitation energies.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Sudhanshu
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Sumit Sahil Malhotra
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Abdullah Saad Alsubaie
- Department of Physics, College of Khurma University College, Taif University, 21944, Taif, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ranjan Kumar Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, 758002, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
4
|
Turilli-Ghisolfi ES, Lualdi M, Fasano M. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Biomolecules 2023; 13:683. [PMID: 37189430 PMCID: PMC10135655 DOI: 10.3390/biom13040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
5
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
6
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Morimoto R, Matsubara C, Hanada A, Omoe Y, Ogata T, Isegawa Y. Effect of Structural Differences in Naringenin, Prenylated Naringenin, and Their Derivatives on the Anti-Influenza Virus Activity and Cellular Uptake of Their Flavanones. Pharmaceuticals (Basel) 2022; 15:ph15121480. [PMID: 36558931 PMCID: PMC9785311 DOI: 10.3390/ph15121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines and antiviral drugs are widely used to treat influenza infection. However, they cannot rapidly respond to drug-resistant viruses. Therefore, new anti-influenza virus strategies are required. Naringenin is a flavonoid with potential for new antiviral strategies. In this study, we evaluated the antiviral effects of naringenin derivatives and examined the relationship between their cellular uptake and antiviral effects. Madin-Darby canine kidney (MDCK) cells were infected with the A/PR/8/34 strain and exposed to the compound-containing medium for 24 h. The amount of virus in the supernatant was calculated using focus-forming reduction assay. Antiviral activity was evaluated using IC50 and CC50 values. Cells were exposed to a constant concentration of naringenin or prenylated naringenin, and intracellular uptake and distribution were evaluated using a fluorescence microscope. Prenylated naringenin showed strong anti-influenza virus effects, and the amount of intracellular uptake was revealed by the strong intracellular fluorescence. In addition, intracellular distribution differed depending on the position of the prenyl group. The steric factor of naringenin is deeply involved in influenza A virus activity, and prenyl groups are desirable. Furthermore, the prenyl group affects cellular affinity, and the uptake mechanism differs depending on its position. These results provide important information on antiviral strategies.
Collapse
Affiliation(s)
- Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Chiaki Matsubara
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Akari Hanada
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Yuta Omoe
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Ishikawa, Japan
| | - Tokutaro Ogata
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Ishikawa, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
- Correspondence:
| |
Collapse
|
8
|
Zhong Y, Yang L, Dai T, Zhu Z, Chen H, Wu J, Gong ES. Flavonoids enhance gel strength of ovalbumin: Properties, structures, and interactions. Food Chem 2022; 387:132892. [DOI: 10.1016/j.foodchem.2022.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/14/2022] [Accepted: 04/02/2022] [Indexed: 11/04/2022]
|
9
|
Islam F, Khadija JF, Islam MR, Shohag S, Mitra S, Alghamdi S, Babalghith AO, Theyab A, Rahman MT, Akter A, Al Mamun A, Alhumaydhi FA, Emran TB. Investigating Polyphenol Nanoformulations for Therapeutic Targets against Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5649156. [PMID: 35832521 PMCID: PMC9273389 DOI: 10.1155/2022/5649156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Theyab
- Deputy Manager of Laboratory & Blood Bank, Security Forces Hospital, Makkah, Saudi Arabia
| | | | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
10
|
Renault-Mahieux M, Mignet N, Seguin J, Alhareth K, Paul M, Andrieux K. Co-encapsulation of flavonoids with anti-cancer drugs: a challenge ahead. Int J Pharm 2022; 623:121942. [PMID: 35728717 DOI: 10.1016/j.ijpharm.2022.121942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Flavonoids have been considered as promising molecules for cancer treatment due to their pleiotropic properties such as anti-carcinogenic, anti-angiogenic or efflux proteins inhibition. However, due to their lipophilic properties and their chemical instability, vectorization seems compulsory to administer flavonoids. Flavonoids have been co-encapsulated with other anti-cancer agents in a broad range of nanocarriers aiming to i) achieve a synergistic/additive effect at the tumor site, ii) delay drug resistance apparition by combining agents with different action mechanisms or iii) administer a lower dose of the anti-cancer drug, reducing its toxicity. However, co-encapsulation could lead to a change in the nanoparticles' diameter and drug-loading, as well as a decrease in their stability during storage. The preparation process should also take into accounts the physico-chemical properties of both the flavonoid and the anti-cancer agent. Moreover, the co-encapsulation could affect the release and activity of each drug. This review aims to study the formulation, preparation and characterization strategies of these co-loaded nanomedicines, as well as their stability. The in vitro assays to predict the nanomedicines' behavior in biological fluids, as well as their in vivo efficacy, are also discussed. A special focus concerns the evaluation of their synergistic effect on tumor treatment.
Collapse
Affiliation(s)
- Morgane Renault-Mahieux
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France; Pharmacy Department, AP-HP, Henri Mondor Hospital Group, F-94010, France.
| | - Nathalie Mignet
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| | - Johanne Seguin
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| | - Khair Alhareth
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| | - Muriel Paul
- Pharmacy Department, AP-HP, Henri Mondor Hospital Group, F-94010, France.
| | - Karine Andrieux
- Université Paris Cité, CNRS, Inserm, UTCBS, F-75006 Paris, France.
| |
Collapse
|
11
|
Genistein, a tool for geroscience. Mech Ageing Dev 2022; 204:111665. [DOI: 10.1016/j.mad.2022.111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
|
12
|
Tanaka Y, Okuyama H, Nishikawa M, Ikushiro SI, Ikeda M, Ishima Y, Ukawa Y, Oe K, Terao J, Mukai R. 8-Prenylnaringenin tissue distribution and pharmacokinetics in mice and its binding to human serum albumin and cellular uptake in human embryonic kidney cells. Food Sci Nutr 2022; 10:1070-1080. [PMID: 35432956 PMCID: PMC9007292 DOI: 10.1002/fsn3.2733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022] Open
Abstract
8-Prenylnaringenin (8-PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8-PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8-PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8-PN and its mother (non-prenylated) compound naringenin. C57/BL6 mice were fed an 8-PN or naringenin mixed diet for 22 days. The amount of 8-PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the C max of 8-PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8-PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8-PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8-PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Hitomi Okuyama
- Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| | - Miyu Nishikawa
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Mayumi Ikeda
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuichi Ukawa
- Healthcare SBU Business Strategy Business Planning Daicel Corporation Tokyo Japan
| | - Kenichi Oe
- Healthcare SBU Business Strategy, R&D Daicel Corporation Niigata Japan
| | - Junji Terao
- Faculty of Clinical Nutrition and Dietetics Konan Women's University Hyogo Japan
| | - Rie Mukai
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan.,Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| |
Collapse
|
13
|
Borymska W, Zych M, Dudek S, Kaczmarczyk-Sedlak I. Silymarin from Milk Thistle Fruits Counteracts Selected Pathological Changes in the Lenses of Type 1 Diabetic Rats. Nutrients 2022; 14:1450. [PMID: 35406062 PMCID: PMC9003010 DOI: 10.3390/nu14071450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a metabolic disease affecting many tissues and organs. The main etiological factor for diabetic complications is hyperglycemia and subsequent pathologies, such as oxidative stress. One of the organs susceptible to the development of diabetic complications is the eye with all of its elements, including the lens. The aim of this study was to evaluate the effect of silymarin, an extract obtained from milk thistle fruit husks, on the oxidative stress markers in the lenses of type 1 diabetic rats. The study was performed on male rats in which type 1 diabetes was induced with 60 mg/kg streptozotocin injection. Diabetic animals were treated via an intragastric tube with silymarin at 50 and 100 mg/kg doses for four weeks. Multiple oxidative stress and polyol pathway-related parameters were measured in the lenses, and auxiliary biochemical tests in the serum were conducted. Diabetes induced severe pathological changes both in the lenses and the serum, and silymarin counteracted several of them. Nevertheless, the qualitative analyses encompassing all tested parameters indicate that silymarin slightly improved the overall state of diabetic animals. Upon the obtained results, it can be concluded that silymarin reveals a faint positive effect on the lenses in type 1 diabetic rats.
Collapse
Affiliation(s)
- Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.Z.); (S.D.); (I.K.-S.)
| | | | | | | |
Collapse
|
14
|
Wani TA, Alanazi MM, Alsaif NA, Bakheit AH, Zargar S, Alsalami OM, Khan AA. Interaction Characterization of a Tyrosine Kinase Inhibitor Erlotinib with a Model Transport Protein in the Presence of Quercetin: A Drug-Protein and Drug-Drug Interaction Investigation Using Multi-Spectroscopic and Computational Approaches. Molecules 2022; 27:molecules27041265. [PMID: 35209054 PMCID: PMC8874853 DOI: 10.3390/molecules27041265] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The interaction between erlotinib (ERL) and bovine serum albumin (BSA) was studied in the presence of quercetin (QUR), a flavonoid with antioxidant properties. Ligands bind to the transport protein BSA resulting in competition between different ligands and displacing a bound ligand, resulting in higher plasma concentrations. Therefore, various spectroscopic experiments were conducted in addition to in silico studies to evaluate the interaction behavior of the BSA-ERL system in the presence and absence of QUR. The quenching curve and binding constants values suggest competition between QUR and ERL to bind to BSA. The binding constant for the BSA-ERL system decreased from 2.07 × 104 to 0.02 × 102 in the presence of QUR. The interaction of ERL with BSA at Site II is ruled out based on the site marker studies. The suggested Site on BSA for interaction with ERL is Site I. Stability of the BSA-ERL system was established with molecular dynamic simulation studies for both Site I and Site III interaction. In addition, the analysis can significantly help evaluate the effect of various quercetin-containing foods and supplements during the ERL-treatment regimen. In vitro binding evaluation provides a cheaper alternative approach to investigate ligand-protein interaction before clinical studies.
Collapse
Affiliation(s)
- Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Ommalhasan Mohammed Alsalami
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Tanaka S, Trakooncharoenvit A, Nishikawa M, Ikushiro S, Hara H. Heteroconjugates of quercetin with 4'- O-sulfate selectively accumulate in rat plasma due to limited urinary excretion. Food Funct 2022; 13:1459-1471. [PMID: 35048937 DOI: 10.1039/d1fo03478b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quercetin and methylquercetin are present in a variety of sulfate and glucuronide conjugates in the plasma of quercetin-fed rats and humans. Quercetin conjugates exhibit various physiological activities, depending on the type and position of conjugation. However, little is known regarding the type and position of isomers of quercetin conjugates in the plasma, their accumulation in the liver and kidneys, and their excretion via urine. Using authentic standards of quercetin conjugates and liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis, we identified and quantified various quercetin conjugates in blood plasma, urine, liver, and kidney tissues 1, 4, and 10 h after orally administering 33.1 μmol kg-1 quercetin glucosides to rats. The profiles of quercetin conjugates were largely different among plasma, urine, liver, and kidneys. Very limited heteroconjugates (7-O-glucuronide-4'-O-sulfate) of quercetin and methylquercetin dominated in the plasma, but these heteroconjugates were much less excreted via urine and did not largely accumulate in the liver and kidneys. Heteroconjugates constituting sulfates other than 4' position sulfate, 7-O-glucuronide-3'-O-sulfate, 4'-O-glucuronide-7-O-sulfate, and 3'-O-glucuronide-7-O-sulfate were major metabolites in urine, but were minimally detected in the plasma. We also found that mono-sulfate conjugates were abundant in the liver and renal tissues. These results suggest that excretion of quercetin conjugates, especially heteroconjugates, into urine is highly selective. The heteroconjugates with 4'-O-sulfate may be scarcely excreted via urine, and thus accumulate in the blood plasma. Further research is necessary to evaluate the physiological effects of heteroconjugates accumulated in the plasma.
Collapse
Affiliation(s)
- Seiya Tanaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan. .,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Aphichat Trakooncharoenvit
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| | - Hiroshi Hara
- Faculty of Human Life Sciences, Fuji Women's University, Ishikari, Hokkaido, 061-3204, Japan
| |
Collapse
|
16
|
Khan MS, Rehman MT, Ismael MA, AlAjmi MF, Alruwaished GI, Alokail MS, Khan MR. Bioflavonoid (Hesperidin) Restrains Protein Oxidation and Advanced Glycation End Product Formation by Targeting AGEs and Glycolytic Enzymes. Cell Biochem Biophys 2021; 79:833-844. [PMID: 34110566 DOI: 10.1007/s12013-021-00997-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Alpha-amylase (α-amylase) not long ago has acquire recognition as a possible drug target for the management of diabetes. Here, we have investigated the binding and enzyme activity of α-amylase by hesperidin; a naturally occurring flavanone having wide therapeutic potential. Hesperidin exerted an inhibitory influence on α-amylase activity with an IC50 value of 16.6 µM. Hesperidin shows a significant binding toward α-amylase with a binding constant (Ka) of the order of 104 M-1. The evaluation of thermodynamic parameters (∆H and ∆S) suggested that van der Waals force and hydrogen bonding drive seemingly specific hesperidin-α-amylase complex formation. Glycation and oxidation studies were performed using human serum albumin (HSA) as ideal protein. Hesperidin inhibited fructosamine content ≈40% at 50 µM and inhibited advanced glycation end products (AGEs) formation by 71.2% at the same concentration. Moreover, significant recovery was evident in free -SH groups and carbonyl content of HSA. Additionally, molecular docking also entrenched in vitro observations and provided an insight into the important residues (Trp58, Gln63, His101, Glu233, Asp300, and His305) at the heart of hesperidin-α-amylase interaction. This study delineates mechanistic insight of hesperidin-α-amylase interaction and provides a platform for use of hesperidin to treat AGEs directed diseases.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ismael
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghaida I Alruwaished
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Cosmetic Department, National Drug and Cosmetic Control Laboratory, Saudi Food and Drug Authority (SFDA), Riyadh, 11561, Saudi Arabia
| | - Majed S Alokail
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
18
|
Botet-Carreras A, Tamames-Tabar C, Salles F, Rojas S, Imbuluzqueta E, Lana H, Blanco-Prieto MJ, Horcajada P. Improving the genistein oral bioavailability via its formulation into the metal-organic framework MIL-100(Fe). J Mater Chem B 2021; 9:2233-2239. [PMID: 33596280 DOI: 10.1039/d0tb02804e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the interesting chemopreventive, antioxidant and antiangiogenic effects of the natural bioflavonoid genistein (GEN), its low aqueous solubility and bioavailability make it necessary to administer it using a suitable drug carrier system. Nanometric porous metal-organic frameworks (nanoMOFs) are appealing systems for drug delivery. Particularly, mesoporous MIL-100(Fe) possesses a variety of interesting features related to its composition and structure, which make it an excellent candidate to be used as a drug nanocarrier (highly porous, biocompatible, can be synthesized as homogenous and stable nanoparticles (NPs), etc.). In this study, GEN was entrapped via simple impregnation in MIL-100 NPs achieving remarkable drug loading (27.1 wt%). A combination of experimental and computing techniques was used to achieve a deep understanding of the encapsulation of GEN in MIL-100 nanoMOF. Subsequently, GEN delivery studies were carried out under simulated physiological conditions, showing on the whole a sustained GEN release for 3 days. Initial pharmacokinetic and biodistribution studies were also carried out upon the oral administration of the GEN@MIL-100 NPs in a mouse model, evidencing a higher bioavailability and showing that this oral nanoformulation appears to be very promising. To the best of our knowledge, the GEN-loaded MIL-100 will be the first antitumor oral formulation based on nanoMOFs studied in vivo, and paves the way to the efficient delivery of nontoxic antitumorals via a convenient oral route.
Collapse
Affiliation(s)
- Adrià Botet-Carreras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain. and Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Cristina Tamames-Tabar
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain. and Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Fabrice Salles
- ICGM, CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Sara Rojas
- IMDEA Energy, Avda. Ramón de la Sagra 3, 28035 Móstoles, Madrid, Spain.
| | - Edurne Imbuluzqueta
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Hugo Lana
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María José Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Patricia Horcajada
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France and IMDEA Energy, Avda. Ramón de la Sagra 3, 28035 Móstoles, Madrid, Spain.
| |
Collapse
|
19
|
Effects of serum matrix on molecular interactions between drugs and target proteins revealed by giant magneto-resistive bio-sensing techniques. J Pharm Biomed Anal 2021; 198:114015. [PMID: 33725588 DOI: 10.1016/j.jpba.2021.114015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
We demonstrated that effects of serum matrix on molecular interactions between drugs and target proteins can be investigated in real time using magnetic bio-sensing techniques. A giant magneto-resistive (GMR) sensor was used on which target proteins were fixed and superparamagnetic nanoparticles (diameter: 50 nm) conjugated with drug were used in phosphate buffer, with and without serum. In this study, the following drug-protein pairs were investigated: quercetin and cAMP-dependent protein kinase A (PKA), Infliximab and tumor necrosis factor alpha (TNFα), and Bevacizumab and vascular endothelial growth factor (VEGF). For the quercetin and PKA pair, the time profile of the signal from the GMR sensor due to binding between quercetin and PKA clearly changed before and after the addition of serum. Moreover, it was revealed that not only the association process, but also the dissociation process was influenced by the addition of serum, suggesting that the quercetin and PKA complex may partially contain serum proteins, which affect the formation and stability of the complex. For antibody drugs, little effects of serum matrix were observed on both the association and dissociation processes. These clear differences may be attributed to the hydrophobic and electrostatic character of the drug molecule, target protein, and serum proteins. The real-time monitoring of molecular interactions in a biological matrix enabled by the GMR bio-sensing technique is a powerful tool to investigate such complicated molecular interactions. Understanding the molecular interactions that occur in a biological matrix is indispensable for determining the mechanism of action of the drugs and pharmacokinetics/pharmacodynamics inside the body. Additionally, this method can be applied for the analysis of the influence of any kind of third molecule that may have some interaction between two molecules, for example, an inhibitor drug against the interaction between two kinds of proteins.
Collapse
|
20
|
Wani TA, Bakheit AH, Zargar S, Alanazi ZS, Al-Majed AA. Influence of antioxidant flavonoids quercetin and rutin on the in-vitro binding of neratinib to human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118977. [PMID: 33017787 DOI: 10.1016/j.saa.2020.118977] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study was designed to examine the interaction of neratinib (NRB) with human serum albumin (HSA) in presence of flavonoids quercetin and rutin. Both quercetin and rutin can compete with NRB to bind to HSA and displace NRB from its binding site. The interaction mechanism was studied with several spectroscopic techniques and molecular docking. Static fluorescence quenching mechanism was observed on interaction of HSA with NRB. van der Waals force and hydrogen bond were involved in the HSA-NRB interaction as per the results of thermodynamic parameters. Further, the conformational changes were observed in the HSA on its interaction with NRB. Interaction of NRB with HSA in presence of quercetin and rutin resulted in changes in the binding constants of HSA-NRB suggesting some impact on the binding of NRB in the presence of flavonoids.
Collapse
Affiliation(s)
- Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, PO Box 22452, Riyadh 11451, Saudi Arabia
| | - Zahi Saad Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Al-Majed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Kheirdoosh F, Kashanian S, Khodaei MM, Sariaslani M, Falsafi M, Moghadam NH, Salehzadeh S, Pazhavand M, Kashanian M. Spectroscopic studies on the interaction of aspartame with human serum albumin. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:300-316. [PMID: 33455539 DOI: 10.1080/15257770.2021.1872792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work the binding of artificial sweetener aspartame with human serum albumin (HSA) was studied at physiological pH. Binding studies of aspartame (APM) with HSA are useful to understand APM -HSA interaction, mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners. The interaction was investigated by spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD) techniques. The results indicated that the binding of APM to HSA caused fluorescence quenching of HSA through static quenching mechanism with binding constant 1.42 × 10+4 M-1 at 298 K and the number of binding sites is approximately one. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be -41.20 kJ mol-1 and -58.19 J mol-1 K-1, respectively, according to van't Hoff equation, which indicated that reaction is enthalpically driven. Quenching of the fluorescence of HSA was found to be a static quenching process. The binding constants and number of binding sites were obtained at three different temperatures (298, 308 and 318 K). Combining above results and those of spectrofluorometric competition experiment and circular dichroism (CD), indicated that APM binds to HSA via Sudlow's site I. Furthermore, the study of molecular docking on HSA binding also indicated that APM can strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and hydrogen bond interactions exist between APM and HSA.
Collapse
Affiliation(s)
- Fahimeh Kheirdoosh
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Nano drug delivery research center, Kermanshah University of medical sciences, Kermanshah, Iran
| | - Mohammad Mehdi Khodaei
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Mahya Sariaslani
- School of Paramedical, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Monireh Falsafi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | | | | | - Mahsa Pazhavand
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Mahdi Kashanian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Pattanayak S, Acharya R, Mishra N, Kumar A, Bose P, Pattnaik A, Mukhopadhyay K, Sunita P. Naringin, a natural flavonone glycoside attenuates N-nitrosodiethylamine- induced hepatocellular carcinoma in sprague-dawley rats. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_94_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Fernando W, Goralski KB, Hoskin DW, Rupasinghe HPV. Metabolism and pharmacokinetics of a novel polyphenol fatty acid ester phloridzin docosahexaenoate in Balb/c female mice. Sci Rep 2020; 10:21391. [PMID: 33288802 PMCID: PMC7721897 DOI: 10.1038/s41598-020-78369-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are known to undergo phase II metabolism and produce metabolites with similar or stronger biological effects compared to the parent flavonoids. However, the limited cellular uptake and bioavailability restrict their clinical use. We synthesized phloridzin docosahexaenoate (PZ-DHA), a novel fatty acid ester of polyphenol, through an acylation reaction with the aim of increasing the cellular availability and stability of the parent biomolecules, phloridzin (PZ) and docosahexaenoic acid (DHA). Here, we report metabolites and pharmacokinetic parameters of PZ-DHA, determined using ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. PZ-DHA was taken-up by human (MDA-MB-231, MDA-MB-468, and MCF-7) and mouse (4T1) mammary carcinoma and human non-malignant mammary epithelial cells (MCF-10A) in cellular uptake assays. Our results suggested that the acylation improves the cellular uptake of PZ and stability of DHA within cells. In mouse hepatic microsomal assays, two major glucuronides of PZ-DHA, PZ-DHA-4-O-glucuronide and PZ-DHA-4'-O-glucuronide (MW = 923.02 g/mol), were detected. One tri-methylated- (4,4',6'-O-trimethyl-PZ-DHA) (MW = 788.88 g/mol) and one di-sulphated- (PZ-DHA-4,4'-O-disulphide) PZ-DHA metabolite (MW = 906.20 g/mol) were also identified. Intraperitoneal injections of PZ-DHA (100 mg/kg) into Balb/c female mice was rapidly absorbed with a serum Cmax and Tmax of 23.7 µM and 60 min, respectively, and rapidly eliminated (t1/2 = 28.7 min). PZ-DHA and its metabolites are readily distributed throughout the body (Vd = 57 mL) into many organs. We identified in vitro and in vivo metabolites of PZ-DHA, which could be tested for potential use to treat diseases such as cancer in multiple organ systems.
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,College of Pharmacy, Dalhousie University, Halifax, NS, Canada.,Division of Hematology/Oncology, IWK Health Centre, Halifax, NS, Canada
| | - David W Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada. .,Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
24
|
Chen L, Choi J, Leonard SW, Banuvar S, Barengolts E, Viana M, Chen SN, Pauli GF, Bolton JL, van Breemen RB. No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13929-13939. [PMID: 33197178 PMCID: PMC8071351 DOI: 10.1021/acs.jafc.0c05856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extracts of red clover (Trifolium pratense L.), containing estrogenic isoflavones like genistein and daidzein and the proestrogenic isoflavones formononetin and biochanin A, are used by women as dietary supplements for the management of menopausal symptoms. Although marketed as a safer alternative to hormone therapy, red clover isoflavones have been reported to inhibit some cytochrome P450 (CYP) enzymes involved in drug metabolism. To evaluate the potential for clinically relevant drug-red clover interactions, we tested a standardized red clover dietary supplement (120 mg isoflavones per day) for interactions with the pharmacokinetics of four FDA-approved drugs (caffeine, tolbutamide, dextromethorphan, and alprazolam) as probe substrates for the enzymes CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5, respectively. Fifteen peri- and postmenopausal women completed pharmacokinetic studies at baseline and 2 weeks after consuming red clover. The averaged pharmacokinetic profiles of probe substrates in serum showed no significant alterations and no changes in the areas under the curve (AUC) over 96 h. Subgroup analysis based on the demographic characteristics (BMI, menopausal status, race, and age) also showed no differences in AUC for each probe substrate. Analysis of red clover isoflavones in serum showed primarily conjugated metabolites that explain, at least in part, the red clover pharmacokinetic safety profile.
Collapse
Affiliation(s)
- Luying Chen
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
| | - Scott W. Leonard
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
| | - Suzanne Banuvar
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Elena Barengolts
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Marlos Viana
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Richard B. van Breemen
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| |
Collapse
|
25
|
Xue P, Zhang G, Zhang J, Ren L. Interaction of flavonoids with serum albumin: A review. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-111278. [PMID: 33167830 DOI: 10.2174/1389203721666201109112220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids are plant products abundant in every day diet and claimed to be beneficial for human health. After absorption, flavonoids are transported by the serum albumin (SA), the most abundant carrier blood protein, through formation of flavonoids-SA complex. This review deals with the current state of knowledge on flavonoids-SA complex over the past 10 years, mainly involved multi-spectroscopic techniques and molecular dynamics simulation studies to explore the binding mechanism, thermodynamics and structural aspects of flavonoids binding to SA. Especially, the novel method, capillary electrophoresis, high performance affinity chromatography approach, native mass spectrometry and microscale thermophoresis used in characterization of the interaction between flavonoids and SA as well as flavonoid-based fluorescent probe for SA measurement are also included in this review.
Collapse
Affiliation(s)
- Peiyu Xue
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Guangjie Zhang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| |
Collapse
|
26
|
Wu F, Song XM, Qiu YL, Zheng HQ, Hu FL, Li HL. Unique dynamic mode between Artepillin C and human serum albumin implies the characteristics of Brazilian green propolis representative bioactive component. Sci Rep 2020; 10:17277. [PMID: 33057209 PMCID: PMC7560867 DOI: 10.1038/s41598-020-74197-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
As a representative bioactive component in Brazil green propolis, Artepillin C (ArtC; 3, 5-diprenyl-4-hydroxycinnamic acid) has been reported a wide variety of physiological activities including anti-tumor, anti-inflammatory, and antimicrobial activity etc. However, it seems incompatible that ArtC in vivo was characterized as low absorption efficiency and low bioavailability. In order to obtain the elucidation, we further investigated the physicochemical basis of ArtC interacting with human serum albumin (HSA) in vitro. We found a unique dynamic mode interaction between ArtC and HSA, which is completely different from other reported propolis bioactive components. Thermodynamic analysis showed that hydrophobic interactions and electrostatic forces are the main driving force. The competitive assay indicates that the binding site of ArtC with HSA is close to the Sudlow’s site I. The findings of this study reveal the unique physicochemical transport mechanism of ArtC in the human body, which helps to further understand the uniqueness of the representative functional components of Brazilian green propolis in the human body.
Collapse
Affiliation(s)
- Fan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xin-Mi Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yi-Lei Qiu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Huo-Qing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Liang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
27
|
Ma X, Zhu Y, Xie K. Probing the interaction of midazolam with human serum albumin: a biophysical investigation. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Li X, Peng Y, Liu H, Xu Y, Wang X, Zhang C, Ma X. Comparative studies on the interaction of nine flavonoids with trypsin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118440. [PMID: 32438292 DOI: 10.1016/j.saa.2020.118440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
In this study, the interaction between nine classic flavonoids (including baicalin, quercetin, myricetin, rutin, puerarin, daidzein, liquiritin and isoliquiritin) and trypsin was investigated by fluorescence spectroscopy and molecular modeling methods. The results reveal that all flavonoids can interact with trypsin to form flavonoid-trypsin complexes. The binding parameters obtained from the data at different temperatures indicate that all flavonoids can spontaneously bind with trypsin with one binding site. The binding constants of trypsin with nine classic flavonoids are in the following order as: baicalin > myricetin > rutin > isoliquiritin > hesperidin > puerarin > quercetin > daidzein > liquiritin. The interaction forces between flavonoids and trypsin may be electrostatic forces (except for rutin/puerarin/daidzein), hydrophobic interactions as well as van der Waals forces. Synchronous fluorescence spectroscopy shows that the interaction between flavonoids and trypsin changes the hydrophobicity of the microenvironment of tryptophan (Trp) residues. All flavonoids close to tyrosine (Tyr) residues but have no effect on the microenvironment around Tyr residues except for hesperidin and liquiritin. Molecular modeling displays that all flavonoids bind directly into trypsin cavity site and lead to a decrease in enzyme activity.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Yanru Peng
- Grade 2017, Clinical Pharmacy, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hongyi Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xuezhen Wang
- Grade 2017, Clinical Pharmacy, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Congxiao Zhang
- Grade 2018, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiaoyi Ma
- Grade 2018, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
29
|
Mechanistic inhibition of non-enzymatic glycation and aldose reductase activity by naringenin: Binding, enzyme kinetics and molecular docking analysis. Int J Biol Macromol 2020; 159:87-97. [DOI: 10.1016/j.ijbiomac.2020.04.226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022]
|
30
|
Zargar S, Alamery S, Bakheit AH, Wani TA. Poziotinib and bovine serum albumin binding characterization and influence of quercetin, rutin, naringenin and sinapic acid on their binding interaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118335. [PMID: 32278151 DOI: 10.1016/j.saa.2020.118335] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Serum albumin is the major transporter protein present in systemic circulation and the ability to transport ligands can be influenced in presence of other ligands. This interaction can influence the pharmacodynamic and pharmacokinetic property of certain ligands. Spectroscopic and molecular docking studies were conducted to understand the poziotinib binding interaction to bovine serum albumin (BSA). Further, influence of different flavonoids (quercetin, rutin, naringenin and sinapic acid) on displacing poziotinib from BSA binding sites was also studied. The BSA and poziotinib followed a static quenching mechanism as the Stern-Volmer constant showed decrease (7.6 × 104-6.0 × 104) when the temperature increased from 298 K to 310 K. The BSA and poziotinib interaction was spontaneous and enthalpy driven. Involvement of Van der Waals forces and hydrogen bonding in the binding interaction was suggested on the basis of thermodynamic study results. Conformational changes were suggested in the BSA on its interaction with poziotinib based on fluorescence experimental data. The binding constant for BSA-poziotinib showed a maximum decrease in presence of quercetin followed by naringenin, rutin and sinapic acid respectively. Site displacement studies suggested binding of poziotinib site I of BSA.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, PO Box 22452, Riyadh 11451, Saudi Arabia
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, PO Box 22452, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
31
|
Nobiletin, sinensetin, and tangeretin are the main perpetrators in clementines provoking food-drug interactions in vitro. Food Chem 2020; 319:126578. [DOI: 10.1016/j.foodchem.2020.126578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2020] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
|
32
|
Gecibesler IH, Aydin M. Plasma Protein Binding of Herbal-Flavonoids to Human Serum Albumin and Their Anti-proliferative Activities. AN ACAD BRAS CIENC 2020; 92:e20190819. [PMID: 32491127 DOI: 10.1590/0001-3765202020190819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Herbal-flavonoids (HF) as polyphenolic secondary metabolites are taken in the daily diet to join in many metabolic processes in the human organism. Anti-proliferative activities and human serum albumin (HSA) binding capacities of herbal-flavonoids namely 7,5'-dimethoxyisoetin (HF1), homoorientin-6''-4-O-methyl-myo-inositol (HF2), (2R, 3R)-(+)-dihydrokaempferol-7,4'-dimethylether (HF3), eriodictyol-7,4'-dimethylether (HF4) and flavonoids isoorientin (HF5) and genkwanin (HF6) were investigated. Anti-proliferative activities were determined by the xCELLigence system by treatment with human prostate (PC3) and cervical cancer (HeLa) cells. The binding capacities were studied by two-dimensional (2D-FL) and three-dimensional (3D-FL) fluorescence spectroscopy. HeLa and PC3 cell lines were treated with flavonoids at 10, 50 and 100 μg/mL concentrations over a 48 hour period. Stable anti-proliferative efficacy plots were obtained for tested flavonoids. From the flavonoids, HF3 and HF4 showed the strongest anti-proliferative effect against PC3 and HeLa cell line. HF1 and HF2 exhibited the strongest binding capacity to the HSA corresponding to Kb values of 3.81 x 104 M-1 and 6.00 x 104 M-1, respectively. The studies revealed that the flavonoids form the basis of in vivo preclinical studies as important nutraceuticals of the daily diet, as well as modelled in medical and pharmacological applications.
Collapse
Affiliation(s)
| | - Murat Aydin
- Faculty of Science and Art, Bingol University, Bingol, Turkey
| |
Collapse
|
33
|
Kolawole AO, Kolawole AN, Olofinsan KA, Elekofehinti OO. Kolaflavanone of kolaviron selectively binds to subdomain 1B of human serum albumin: spectroscopic and molecular docking evidences. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2020.100118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Alongi M, Verardo G, Gorassini A, Lemos MA, Hungerford G, Cortella G, Anese M. Phenolic content and potential bioactivity of apple juice as affected by thermal and ultrasound pasteurization. Food Funct 2019; 10:7366-7377. [PMID: 31650989 DOI: 10.1039/c9fo01762c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermal (T) and ultrasound (US) pasteurization processes were applied to apple juice and the phenolic compounds (TPC) were quantified before and after in vitro digestion by HPLC-DAD-ESI-MSn, with their bioaccessibility ascertained. Digested samples were analysed for their inhibitory capacity against α-glucosidase. Since some of the compounds exhibit fluorescence, both steady state and time-resolved fluorescence methods were used to investigate the binding to a blood transport protein, human serum albumin (HSA). It was found that processing induced an increase in the TPC content, which was more pronounced when US was applied. In contrast, digestion reduced the TPC content, evening out the overall effect. Still T and US pasteurized juices exhibited a higher quantity of TPC upon digestion as compared to the raw sample. No correlation was found between the TPC content and α-glucosidase inhibition, as the T and US pasteurized juices showed the highest and lowest inhibitory capacities against the enzyme, respectively. This is indicative that other compounds, such as those formed upon thermal treatment, may be involved in the antidiabetic effect of apple juice. The fluorescence study showed that binding occurred to HSA, at slightly different rates for different species present in the US treated extract. Considering energy consumption, US pasteurization is the most power consuming treatment despite its shorter duration. Overall, no univocal indication on the best pasteurization process can be gathered. Thus, it is necessary to define the desired target in order to drive technological interventions by a customized approach.
Collapse
Affiliation(s)
- Marilisa Alongi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Giancarlo Verardo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, vicolo Florio 2/B, 33100 Udine, Italy
| | - M Adilia Lemos
- School of Applied Sciences, Division of Engineering and Food Science, Bell Street, DD1 1HG Dundee, UK
| | - Graham Hungerford
- Horiba Jobin Yvon IBH Ltd, 133 Finnieston Street, Glasgow G3 8HB, UK and Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow G4 ONG, UK
| | - Giovanni Cortella
- Polytechnic Department of Engineering and Architecture, University of Udine, via delle Scienze 208, 33100 Udine, Italy
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
35
|
Proença C, Freitas M, Ribeiro D, Tomé SM, Araújo AN, Silva AMS, Fernandes PA, Fernandes E. The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments. Food Funct 2019; 10:5718-5731. [PMID: 31441917 DOI: 10.1039/c9fo00722a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors present a unique approach for the management of type 2 diabetes (T2D). In the present study, the inhibition of DPP-4 was evaluated for a large panel of flavonoids, important components of the human diet, using in vitro and ex vivo models. The activity of the isolated enzyme was assayed in vitro. Subsequently, the most active flavonoids were tested ex vivo in human whole blood and plasma. In this study, contrary to the in vitro fluorometric tests, flavonoids did not show inhibitory activity against DPP-4. Due to the discrepancy in the results between the in vitro and ex vivo approaches, plasma protein binding values were determined, presenting values from 43.9 to 100.0%. This work provides a new insight into the inhibitory activity for DPP-4, based on the flavonoid scaffold. Additionally, the obtained results showed that the inhibitory effect of flavonoids against DPP-4 was hindered in protein rich environments, like that occurring in blood, and indicated the need for experimental refinement in drug discovery for blood targets.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Sara M Tomé
- QOPNA and LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alberto N Araújo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Artur M S Silva
- QOPNA and LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
36
|
Piwowar A, Rorbach-Dolata A, Fecka I. The Antiglycoxidative Ability of Selected Phenolic Compounds-An In Vitro Study. Molecules 2019; 24:molecules24152689. [PMID: 31344905 PMCID: PMC6696369 DOI: 10.3390/molecules24152689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 01/09/2023] Open
Abstract
Hyperglycemia and oxidative stress may be observed in different diseases as important factors connected with their development. They often occur simultaneously and are considered together as one process: Glycoxidation. This can influence the function or structure of many macromolecules, for example albumin, by changing their physiological properties. This disturbs the homeostasis of the organism, so the search for natural compounds able to inhibit the glycoxidation process is a current and important issue. The aim of this study was the examination of the antiglycoxidative capacity of 16 selected phenolic compounds, belonging to three phenolic groups, as potential therapeutic agents. Their antiglycoxidative ability, in two concentrations (2 and 20 µM), were examined by in vitro study. The inhibition of the formation of both glycoxidative products (advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs)) were assayed. Stronger antiglycoxidative action toward the formation of both AOPPs and AGEs was observed for homoprotocatechuic and ferulic acids in lower concentrations, as well as catechin, quercetin, and 8-O-methylurolithin A in higher concentrations. Homoprotocatechuic acid demonstrated the highest antiglycoxidative capacity in both examined concentrations and amongst all of them. A strong, significant correlation between the percentage of AOPPs and AGEs inhibition by compounds from all phenolic groups, in both examined concentrations, was observed. The obtained results give an insight into the antiglycoxidative potential of phenolic compounds and indicate homoprotocatechuic acid to be the most promising antiglycoxidative agent, but further biological and pharmacological studies are needed.
Collapse
Affiliation(s)
- Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211, 50-556 Wrocław, Poland.
| | - Anna Rorbach-Dolata
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211, 50-556 Wrocław, Poland
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211A, 50-556 Wrocław, Poland
| |
Collapse
|
37
|
DNA polymerase-γ hypothesis in nucleoside reverse transcriptase-induced mitochondrial toxicity revisited: A potentially protective role for citrus fruit-derived naringenin? Eur J Pharmacol 2019; 852:159-166. [PMID: 30876974 DOI: 10.1016/j.ejphar.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) form the backbone in combination antiretroviral therapy (cARVs). They halt chain elongation of the viral cDNA by acting as false substrates in counterfeit incorporation mechanism to viral RNA-dependent DNA polymerase. In the process genomic DNA polymerase as well as mitochondrial DNA (mtDNA) polymerase-γ (which has a much higher affinity for these drugs at therapeutic doses) are also impaired. This leads to mitochondrial toxicity that manifests clinically as mitochondrial myopathy, peripheral neuropathy, hyperlactatemia or lactic acidosis and lipoatrophy. This has led to the revision of clinical guidelines by World Health Organization to remove stavudine from first-line listing in the treatment of HIV infections. Recent reports have implicated oxidative stress besides mtDNA polymerase-γ hypothesis in NRTI-induced metabolic complications. Reduced plasma antioxidant concentrations have been reported in HIV positive patients on cARVs but clinical intervention with antioxidant supplements have not been successful either due to low efficacy or poor experimental designs. Citrus fruit-derived naringenin has previously been demonstrated to possess antioxidant and free radical scavenging properties which could prevent mitochondrial toxicity associated with these drugs. This review revisits the controversy surrounding mtDNA polymerase-γ hypothesis and evaluates the potential benefits of naringenin as a potent anti-oxidant and free radical scavenger which as a nutritional supplement or therapeutic adjunct could mitigate the development of mitochondrial toxicity associated with these drugs.
Collapse
|
38
|
Sachin KM, Singh M. Hydrophobics of C n TAB in an aqueous DMSO-BSA nanoemulsion for the monodispersion of flavonoids. RSC Adv 2019; 9:15805-15835. [PMID: 35521367 PMCID: PMC9064304 DOI: 10.1039/c9ra00851a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, philicphobic interactions between flavonoids (quercetin, apigenin, and naringenin) and bovine serum albumin (BSA) were analyzed using physicochemical properties obtained at T = 298.15, 303.15, 308.15 K and 0.1 MPa, from 0.01 to 0.10 mol kg-1 of alkyl trimethyl ammonium bromide (C n TAB : DTAB, C n = 12; TDTAB, C n = 14; HDTAB, C n = 16). The flavonoids with cationic surfactants strongly interacted with BSA, as illustrated by the physicochemical parameters (PCPs), refractive index (n D), Walden product, pH, electrostatic potential and molar conductance (Λ m). Viscosity (η), density (ρ), η D, sound velocity (u) and specific conductance (k) data were used to calculate the relative viscosity (η r), viscous relaxation time (τ), Walden product, entropy (ΔS), enthalpy (ΔH), Gibbs free energy (ΔG), heat capacity (Δq) limiting dielectric constant (ε ∞), speed of light (C), acoustic impedance (Z) and molar refraction (R). These PCPs have quantitatively predicted the hydrophilic and hydrophobic (philicphobic) interactions developed are on increasing the alkyl chain (AC) of C n TAB. These interactions assist a monodispersion of the flavonoids, and a similar mechanism could equally be applicable to monodisperse the antioxidants in the aqueous nanoemulsions. Their philicphobic stoichiometry weakened the cohesive forces (CF) when the shear stress was increased, and enhanced surface activities were achieved that facilitated the flavonoids to interact with BSA due to intermolecular forces (IMF) to develop a stable nanoemulsion; Upon increasing the C n TAB concentrations, the n D value increases since the polarizability increases with stronger shear stress due to van der Waal forces and electrostatic interactions to achieve better flavonoid-BSA linkages.
Collapse
Affiliation(s)
- K M Sachin
- School of Chemical Sciences, Central University of Gujarat Sector-30 Gandhinagar-382030 India +91-079-23260076 +91-079-23260210
| | - Man Singh
- School of Chemical Sciences, Central University of Gujarat Sector-30 Gandhinagar-382030 India +91-079-23260076 +91-079-23260210
| |
Collapse
|
39
|
Jaunet-Lahary T, Vercauteren DP, Fleury F, Laurent AD. Computational simulations determining disulfonic stilbene derivative bioavailability within human serum albumin. Phys Chem Chem Phys 2019; 20:18020-18030. [PMID: 29931001 DOI: 10.1039/c8cp00704g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Disulfonic stilbene (DS) derivatives are a member of the large family of compounds widely employed in medicine and biology as modulators for membrane transporters or inhibitors of a protein involved in DNA repair. They constitute interesting compounds that have not yet been investigated within the bioavailability framework. No crystallographic structures exist involving such compounds embedded in the most common drug carrier, human serum albumin (HSA). The present work studies, for the first time, the physico-chemical features driving the inclusion of three DS derivatives (amino, nitro and acetamido, named DADS, DNDS and DATDS, respectively) within the four common HSA binding sites using combined molecular docking and molecular dynamics simulations. A careful analysis of each ligand within each of the studied binding sites is carried out, highlighting specific interactions and key residues playing a role in stabilizing the ligand within each pocket. The comparison between DADS, DNDS and DATDS reveals that depending on the binding site, the conclusions are rather different. For instance, the IB binding site shows a specificity to DADS compounds while IIIA is the most favorable site for DNDS and DATDS.
Collapse
Affiliation(s)
- Titouan Jaunet-Lahary
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | | | | | | |
Collapse
|
40
|
Pande P, Fleck SC, Twaddle NC, Churchwell MI, Doerge DR, Teeguarden JG. Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women II: Total estrogenicity calculations accounting for competitive protein and receptor binding and potency. Food Chem Toxicol 2018; 125:341-353. [PMID: 30553876 DOI: 10.1016/j.fct.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Evaluating the biological significance of human-relevant exposures to environmental estrogens involves assessing the individual and total estrogenicity of endogenous and exogenous estrogens found in serum, for example from biomonitoring studies. We developed a method for this assessment by integrating approaches for (i) measuring total hormone concentrations by mass spectrometry (Fleck et al., 2018), (ii) calculating hormone bioavailable concentrations in serum and, (iii) solving multiple equilibria between estrogenic ligands and receptors, and (iv) quantitatively describing key elements of estrogen potency. The approach was applied to endogenous (E1, E2, E3, E4), environmental (BPA), and dietary Genistein (GEN), Daidzein (DDZ) estrogens measured in the serum of thirty pregnant women. Fractional receptor occupancy (FRO) based estrogenicity was dominated by E1, E2 and E3 (ER-α, 94.4-99.2% (median: 97.3%), ER-β, 82.7-97.7% (median: 92.8%), as was the total response (TR), which included ligand specific differences in recruitment of co-activator proteins (RCA). The median FRO for BPA was at least five orders of magnitude lower than E1, E2 and E3, and three orders of magnitude lower than the fetal derived E4 and GEN and DDZ. BPA contributed less than 1/1000th of the normal daily variability in total serum estrogenicity in this cohort of pregnant women.
Collapse
Affiliation(s)
- Paritosh Pande
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Stefanie C Fleck
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Justin G Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 93771, USA.
| |
Collapse
|
41
|
Kolawole AN, Akinladejo VT, Elekofehinti OO, Akinmoladun AC, Kolawole AO. Experimental and computational modeling of interaction of kolaviron-kolaflavanone with aldehyde dehydrogenase. Bioorg Chem 2018. [DOI: 10.1016/j.bioorg.2018.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| |
Collapse
|
43
|
The acute effects of citrus flavanones on the metabolism of glycogen and monosaccharides in the isolated perfused rat liver. Toxicol Lett 2018; 291:158-172. [PMID: 29626522 DOI: 10.1016/j.toxlet.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Citrus flavanones are often linked to their antihyperglycemic properties. This effect may be in part due to the inhibition of hepatic gluconeogenesis through different mechanisms. One of the possible mechanisms appears to be impairment of oxidative phosphorylation, which may also interfere with glycogen metabolism. Based on these facts, the purpose of the present study was to investigate the effects of three citrus flavanones on glycogenolysis in the isolated perfused rat liver. Hesperidin, hesperetin, and naringenin stimulated glycogenolysis and glycolysis from glycogen with concomitant changes in oxygen uptake. At higher concentrations (300 μM), hesperetin and naringenin clearly altered fructose and glucose metabolism, whereas hesperidin exerted little to no effects. In subcellular fractions hesperetin and naringenin inhibited the activity of glucose 6-phosphatase and glucokinase and the mitochondrial respiration linked to ADP phosphorylation. Hesperetin and naringenin also inhibited the transport of glucose into the cell. At a concentration of 300 μM, the glucose influx rate inhibition was 83% and 43% for hesperetin and naringenin, respectively. Hesperidin was the less active among the assayed citrus flavanones, indicating that the rutinoside moiety noticeably decrease the activity of these compounds. The effects on glycogenolysis and fructolysis were mainly consequence of an impairment on mitochondrial energy metabolism. The increased glucose release, due to the higher glycogenolysis, together with glucose transport inhibition is the opposite of what is expected for antihyperglycemic agents.
Collapse
|
44
|
Flachsbart F, Dose J, Gentschew L, Geismann C, Caliebe A, Knecht C, Nygaard M, Badarinarayan N, ElSharawy A, May S, Luzius A, Torres GG, Jentzsch M, Forster M, Häsler R, Pallauf K, Lieb W, Derbois C, Galan P, Drichel D, Arlt A, Till A, Krause-Kyora B, Rimbach G, Blanché H, Deleuze JF, Christiansen L, Christensen K, Nothnagel M, Rosenstiel P, Schreiber S, Franke A, Sebens S, Nebel A. Identification and characterization of two functional variants in the human longevity gene FOXO3. Nat Commun 2017; 8:2063. [PMID: 29234056 PMCID: PMC5727304 DOI: 10.1038/s41467-017-02183-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
Abstract
FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SNVs, rs12206094 and rs4946935, to be most significantly associated with longevity and further characterize them functionally. We experimentally validate the in silico predicted allele-dependent binding of transcription factors (CTCF, SRF) to the SNVs. Specifically, in luciferase reporter assays, the longevity alleles of both variants show considerable enhancer activities that are reversed by IGF-1 treatment. An eQTL database search reveals that the alleles are also associated with higher FOXO3 mRNA expression in various human tissues, which is in line with observations in long-lived model organisms. In summary, we present experimental evidence for a functional link between common intronic variants in FOXO3 and human longevity. FOXO3 is one of the few established longevity genes. Here, the authors fine-map the FOXO3-longevity association to two intronic SNPs and, using luciferase assays and EMSAs, show that these SNPs affect binding of transcription factors CTCF and SRF and associate with FOXO3 expression.
Collapse
Affiliation(s)
- Friederike Flachsbart
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Liljana Gentschew
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Claudia Geismann
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105, Kiel, Germany
| | - Carolin Knecht
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105, Kiel, Germany
| | - Marianne Nygaard
- The Danish Aging Research Center, and the Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J. B. Winslows Vej 9B, 5000, Odense C, Denmark
| | - Nandini Badarinarayan
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Abdou ElSharawy
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.,Faculty of Sciences, Division of Biochemistry, Chemistry Department, Damietta University, 34511, New Damietta City, Egypt
| | - Sandra May
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Guillermo G Torres
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Marlene Jentzsch
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Kathrin Pallauf
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Céline Derbois
- Centre National de Recherche en Génomique Humaine CNRGH-CEA, 91000, Evry, France
| | - Pilar Galan
- Université Sorbonne Paris Cité-UREN, Unité de Recherche en Epidémiologie Nutritionnelle, U557 Inserm, U1125 Inra, Cnam, Université Paris 13, CRNH IdF, 93000, Bobigny, France
| | - Dmitriy Drichel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Alexander Arlt
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Andreas Till
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.,Institute of Reconstructive Neurobiology and Life & Brain GmbH, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.,Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Hélène Blanché
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010, Paris, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine CNRGH-CEA, 91000, Evry, France.,Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010, Paris, France
| | - Lene Christiansen
- The Danish Aging Research Center, and the Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J. B. Winslows Vej 9B, 5000, Odense C, Denmark
| | - Kaare Christensen
- The Danish Aging Research Center, and the Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J. B. Winslows Vej 9B, 5000, Odense C, Denmark.,Department of Clinical Genetics, and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
45
|
Ding F, Peng W, Peng YK. Biophysical exploration of protein-flavonol recognition: effects of molecular properties and conformational flexibility. Phys Chem Chem Phys 2017; 18:11959-71. [PMID: 27095486 DOI: 10.1039/c5cp07754k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current work explores the biomolecular recognition of a series of flavonols by a protein and then uncovers the influences of the structural features of flavonols and the protein's own characteristics, e.g. the dynamics and flexibility, on the bioavailability of flavonols by using the pivotal biomacromolecule hemoglobin as a model. The experimental results revealed that flavonol may lead to a notable decrease in the steady-state fluorescence intensity of the β-37 Trp residue, and in the meantime the R-T transition of the protein transpired. Such noncovalent recognition forms the ground-state adduct, with an association intensity of 3.991 × 10(4) M(-1) in the reaction process, which has already been authenticated by the detailed analysis of time-resolved fluorescence and UV/vis absorption spectra. Furthermore, flavonol can form hydrogen bonds and π-conjugation effects with several amino acid residues on the polypeptide chain, for example, Trp-37, Arg-40, Asp-99 and Asn-102, and this event would induce self-regulation of the compact, regular conformation of the protein to a certain extent, which explicitly corroborates the results of circular dichroism. According to the study of molecular docking and structure-activity relationships, we could see that the recognition capacities of the protein-flavonols are inversely interrelated with the C log P values of the flavonol molecules. Moreover, the properties of the substituents in the structural B-ring unit of flavonols, i.e. polarity, position and number, will also prominently affect the degree of affinity and bioavailability of the protein-flavonol complexes. The analytical results of molecular dynamics (MD) simulation testified that the discussions of the structure-activity relationships are entirely logical, and the conformations of the amino acid residues forming noncovalent interactions tend to be stable in the MD simulation, as further elucidated from the dynamics data. Plainly, molecular recognition of the protein-flavonols might noticeably cause relatively large changes in protein flexibility, and then manifest different recognition strengths and corresponding biological activities. This issue will be carefully validated by the interpretation of root-mean-square fluctuation.
Collapse
Affiliation(s)
- Fei Ding
- College of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China. and Department of Chemistry, China Agricultural University, Beijing 100193, China and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wei Peng
- College of Agriculture and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China. and College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Kui Peng
- Center for Food Quality Supervision & Testing, Ministry of Agriculture, College of Food Science & Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
46
|
Yamasaki K, Sato H, Minagoshi S, Kyubun K, Anraku M, Miyamura S, Watanabe H, Taguchi K, Seo H, Maruyama T, Otagiri M. The Binding of Silibinin, the Main Constituent of Silymarin, to Site I on Human Serum Albumin. Biol Pharm Bull 2017; 40:310-317. [PMID: 28250272 DOI: 10.1248/bpb.b16-00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silibinin is the main constituent of silymarin, an extract from the seeds of milk thistle (Silybum marianum). Because silibinin has many pharmacological activities, extending its clinical use in the treatment of a wider variety of diseases would be desirable. In this study, we report on the binding of silibinin to plasma proteins, an issue that has not previously been extensively studied. The findings indicated that silibinin mainly binds to human serum albumin (HSA). Mutual displacement experiments using ligands that primarily bind to sites I and II clearly revealed that silibinin binds tightly and selectively to site I (subsites Ia and/or Ic) of HSA, which is located in subdomain IIA. Thermodynamic analyses suggested that hydrogen bonding and van der Waals interactions are major contributors to silibinin-HSA interactions. Furthermore, the binding of silibinin to HSA was found to be decreased with increasing ionic strength and detergent concentration of the media, suggesting that electrostatic and hydrophobic interactions are involved in the binding. Trp214 and Arg218 were identified as being involved in the binding of silibinin to site I, based on binding experiments using chemically modified- and mutant-HSAs. In conclusion, the available evidence indicates that silibinin binds to the region close to Trp214 and Arg218 in site I of HSA with assistance by multiple forces and can displace site I drugs (e.g., warfarin or iodipamide), but not site II drugs (e.g., ibuprofen).
Collapse
|
47
|
Siddiqi MK, Alam P, Chaturvedi SK, Khan RH. Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol 2016; 92:1220-1228. [DOI: 10.1016/j.ijbiomac.2016.08.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/30/2022]
|
48
|
Ren T, Zhang L, Wang J, Song C, Wang R, Chang J. Study on the interaction of taiwaniaquinoids with FTO by spectroscopy and molecular modeling. J Biomol Struct Dyn 2016; 35:3182-3193. [DOI: 10.1080/07391102.2016.1249957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Lijiao Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Jinqian Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ruiyong Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| |
Collapse
|
49
|
Fu L, Sun Y, Ding L, Wang Y, Gao Z, Wu Z, Wang S, Li W, Bi Y. Mechanism evaluation of the interactions between flavonoids and bovine serum albumin based on multi-spectroscopy, molecular docking and Q-TOF HR-MS analyses. Food Chem 2016; 203:150-157. [DOI: 10.1016/j.foodchem.2016.01.105] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022]
|
50
|
Mohseni-Shahri FS, Housaindokht MR, Bozorgmehr MR, Moosavi-Movahedi AA. Comparative study of the effects of the structurally similar flavonoids quercetin and taxifolin on the therapeutic behavior of alprazolam. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
After a meal rich in plant products, dietary flavonoids can be detected in plasma as serum albumin bound conjugates. Flavonoid–albumin binding is expected to control the bioavailability of drugs. In this study, the binding of alprazolam (ALP) and human serum albumin (HSA) has been investigated in the absence and presence of two flavonoids with similar structures, quercetin (QUER) and taxifolin (TAX), by means of fluorescence spectroscopy, chemometrics, and molecular dynamics simulation. Our results show that ALP has the ability to quench the intrinsic fluorescence of HSA. This quenching is affected by flavonoids. The presence of QUER and TAX decreased the quenching constants, binding constants, and equilibrium constants associated with ALP binding to HSA. The effect of ALP and both flavonoids on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy. Our results indicate a conformational change of HSA with the addition of ligands. The molecular dynamics study makes an important contribution to understanding the effect of the binding of ALP, QUER, and TAX on conformational changes of HSA and modification of its tertiary structure in the absence and presence of flavonoids. All of these results may have relevant consequences in rationalizing the interferences of common food and drugs.
Collapse
|