1
|
Šromová V, Sobola D, Kaspar P. A Brief Review of Bone Cell Function and Importance. Cells 2023; 12:2576. [PMID: 37947654 PMCID: PMC10648520 DOI: 10.3390/cells12212576] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
This review focuses on understanding the macroscopic and microscopic characteristics of bone tissue and reviews current knowledge of its physiology. It explores how these features intricately collaborate to maintain the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, which plays a pivotal role in shaping not only our physical framework but also overall health. In this work, a comprehensive exploration of microscopic and macroscopic features of bone tissue is presented.
Collapse
Affiliation(s)
- Veronika Šromová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| | - Dinara Sobola
- Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Žižkova 22, 616 62 Brno, Czech Republic
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| |
Collapse
|
2
|
Wang JS, Tokavanich N, Wein MN. SP7: from Bone Development to Skeletal Disease. Curr Osteoporos Rep 2023; 21:241-252. [PMID: 36881265 PMCID: PMC10758296 DOI: 10.1007/s11914-023-00778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the different roles of the transcription factor SP7 in regulating bone formation and remodeling, discuss current studies in investigating the causal relationship between SP7 mutations and human skeletal disease, and highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls. RECENT FINDINGS Cell-type and stage-specific functions of SP7 have been identified during bone formation and remodeling. Normal bone development regulated by SP7 is strongly associated with human bone health. Dysfunction of SP7 results in common or rare skeletal diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 serve as new therapeutic targets in the treatment of skeletal disorders. This review addresses the importance of SP7-regulated bone development in studying bone health and skeletal disease. Recent advances in whole genome and exome sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the therapeutic targets to treat skeletal disease.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
3
|
Bone morphogenetic protein 4 inhibits rat stem/progenitor Leydig cell development and regeneration via SMAD-dependent and SMAD-independent signaling. Cell Death Dis 2022; 13:1039. [PMID: 36513649 PMCID: PMC9748027 DOI: 10.1038/s41419-022-05471-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein 4 (BMP4) is an important member of the transforming growth factor-β superfamily. BMP4 is expressed in the Leydig cell lineage. We hypothesized that BMP4 might regulate the development of stem/progenitor Leydig cells. The BMP4 receptors, BMPR1A, BMPR1B, and BMPR2 were found to be expressed in progenitor Leydig cells of prepubertal testis and isolated cells. BMP4 at 1 and 10 ng/mL significantly reduced androgen production and down-regulated steroidogenesis-related gene and protein expression possibly by activating the SMAD signaling pathway (increasing SMAD1/5 phosphorylation and SMAD4) at 24 h treatment. BMP4 at 0.1 ng/mL and higher concentrations markedly reduced the EdU labeling index of CD90+ stem Leydig cells after 24 h treatment and significantly reduced the number of EdU+ stem Leydig cells on the surface of seminiferous tubules after 7 days of culture. BMP4 at 0.01 ng/mL and higher concentrations significantly blocked the differentiation of stem Leydig cells into adult cells, as shown by the reduction of testosterone secretion and the downregulation of Lhcgr, Scarb1, Cyp11a1, Hsd11b1, and Insl3 and their function after 3D seminiferous tubule culture for 3 weeks, and this effect was reversed by co-treatment with the BMP4 antagonists noggin and doxomorphine. In addition, BMP4 also blocked stem Leydig cell differentiation through SMAD-independent signaling pathways (ERK1/2 and AMPK). Ethanedimethane sulfonate (EDS) single injection can result in reduction of testosterone, restoration can happen post treatment. In an in vivo model of Leydig cell regeneration following EDS treatment, intratesticular injection of BMP4 from day 14 to day 28 post-elimination significantly reduced serum testosterone levels and down-regulated the expression of Scarb1, Star, Hsd11b1, and Insl3 and its proteins, possibly through SMAD-dependent and SMAD-independent (ERK1/2 and AMPK) signaling pathways. In conclusion, BMP4 is expressed in cells of the Leydig cell lineage and blocks entry of stem/progenitor Leydig cells into adult Leydig cells through SMAD-dependent and SMAD-independent signaling pathways.
Collapse
|
4
|
Hojo H, Ohba S. Sp7 Action in the Skeleton: Its Mode of Action, Functions, and Relevance to Skeletal Diseases. Int J Mol Sci 2022; 23:5647. [PMID: 35628456 PMCID: PMC9143072 DOI: 10.3390/ijms23105647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
6
|
Becker K, Rauch N, Brunello G, Azimi S, Beller M, Hüfner M, Nienkemper M, Schwarz-Herzke B, Drescher D. Bone remodelling patterns around orthodontic mini-implants migrating in bone: an experimental study in rat vertebrae. Eur J Orthod 2021; 43:708-717. [PMID: 34476491 PMCID: PMC8643410 DOI: 10.1093/ejo/cjab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Orthodontic implant migration has been clinically observed in presence of continuous loading forces. Recent studies indicate that osteocytes play a crucial role in this phenomenon. Objectives Aim of this study was to investigate local osteocytic gene expression, protein expression, and bone micro-structure in peri-implant regions of pressure and tension. Material and methods The present work reports a complementary analysis to a previous micro-computed tomography study. Two customized mini-implants were placed in one caudal rat vertebra and connected by a nickel–titanium contraction spring generating different forces (i.e. 0, 0.5, 1.0, and 1.5 N). Either at 2 or 8 weeks, the vertebrae were harvested and utilized for 1. osteocytic gene expression using laser capture micro-dissection on frozen sections coupled with qPCR, 2. haematoxylin–eosin staining for qualitative and quantitative analyses, 3. immunofluorescence staining and analysis, and 4. bone-to-implant contact on undecalcified samples. Results At the two time points for all the performed analyses no significant differences were observed with respect to the applied force magnitudes and cell harvesting localization. However, descriptive histological analysis revealed remarkable bone remodelling at 2 weeks of loading. At 8 weeks the implants were osseointegrated and, especially in 1.0 and 1.5 N groups, newly formed bone presented a characteristic load bearing architecture with trabecula oriented in the direction of the loading. Conclusions The present study confirmed that stress-induced bone remodelling is the biological mechanism of orthodontic implant migration. Bone apposition was found at ‘tension’ and ‘pressure’ sites thus limiting implant migration over time.
Collapse
Affiliation(s)
- Kathrin Becker
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| | - Nicole Rauch
- Department of Oral Surgery, University Clinic of Düsseldorf, Germany
| | - Giulia Brunello
- Department of Oral Surgery, University Clinic of Düsseldorf, Germany.,Department of Neurosciences, University of Padua, Italy
| | - Sarah Azimi
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, University of Düsseldorf, Germany.,Systems Biology of Lipid Metabolism, University of Düsseldorf, Germany
| | - Mira Hüfner
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| | - Manuel Nienkemper
- Department of Orthodontics, University Clinic of Düsseldorf, Germany.,Private Practice, Dusseldorf, Germany
| | | | - Dieter Drescher
- Department of Orthodontics, University Clinic of Düsseldorf, Germany
| |
Collapse
|
7
|
Silva PPB, Pereira RMR, Takayama L, Borba CG, Duarte FH, Trarbach EB, Martin RM, Bronstein MD, Tritos NA, Jallad RS. Impaired Bone Microarchitecture in Premenopausal Women With Acromegaly: The Possible Role of Wnt Signaling. J Clin Endocrinol Metab 2021; 106:2690-2706. [PMID: 33871626 DOI: 10.1210/clinem/dgab260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Acromegaly can impair bone integrity, increasing the risk of vertebral fractures (VFs). OBJECTIVE To evaluate the impact of isolated GH/IGF-I hypersecretion on bone turnover markers, Wnt inhibitors, bone mineral density (BMD), microarchitecture, bone strength and vertebral fractures in female patients with acromegaly (Acro), compared with healthy control group (HC). DESIGN, SETTING, AND PATIENTS Cross-sectional study including 83 premenopausal women without any pituitary deficiency:18 acromegaly in remission (AcroR), 12 in group with active acromegaly (AcroA), and 53 HC. Serum procollagen type 1 N-terminal propeptide, β-carboxy-terminal crosslinked telopeptide of type 1 collagen, osteocalcin, sclerostin, and DKK1 were measured in blood samples. dual-energy X-ray absorptiometry, high-resolution peripheral quantitative computed tomography (HR-pQCT) and vertebral fractures evaluation were also assessed simultaneously. MAIN OUTCOME AND RESULTS AcroA showed significantly lower sclerostin and higher DKK1 compared with HC. On HR-pQCT of tibia and radius, Acro showed impairment of trabecular (area and trabecular number), increased cortical porosity, and increased cortical area and cortical thickness compared with HC. The only significant correlation found with HR-pQCT parameters was a positive correlation between cortical porosity and serum DKK1 (R = 0.45, P = 0.044). Mild VFs were present in approximately 30% of patients. CONCLUSIONS Eugonadal women with acromegaly without any pituitary deficiency showed increased cortical BMD, impairment of trabecular bone microstructure, and increased VF. Sclerostin was not correlated with any HR-pQCT parameters; however, DKK1 was correlated with cortical porosity in tibia (P = 0.027). Additional studies are needed to clarify the role of Wnt inhibitors on bone microarchitecture impairment in acromegaly.
Collapse
Affiliation(s)
- Paula P B Silva
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
| | - Rosa M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 01246903, Brazil
- Rheumatology Division Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, SP 05403-010, Brazil
| | - Liliam Takayama
- Rheumatology Division Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, SP 05403-010, Brazil
| | - Clarissa G Borba
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
| | - Felipe H Duarte
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
| | - Ericka B Trarbach
- Laboratorio de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brasil
| | - Regina Matsunaga Martin
- Diseases Unit Osteometabolic, Endocrinology Service, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HC-FMUSP), São Paulo, SP 05403-010, Brazil
| | - Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
- Laboratorio de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brasil
| | - Nicholas A Tritos
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Raquel S Jallad
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
- Laboratorio de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brasil
| |
Collapse
|
8
|
Baroi S, Czernik PJ, Chougule A, Griffin PR, Lecka-Czernik B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone 2021; 147:115913. [PMID: 33722775 PMCID: PMC8076091 DOI: 10.1016/j.bone.2021.115913] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/07/2023]
Abstract
The peroxisome proliferator activated receptor gamma (PPARG) nuclear receptor regulates energy metabolism and insulin sensitivity. In this study, we present novel evidence for an essential role of PPARG in the regulation of osteocyte function, and support for the emerging concept of the conjunction between regulation of energy metabolism and bone mass. We report that PPARG is essential for sclerostin production, a recently approved target to treat osteoporosis. Our mouse model of osteocyte-specific PPARG deletion (Dmp1CrePparγflfl or γOTKO) is characterized with increased bone mass and reduced bone marrow adiposity, which is consistent with upregulation of WNT signaling and increased bone forming activity of endosteal osteoblasts. An analysis of osteocytes derived from γOTKO and control mice showed an excellent correlation between PPARG and SOST/sclerostin at the transcript and protein levels. The 8 kb sequence upstream of Sost gene transcription start site possesses multiple PPARG binding elements (PPREs) with at least two of them binding PPARG with dynamics reflecting its activation with full agonist rosiglitazone and correlating with increased levels of Sost transcript and sclerostin protein expression (Pearson's r = 0.991, p = 0.001). Older γOTKO female mice are largely protected from TZD-induced bone loss providing proof of concept that PPARG in osteocytes can be pharmacologically targeted. These findings demonstrate that transcriptional activities of PPARG are essential for sclerostin expression in osteocytes and support consideration of targeting PPARG activities with selective modulators to treat osteoporosis.
Collapse
Affiliation(s)
- Sudipta Baroi
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Piotr J Czernik
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Amit Chougule
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Patrick R Griffin
- The Scripps Research Institute, Jupiter, FL, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Department of Physiology and Pharmacology, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America; Center for Diabetes and Endocrine Research, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States of America.
| |
Collapse
|
9
|
Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, Clementelli C, Sangkhae V, Casu C, Kim SM, Ostland V, Han H, Nemeth E, Fleming R, Rivella S, Lizneva D, Yuen T, Zaidi M, Ginzburg Y. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. eLife 2021; 10:e68217. [PMID: 34002695 PMCID: PMC8205482 DOI: 10.7554/elife.68217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
Background Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis. Methods To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β-thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone. Results We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low-bone-mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP-mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss. Conclusions Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β-thalassemia. Funding YZG acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to YZG and DK095112 to RF, SR, and YZG). MZ acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). TY acknowledges the support of the National Institute on Aging (R01 AG71870). SR acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (CURE) Program Pennsylvania.
Collapse
Affiliation(s)
- Melanie Castro-Mollo
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marc Ruiz-Martinez
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maria Feola
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marina Planoutene
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Cara Clementelli
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Veena Sangkhae
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Huiling Han
- Intrinsic Lifesciences, LLCLaJollaUnited States
| | - Elizabeta Nemeth
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Robert Fleming
- Department of Pediatrics, Saint Louis University School of MedicineSt LouisUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
10
|
Osteoporosis Treatment with Anti-Sclerostin Antibodies-Mechanisms of Action and Clinical Application. J Clin Med 2021; 10:jcm10040787. [PMID: 33669283 PMCID: PMC7920044 DOI: 10.3390/jcm10040787] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is characterized by reduced bone mass and disruption of bone architecture, resulting in increased risk of fragility fractures and significant long-term disability. Although both anti-resorptive treatments and osteoanabolic drugs, such as parathyroid hormone analogues, are effective in fracture prevention, limitations exist due to lack of compliance or contraindications to these drugs. Thus, there is a need for novel potent therapies, especially for patients at high fracture risk. Romosozumab is a monoclonal antibody against sclerostin with a dual mode of action. It enhances bone formation and simultaneously suppresses bone resorption, resulting in a large anabolic window. In this opinion-based narrative review, we highlight the role of sclerostin as a critical regulator of bone mass and present human diseases of sclerostin deficiency as well as preclinical models of genetically modified sclerostin expression, which led to the development of anti-sclerostin antibodies. We review clinical studies of romosozumab in terms of bone mass accrual and anti-fracture activity in the setting of postmenopausal and male osteoporosis, present sequential treatment regimens, and discuss its safety profile and possible limitations in its use. Moreover, an outlook comprising future translational applications of anti-sclerostin antibodies in diseases other than osteoporosis is given, highlighting the clinical significance and future scopes of Wnt signaling in these settings.
Collapse
|
11
|
Rozenfeld PA, Crivaro AN, Ormazabal M, Mucci JM, Bondar C, Delpino MV. Unraveling the mystery of Gaucher bone density pathophysiology. Mol Genet Metab 2021; 132:76-85. [PMID: 32782168 DOI: 10.1016/j.ymgme.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Despite the existence of a variety of specific treatments for GD, they cannot completely reverse bone complications. Many studies have evidenced the impairment in bone tissue of GD, and molecular mechanisms of bone density alterations in GD are being studied during the last years and different reports emphasized its efforts trying to unravel why and how bone tissue is affected. The cause of skeletal density affection in GD is a matter of debates between research groups. and there are two opposing hypotheses trying to explain reduced bone mineral density in GD: increased bone resorption versus impaired bone formation. In this review, we discuss the diverse mechanisms of bone alterations implicated in GD revealed until the present, along with a presentation of normal bone physiology and its regulation. With this information in mind, we discuss effectiveness of specific therapies, introduce possible adjunctive therapies and present a novel model for GD-associated bone density pathogenesis. Under the exposed evidence, we may conclude that both sides of the balance of remodeling process are altered. In GD the observed osteopenia/osteoporosis may be the result of contribution of both reduced bone formation and increased bone resorption.
Collapse
Affiliation(s)
- P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| | - A N Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Av. Córdoba 2351, (C1120ABG), Buenos Aires, Argentina
| |
Collapse
|
12
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
13
|
Ei Hsu Hlaing E, Ishihara Y, Wang Z, Odagaki N, Kamioka H. Role of intracellular Ca 2+-based mechanotransduction of human periodontal ligament fibroblasts. FASEB J 2019; 33:10409-10424. [PMID: 31238000 PMCID: PMC6704454 DOI: 10.1096/fj.201900484r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human periodontal ligament (hPDL) fibroblasts are thought to receive mechanical stress (MS) produced by orthodontic tooth movement, thereby regulating alveolar bone remodeling. However, the role of intracellular calcium ([Ca2+]i)-based mechanotransduction is not fully understood. We explored the MS-induced [Ca2+]i responses both in isolated hPDL fibroblasts and in intact hPDL tissue and investigated its possible role in alveolar bone remodeling. hPDL fibroblasts were obtained from healthy donors' premolars that had been extracted for orthodontic reasons. The oscillatory [Ca2+]i activity induced by static compressive force was measured by a live-cell Ca2+ imaging system and evaluated by several feature extraction method. The spatial pattern of cell-cell communication was investigated by Moran's I, an index of spatial autocorrelation and the gap junction (GJ) inhibitor. The Ca2+-transporting ionophore A23187 was used to further investigate the role of [Ca2+]i up-regulation in hPDL cell behavior. hPDL fibroblasts displayed autonomous [Ca2+]i responses. Compressive MS activated this autonomous responsive behavior with an increased percentage of responsive cells both in vitro and ex vivo. The integration, variance, maximum amplitude, waveform length, and index J in the [Ca2+]i responses were also significantly increased, whereas the mean power frequency was attenuated in response to MS. The increased Moran's I after MS indicated that MS might affect the pattern of cell-cell communication via GJs. Similar to the findings of MS-mediated regulation, the A23187-mediated [Ca2+]i uptake resulted in the up-regulation of receptor activator of NF-κB ligand (Rankl) and Sost along with increased sclerostin immunoreactivity, suggesting that [Ca2+]i signaling networks may be involved in bone remodeling. In addition, A23187-treated hPDL fibroblasts also showed the suppression of osteogenic differentiation and mineralization. Our findings suggest that augmented MS-mediated [Ca2+]i oscillations in hPDL fibroblasts enhance the production and release of bone regulatory signals via Rankl/Osteoprotegerin and the canonical Wnt/β-catenin pathway as an early process in tooth movement-initiated alveolar bone remodeling.-Ei Hsu Hlaing, E., Ishihara, Y., Wang, Z., Odagaki, N., Kamioka, H. Role of intracellular Ca2+-based mechanotransduction of human periodontal ligament fibroblasts.
Collapse
Affiliation(s)
- Ei Ei Hsu Hlaing
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Japan Society for the Promotion of Science (JSPS DC2), Tokyo, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Witcher PC, Miner SE, Horan DJ, Bullock WA, Lim KE, Kang KS, Adaniya AL, Ross RD, Loots GG, Robling AG. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight 2018; 3:98673. [PMID: 29875318 DOI: 10.1172/jci.insight.98673] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
The WNT pathway has become an attractive target for skeletal therapies. High-bone-mass phenotypes in patients with loss-of-function mutations in the LRP5/6 inhibitor Sost (sclerosteosis), or in its downstream enhancer region (van Buchem disease), highlight the utility of targeting Sost/sclerostin to improve bone properties. Sclerostin-neutralizing antibody is highly osteoanabolic in animal models and in human clinical trials, but antibody-based inhibition of another potent LRP5/6 antagonist, Dkk1, is largely inefficacious for building bone in the unperturbed adult skeleton. Here, we show that conditional deletion of Dkk1 from bone also has negligible effects on bone mass. Dkk1 inhibition increases Sost expression, suggesting a potential compensatory mechanism that might explain why Dkk1 suppression lacks anabolic action. To test this concept, we deleted Sost from osteocytes in, or administered sclerostin neutralizing antibody to, mice with a Dkk1-deficient skeleton. A robust anabolic response to Dkk1 deletion was manifest only when Sost/sclerostin was impaired. Whole-body DXA scans, μCT measurements of the femur and spine, histomorphometric measures of femoral bone formation rates, and biomechanical properties of whole bones confirmed the anabolic potential of Dkk1 inhibition in the absence of sclerostin. Further, combined administration of sclerostin and Dkk1 antibody in WT mice produced a synergistic effect on bone gain that greatly exceeded individual or additive effects of the therapies, confirming the therapeutic potential of inhibiting multiple WNT antagonists for skeletal health. In conclusion, the osteoanabolic effects of Dkk1 inhibition can be realized if sclerostin upregulation is prevented. Anabolic therapies for patients with low bone mass might benefit from a strategy that accounts for the compensatory milieu of WNT inhibitors in bone tissue.
Collapse
Affiliation(s)
- Phillip C Witcher
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sara E Miner
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Whitney A Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung-Eun Lim
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Physical Sciences & Engineering, Anderson University, Anderson, Indiana, USA
| | - Alison L Adaniya
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA.,School of Natural Sciences, University of California, Merced, California, USA
| | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Li G, Liu J, Zhao M, Wang Y, Yang K, Liu C, Xiao Y, Wen X, Liu L. SOST, an LNGFR target, inhibits the osteogenic differentiation of rat ectomesenchymal stem cells. Cell Prolif 2017; 51:e12412. [PMID: 29226516 DOI: 10.1111/cpr.12412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate whether sclerostin (SOST) regulates the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs) and whether SOST and low-affinity nerve growth factor receptor (LNGFR) regulate the osteogenic differentiation of EMSCs. MATERIALS AND METHODS EMSCs were isolated from embryonic facial processes from an embryonic 12.5-day (E12.5d) pregnant Sprague-Dawley rat. LNGFR+ EMSCs and LNGFR- EMSCs were obtained by fluorescence-activated cell sorting and were subsequently induced to undergo osteogenic differentiation in vitro. SOST/LNGFR small-interfering RNAs and SOST/LNGFR overexpression plasmids were used to transfect EMSCs. RESULTS LNGFR+ EMSCs displayed a higher osteogenic capacity and lower SOST levels compared with LNGFR- EMSCs. SOST silencing enhanced the osteogenic differentiation of LNGFR- EMSCs, while SOST overexpression attenuated the osteogenic differentiation of LNGFR+ EMSCs. Moreover, LNGFR was present upstream of SOST and strengthened the osteogenic differentiation of EMSCs by decreasing SOST. CONCLUSIONS SOST alleviated the osteogenic differentiation of EMSCs, and LNGFR enhanced the osteogenic differentiation of EMSCs by decreasing SOST, suggesting that the LNGFR/SOST pathway may be a novel target for promoting dental tissue regeneration and engineering.
Collapse
Affiliation(s)
- Gang Li
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Junyu Liu
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Manzhu Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Wang
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Kun Yang
- Department of Periodontology, Stomatological Hospital, Zunyi Medical College, Zunyi, Guizhou, China
| | - Chang Liu
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Yong Xiao
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Xiujie Wen
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Luchuan Liu
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
|
17
|
Sebastian A, Loots GG. Transcriptional control of Sost in bone. Bone 2017; 96:76-84. [PMID: 27771382 DOI: 10.1016/j.bone.2016.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/15/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
Abstract
Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Here we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.
Collapse
Affiliation(s)
- Aimy Sebastian
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
18
|
Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017; 96:29-37. [PMID: 27742498 PMCID: PMC5328835 DOI: 10.1016/j.bone.2016.10.007] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/29/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022]
Abstract
After discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass, as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| | - Amy Y Sato
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States.
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States; Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| |
Collapse
|
19
|
Niu P, Zhong Z, Wang M, Huang G, Xu S, Hou Y, Yan Y, Wang H. Zinc finger transcription factor Sp7/Osterix acts on bone formation and regulates col10a1a expression in zebrafish. Sci Bull (Beijing) 2017; 62:174-184. [PMID: 36659402 DOI: 10.1016/j.scib.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 01/21/2023]
Abstract
Sp7/Osterix as a zinc finger transcription factor is expressed specifically in osteoblasts. Embryonic lethality of Sp7 knockout mice, however, has prevented from examining the functions of Sp7 in osteoblast and bone formation in live animals. Here we used TALEN, a versatile genome-editing tool, to generate one zebrafish sp7 mutant line. Homozygous sp7-/- mutant zebrafish are able to survive to adulthood. Alizarin Red staining and Micro-CT analysis showed that sp7-/- larvae and adult fish fail to develop normal opercula, and display curved tail fins and severe craniofacial malformation, while Alcian Blue staining showed no obvious cartilage defects in sp7-/- fish. Quantitative RT-PCR showed that a number of osteoblast markers including spp1, phex, col1ala, and col1a1b are significantly down-regulated in sp7-/- fish. Furthermore, col10a1a, whose ortholog is the cartilage marker in mice, was shown to be a novel downstream gene of Sp7 as an osteoblast marker in zebrafish. Together, these results suggest that Sp7 is required for zebrafish bone development and zebrafish sp7 mutants provide animal models for investigating novel aspects of bone development.
Collapse
Affiliation(s)
- Pengfei Niu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Mingyong Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Guodong Huang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Shuhao Xu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yi Hou
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yilin Yan
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.
| |
Collapse
|
20
|
Shi L, Cai G, Shi J, Guo Y, Chen D, Chen D, Yang H. Ossification of the posterior ligament is mediated by osterix via inhibition of the β-catenin signaling pathway. Exp Cell Res 2016; 349:53-59. [PMID: 27693496 DOI: 10.1016/j.yexcr.2016.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/29/2022]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) involves ectopic calcification of the spinal ligament preferentially at the cervical spine. OPLL is associated with different diseases and occurs by endochondral ossification, which is associated with the activity of different transcription factors. However, the pathogenesis of OPLL remains unclear. Here, we investigated the role of osterix (Osx), a transcription factor that functions downstream of Runx2 and is an important regulator of osteogenesis, in the process of OPLL in a dexamethasone (Dex)-induced model of spinal ligament ossification. Our results showed that Osx is upregulated in patients with OPLL and during the ossification of ligament cells in parallel with the upregulation of osteogenic markers including osteocalcin (OCN), alkaline phosphatase (ALP) and collagen-1 (Col-1). Dex-induced ossification of ligament cells was associated with the downregulation and inactivation of β-catenin, and these effects were offset by Osx knockdown. Activation of β-catenin signaling abolished the effect of Dex on ossification and the upregulation of osteogenic markers. Taken together, our results suggest that OPLL is mediated by Osx via a mechanism involving the Wnt/β-catenin signaling pathway, providing a basis for further research to identify potential targets for the treatment of OPLL.
Collapse
Affiliation(s)
- Lei Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, China
| | - Guodong Cai
- Department of Orthopedics, Affiliated Hospital of Taishan Medical University, 706 Taishan Street, Tai'an 271000, Shangdong Province, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, China
| | - Yongfei Guo
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, China
| | - Dechun Chen
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, China
| | - Deyu Chen
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, China
| | - Haisong Yang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
21
|
St John HC, Hansen SJ, Pike JW. Analysis of SOST expression using large minigenes reveals the MEF2C binding site in the evolutionarily conserved region (ECR5) enhancer mediates forskolin, but not 1,25-dihydroxyvitamin D 3 or TGFβ 1 responsiveness. J Steroid Biochem Mol Biol 2016; 164:277-280. [PMID: 26361013 PMCID: PMC4781661 DOI: 10.1016/j.jsbmb.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Transcribed from the SOST gene, sclerostin is an osteocyte-derived negative regulator of bone formation that inhibits osteoblastogenesis via antagonism of the Wnt pathway. Sclerostin is a promising therapeutic target for low bone mass diseases and neutralizing antibody therapies that target sclerostin are in development. Diverse stimuli regulate SOST including the vitamin D hormone, forskolin (Fsk), bone morphogenic protein 2 (BMP-2), oncostatin M (OSM), dexamethasone (Dex), and transforming growth factor (TGFβ1). To explore the mechanisms by which these compounds regulate SOST expression, we examined their ability to regulate a SOST reporter minigene containing the entire SOST locus including the downstream regionor mutant minigenes containing a deletion of the -1kb to -2kb promoter proximal region (-1kb), ECR2, ECR5, or two point mutations in the MEF2 binding site of ECR5 (ECR5/MEF2). Previous reports suggest that both the PTH and TGFβ1 effects on SOST are mediated through ECR5 and that the action of PTH is mediated specifically via the MEF2 binding site at ECR5. Consistent with these reports, the suppressive effects of Fsk were abrogated following both ECR5 deletion and ECR5/MEF2 mutation. In contrast, we found that TGFβ1 negatively regulated SOST and that neither ECR5 nor ECR5/MEF2 was involved. Surprisingly, none of these four deletions/mutations abrogated the suppressive effects of the vitamin D hormone, OSM, Dex, or TGFβ1, or the positive effects of BMP-2. These data suggest that we need to move beyond ECR5 to understand SOST regulation.
Collapse
Affiliation(s)
- Hillary C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Sydney J Hansen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
22
|
Pérez-Campo FM, Santurtún A, García-Ibarbia C, Pascual MA, Valero C, Garcés C, Sañudo C, Zarrabeitia MT, Riancho JA. Osterix and RUNX2 are Transcriptional Regulators of Sclerostin in Human Bone. Calcif Tissue Int 2016; 99:302-309. [PMID: 27154028 DOI: 10.1007/s00223-016-0144-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Sclerostin, encoded by the SOST gene, works as an inhibitor of the Wnt pathway and therefore is an important regulator of bone homeostasis. Due to its potent action as an inhibitor of bone formation, blocking sclerostin activity is the purpose of recently developed anti-osteoporotic treatments. Two bone-specific transcription factors, RUNX2 and OSX, have been shown to interact and co-ordinately regulate the expression of bone-specific genes. Although it has been recently shown that sclerostin is targeted by OSX in mice, there is currently no information of whether this is also the case in human cells. We have identified SP-protein family and AML1 consensus binding sequences at the human SOST promoter and have shown that OSX, together with RUNX2, binds to a specific region close to the transcription start site. Furthermore, we show that OSX and RUNX2 activate SOST expression in a co-ordinated manner in vitro and that SOST expression levels show a significant positive correlation with OSX/RUNX2 expression levels in human bone. We also confirmed previous results showing an association of several SOST/RUNX2 polymorphisms with bone mineral density.
Collapse
Affiliation(s)
- Flor M Pérez-Campo
- Faculty of Medicine Department of Molecular Biology, University of Cantabria, Santander, Spain
| | - Ana Santurtún
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Carmen García-Ibarbia
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain
| | - María A Pascual
- Service of Traumatology and Orthopedic Surgery, Hospital U. Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Carmen Valero
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain
| | - Carlos Garcés
- Service of Traumatology and Orthopedic Surgery, Hospital U. Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain
| | - María T Zarrabeitia
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL, University of Cantabria, Avda. Valdecilla S/N, 39008, Santander, Spain.
| |
Collapse
|
23
|
Fujiwara M, Kubota T, Wang W, Ohata Y, Miura K, Kitaoka T, Okuzaki D, Namba N, Michigami T, Kitabatake Y, Ozono K. Successful induction of sclerostin in human-derived fibroblasts by 4 transcription factors and its regulation by parathyroid hormone, hypoxia, and prostaglandin E2. Bone 2016; 85:91-8. [PMID: 26851122 DOI: 10.1016/j.bone.2016.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022]
Abstract
Sclerostin, coded by SOST, is a secretory protein that is specifically expressed in osteocytes and suppresses osteogenesis by inhibiting WNT signaling. The regulatory mechanism underlying SOST expression remains unclear mainly due to the absence of an adequate human cell model. Thus, we herein attempted to establish a cell model of human dermal fibroblasts in order to investigate the functions of sclerostin. We selected 20 candidate transcription factors (TFs) that induce SOST expression by analyzing gene expression patterns in the human sarcoma cell line, SaOS-2, between differentiation and maintenance cultures using microarrays. An effective set of TFs to induce SOST expression was sought by their viral transduction into fibroblasts, and a combination of four TFs: ATF3, KLF4, PAX4, and SP7, was identified as the most effective inducer of SOST expression. Quantitative PCR demonstrated that the expression levels of SOST in fibroblasts treated with the 4 TFs were 199- and 1439-fold higher than those of the control after 1-week and 4-week cultures, respectively. The level of sclerostin in the conditioned medium, as determined by ELISA, was 21.2pmol/l 4weeks after the transduction of the 4 TFs. Interestingly, the production of Dickkopf1 (DKK1), another secreted inhibitor of WNT signaling, was also increased by transduction of these 4 TFs. Parathyroid hormone (PTH) significantly suppressed the induced SOST by 38% and sclerostin by 82% that of the vehicle. Hypoxia increased the induced SOST by 62% that of normoxia. Furthermore, prostaglandin E2 (PGE2) increased SOST expression levels to 16-fold those of the vehicle. In conclusion, the efficient induction of SOST expression and sclerostin production was achieved in human dermal fibroblasts by the transduction of ATF3, KLF4, PAX4, and SP7, and the induced SOST and sclerostin were regulated by PTH, hypoxia, and PGE2. This model may contribute to elucidating the regulatory mechanisms underlying SOST expression and advancing drug development for metabolic bone diseases.
Collapse
Affiliation(s)
- Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Wei Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kohji Miura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; Department of Pediatrics, JCHO Osaka Hospital, Osaka 553-0003, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Yao W, Dai W, Jiang L, Lay EYA, Zhong Z, Ritchie RO, Li X, Ke H, Lane NE. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int 2016; 27:283-294. [PMID: 26384674 PMCID: PMC4958115 DOI: 10.1007/s00198-015-3308-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED This study was to determine if antibody against sclerostin (Scl-Ab) could prevent glucocorticoid (GC)-induced osteoporosis in mice. We found that Scl-Ab prevented GC-induced reduction in bone mass and bone strength and that the anabolic effects of Scl-Ab might be partially achieved through the preservation of osteoblast activity through autophagy. INTRODUCTION Glucocorticoids (GCs) inhibit bone formation by altering osteoblast and osteocyte cell activity and lifespan. A monoclonal antibody against sclerostin, Scl-Ab, increased bone mass in both preclinical animal and clinical studies in subjects with low bone mass. The objectives of this study were to determine if treatment with the Scl-Ab could prevent loss of bone mass and strength in a mouse model of GC excess and to elucidate if Scl-Ab modulated bone cell activity through autophagy. METHODS We generated reporter mice that globally expressed dsRed fused to LC3, a protein marker for autophagosomes, and evaluated the dose-dependent effects of GCs (0, 0.8, 2.8, and 4 mg/kg/day) and Scl-Ab on autophagic osteoblasts, bone mass, and bone strength. RESULTS GC treatment at 2.8 and 4 mg/kg/day of methylprednisolone significantly lowered trabecular bone volume (Tb-BV/TV) at the lumbar vertebrae and distal femurs, cortical bone mass at the mid-shaft femur (FS), and cortical bone strength compared to placebo (PL). In mice treated with GC and Scl-Ab, Tb-BV/TV increased by 60-125 %, apparent bone strength of the lumbar vertebrae by 30-70 %, FS-BV by 10-18 %, and FS-apparent strength by 13-15 %, as compared to GC vehicle-treated mice. GC treatment at 4 mg/kg/day reduced the number of autophagic osteoblasts by 70 % on the vertebral trabecular bone surface compared to the placebo group (PL, GC 0 mg), and GC + Scl-Ab treatment. CONCLUSIONS Treatment with Scl-Ab prevented GC-induced reduction in both trabecular and cortical bone mass and strength and appeared to maintain osteoblast activity through autophagy.
Collapse
Affiliation(s)
- W. Yao
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - W. Dai
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
- Science and Technology Experimental Center, Integrative Medicine Discipline, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - L. Jiang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - E. Y.-A. Lay
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Z. Zhong
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - R. O. Ritchie
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - X. Li
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - H. Ke
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - N. E. Lane
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
25
|
Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro. J Biol Chem 2015; 290:16744-58. [PMID: 25953900 DOI: 10.1074/jbc.m114.628313] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 11/06/2022] Open
Abstract
Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.
Collapse
Affiliation(s)
- Jordan M Spatz
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, Harvard-MIT Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Marc N Wein
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Jonathan H Gooi
- NorthWest Academic Centre, The University of Melbourne, St. Albans, Victoria 3065, Australia, and
| | - Yili Qu
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Jenna L Garr
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Shawn Liu
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Kevin J Barry
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yuhei Uda
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Forest Lai
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Christopher Dedic
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Mercedes Balcells-Camps
- Harvard-MIT Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Bioengineering Department, Institut Quimic de Sarria, Ramon Llull University, 08017 Barcelona, Spain
| | - Henry M Kronenberg
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | | | - Paola Divieti Pajevic
- From the Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114,
| |
Collapse
|
26
|
You L, Chen L, Pan L, Gu WS, Chen JY. Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells. Biochem Biophys Res Commun 2014; 456:598-604. [PMID: 25490389 DOI: 10.1016/j.bbrc.2014.11.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 01/30/2023]
Abstract
Osteoporosis is a metabolic disease in which a disruption of the balance between bone formation by osteoblasts and bone resorption by osteoclasts leads to the progressive deterioration of bone density and quality. Tissue engineering approaches to the treatment of osteoporosis depend on the identification of factors that promote the differentiation of progenitor cells towards an osteoblastic phenotype. In the present study, we expanded on prior findings on the role of zinc finger protein 467 (Zfp467) in the osteoblastic differentiation of adipose-derived stem cells (ADSCs) and explored the underlying mechanisms. We showed that Zfp467 binds to and regulates the expression of the SOST gene, which encodes a secreted glycoprotein named sclerostin (Sost) that is expressed exclusively by osteocytes and functions as a negative regulator of bone formation through the modulation of Wnt signaling. Overexpression of Zfp467 in ADSCs inhibited Wnt signaling by promoting binding of Sost to the Wnt coreceptors LRP5/6 and disrupting Wnt induced Frizzled-LRP6 complex formation, and siRNA mediated Sost silencing reversed the inhibition of Wnt signaling by Zfp467 in ADSCs. Our results indicate that Zfp467 regulates the differentiation of ADSCs via a mechanism involving Sost-mediated inhibition of Wnt signaling, suggesting potential therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li You
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Lin Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ling Pan
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen-Sha Gu
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jin-Yu Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
27
|
Weivoda MM, Oursler MJ. Developments in sclerostin biology: regulation of gene expression, mechanisms of action, and physiological functions. Curr Osteoporos Rep 2014; 12:107-14. [PMID: 24477413 PMCID: PMC4009626 DOI: 10.1007/s11914-014-0188-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The SOST gene, which encodes the protein sclerostin, was identified through genetic linkage analysis of sclerosteosis and van Buchem's disease patients. Sclerostin is a secreted glycoprotein that binds to the low-density lipoprotein receptor-related proteins 4, 5, and 6 to inhibit Wnt signaling. Since the initial discovery of sclerostin, much understanding has been gained into the role of this protein in the regulation of skeletal biology. In this article, we discuss the latest findings in the regulation of SOST expression, sclerostin mechanisms of action, and the potential utility of targeting sclerostin in conditions of low bone mass.
Collapse
Affiliation(s)
- Megan M Weivoda
- Division of Endocrinology, Metabolism, Nutrition & Diabetes, Mayo Clinic, 200 First Street NW, Rochester, MN, 55905, USA,
| | | |
Collapse
|
28
|
Renn J, Winkler C. Osterix/Sp7 regulates biomineralization of otoliths and bone in medaka (Oryzias latipes). Matrix Biol 2014; 34:193-204. [PMID: 24407212 DOI: 10.1016/j.matbio.2013.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Abstract
Osterix/Sp7 is a zinc finger transcription factor and critical regulator of osteoblast differentiation, maturation and activity. Osterix expression has also been described in non-skeletal tissues but functional analyses are lacking. In the present study, we show that in the teleost model medaka, osterix is present as two alternatively spliced transcripts, osx_tv1 and osx_tv2. Knock-down of osx_tv1 and/or osx_tv2 results in mineralization loss in early intramembranous bones while cartilage formation is mostly unaffected. Formation of the parasphenoid, the earliest mineralized bone in the medaka skeleton, is impaired and fails to recover at later stages. Ossification of later bones, such as the operculum and cleithrum, is delayed but recovers during further development. In the axial skeleton, formation of the neural arches and centra is strongly delayed. In vivo analyses using osterix:nlGFP and osteocalcin:GFP transgenic medaka and whole mount in situ hybridization suggest that bone defects observed after knock-down of osterix are caused by a delay of osteoblast maturation and activity. Furthermore, we analyzed expression profile and function of osterix during ear and otolith formation. We show that osterix is expressed in otic placodes at the otic vesicle stage and that its knock-down results in a loss of otoliths. Taken together, we show that osterix is required for bone formation in a teleost fish and that its important regulatory functions are conserved between teleosts and mammals. Furthermore, we provide the first functional evidence for a role of Osterix in a non-skeletal tissue, i.e. the otoliths.
Collapse
Affiliation(s)
- Jörg Renn
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Centre for BioImaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore.
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Centre for BioImaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
29
|
Tonna S, Sims NA. Talking among ourselves: paracrine control of bone formation within the osteoblast lineage. Calcif Tissue Int 2014; 94:35-45. [PMID: 23695526 DOI: 10.1007/s00223-013-9738-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/23/2013] [Indexed: 12/31/2022]
Abstract
While much research focuses on the range of signals detected by the osteoblast lineage that originate from endocrine influences, or from other cells within the body, there are also multiple interactions that occur within this family of cells. Osteoblasts exist as teams and form extensive communication networks both on, and within, the bone matrix. We provide four snapshots of communication pathways that exist within the osteoblast lineage between different stages of their differentiation, as follows: (1) PTHrP, a factor produced by early osteoblasts that stimulates the activity of more mature bone-forming cells and the most mature osteoblast embedded within the bone matrix, the osteocyte; (2) sclerostin, a secreted factor, released by osteocytes into their extensive communication network to restrict the activity of younger osteoblasts on the bone surface; (3) oncostatin M, a member of the IL-6/gp130 family of cytokines, expressed throughout osteoblast differentiation and acting to stimulate osteoblast activity that works on a different receptor in the mature osteocyte compared to the preosteoblast; and (4) Eph/ephrins, cell-contact-dependent kinases, and the osteoblast-lineage-specific interaction of EphB4 and ephrinB2, which provides a checkpoint for entry to the late stages of osteoblast differentiation and restricts RANKL expression.
Collapse
Affiliation(s)
- Stephen Tonna
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | | |
Collapse
|
30
|
Delgado-Calle J, Arozamena J, Pérez-López J, Bolado-Carrancio A, Sañudo C, Agudo G, de la Vega R, Alonso MA, Rodríguez-Rey JC, Riancho JA. Role of BMPs in the regulation of sclerostin as revealed by an epigenetic modifier of human bone cells. Mol Cell Endocrinol 2013; 369:27-34. [PMID: 23415712 DOI: 10.1016/j.mce.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/16/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Sclerostin, encoded by the SOST gene, is specifically expressed by osteocytes. However osteoblasts bear a heavily methylated SOST promoter and therefore do not express SOST. Thus, studying the regulation of human SOST is challenged by the absence of human osteocytic cell lines. Herein, we explore the feasibility of using the induction of SOST expression in osteoblasts by a demethylating agent to study the mechanisms underlying SOST transcription, and specifically, the influence of bone morphogenetic proteins (BMPs). Microarray analysis and quantitative PCR showed that AzadC up-regulated the expression of several BMPs, including BMP-2, BMP-4 and BMP-6, as well as several BMP downstream targets. Recombinant BMP-2 increased the transcriptional activity of the SOST promoter cloned into a reporter vector. Likewise, exposing cells transfected with the vector to AzadC also resulted in increased transcription. On the other hand, inhibition of the canonical BMP signaling blunted the effect of AzadC on SOST. These results show that the AzadC-induced demethylation of the SOST promoter in human osteoblastic cells may be a valuable tool to study the regulation of SOST expression. As a proof of concept, it allowed us to demonstrate that BMPs stimulate SOST expression by a mechanism involving BMPR1A receptors and downstream Smad-dependent pathways.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital UM Valdecilla, IFIMAV, University of Cantabria, Santander, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS One 2013; 8:e58104. [PMID: 23472141 PMCID: PMC3589352 DOI: 10.1371/journal.pone.0058104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 02/03/2013] [Indexed: 01/08/2023] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor which is essential for bone formation. MicroRNAs (miRNAs) have been previously shown to be involved in osteogenesis. However, it is unclear whether Osx is involved in the regulation of miRNA expression. In this study, we have identified groups of miRNAs that are differentially expressed in calvaria of the E18.5 Osx(-/-) embryos compared to wild type embryos. The correlation between the levels of miRNAs and Osx expression was further verified in cultured M-Osx cells in which over-expression of Osx is inducible. Our results suggest that Osx down-regulates expression of a group of miRNAs including mir-133a and -204/211, but up-regulates expression of another group of miRNAs such as mir-141/200a. Mir-133a and -204/211 are known to target the master osteogenic transcription factor Runx2. Further assays suggest that Sost, which encodes the Wnt signaling antagonist Sclerostin, and alkaline phosphatase (ALP) are two additional targets of mir-204/211. Mir-141/200a has been known to target the transcription factor Dlx5. Thus, we postulate that during the process of Osx-controlled osteogenesis, Osx has the ability to coordinately modulate Runx2, Sclerostin, ALP and Dlx5 proteins at levels appropriate for optimal osteoblast differentiation and function, at least in part, through regulation of specific miRNAs. Our study shows a tight correlation between Osx and the miRNAs involved in bone formation, and provides new information about molecular mechanisms of Osx-controlled osteogenesis.
Collapse
|
32
|
Zhang C, Tang W, Li Y. Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS One 2012. [PMID: 23185634 PMCID: PMC3503972 DOI: 10.1371/journal.pone.0050525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for bone formation and osteoblast differentiation from mesenchymal stem cells. In Osx-null mice, no bone formation occurs. Matrix metalloproteinase 13 (MMP13) is a member of the matrix metalloproteinase family and plays an important role in endochondral ossification and bone remodeling. Transcriptional regulation of MMP13 expression in osteoblasts is not well understood. Here, we provide several lines of evidence which show that MMP13 is a direct target of Osx in osteoblasts. Calvaria obtained from Osx-null embryos displayed dramatic reductions in MMP13 expression compared to wild-type calvaria. Stable overexpression of Osx stimulated MMP13 expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of MMP13 expression. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the MMP13 promoter in a dose-dependent manner. To define the region of the MMP13 promoter that was responsive to Osx, a series of MMP13 promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 80 bp of the MMP13 promoter. Additional point mutant analysis was used to identify one GC-rich region that was responsible for MMP13 promoter activation by Osx. Gel Shift Assay showed that Osx bound to MMP13 promoter sequence directly. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native MMP13 promoter in primary osteoblasts in vivo. Taken together, these data strongly support a direct regulatory role for Osx in MMP13 gene expression in osteoblasts. They further provide new insight into potential mechanisms and pathways that Osx controls bone formation.
Collapse
Affiliation(s)
- Chi Zhang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| | | | | |
Collapse
|
33
|
Yang L, Cheng P, Chen C, He HB, Xie GQ, Zhou HD, Xie H, Wu XP, Luo XH. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res 2012; 27:1598-606. [PMID: 22467200 DOI: 10.1002/jbmr.1621] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
microRNAs (miRNAs) play pivotal roles in osteoblast differentiation. However, the mechanisms of miRNAs regulating osteoblast mineralization still need further investigation. Here, we performed miRNA profiling and identified that miR-93 was the most significantly downregulated miRNA during osteoblast mineralization. Overexpression of miR-93 in cultured primary mouse osteoblasts attenuated osteoblast mineralization. Expression of the Sp7 transcription factor 7 (Sp7, Osterix), a zinc finger transcription factor and critical regulator of osteoblast mineralization, was found to be inversely correlated with miR-93. Then Sp7 was confirmed to be a target of miR-93. Overexpression of miR-93 in cultured osteoblasts reduced Sp7 protein expression without affecting its mRNA level. Luciferase reporter assay showed that miR-93 directly targeted Sp7 by specifically binding to the target coding sequence region (CDS) of Sp7. Experiments such as electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and promoter luciferase reporter assay confirmed that Sp7 bound to the promoter of miR-93. Furthermore, overexpression of Sp7 reduced miR-93 transcription, whereas blocking the expression of Sp7 promoted miR-93 transcription. Our study showed that miR-93 was an important regulator in osteoblast mineralization and miR-93 carried out its function through a novel miR-93/Sp7 regulatory feedback loop. Our findings provide new insights into the roles of miRNAs in osteoblast mineralization.
Collapse
Affiliation(s)
- Li Yang
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, 139# Middle Renmin Road, Changsha, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Silvério KG, Davidson KC, James RG, Adams AM, Foster BL, Nociti FH, Somerman MJ, Moon RT. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J Periodontal Res 2011; 47:309-19. [PMID: 22150562 DOI: 10.1111/j.1600-0765.2011.01433.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation has been shown to occur through the canonical Wnt/βcatenin pathway, whereas factors promoting canonical Wnt signaling in cementoblasts inhibit cell differentiation and promote cell proliferation in vitro. The aim of this study was to investigate whether putative precursor cells of cementoblasts, dental follicle cells (murine SVF4 cells), when stimulated with BMP2, would exhibit changes in genes/proteins associated with the Wnt/β-catenin pathway. MATERIAL AND METHODS SVF4 cells were stimulated with BMP2, and the following assays were carried out: (i) Wnt/β-catenin pathway activation assessed by western blotting, β-catenin/transcription factor (TCF) reporter assays and expression of the lymphoid enhancer-binding factor-1 (Lef1), transcription factor 7 (Tcf7), Wnt inhibitor factor 1 (Wif1) and Axin2 (Axin2) genes; and (ii) cementoblast/osteoblast differentiation assessed by mineralization in vitro, and by the mRNA levels of runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), osteocalcin (Ocn) and bone sialoprotein (Bsp), determined by quantitative PCR after treatment with wingless-type MMTV integration site family, member 3A (WNT3A) and knockdown of β-catenin. RESULTS WNT3A induced β-catenin nuclear translocation and up-regulated the transcriptional activity of a canonical Wnt-responsive reporter, suggesting that the Wnt/β-catenin pathway functions in SVF4 cells. Activation of Wnt signaling with WNT3A suppressed BMP2-mediated induction of cementoblast/osteoblast maturation of SVF4 cells. However, β-catenin knockdown showed that the BMP2-induced expression of cementoblast/osteoblast differentiation markers requires endogenous β-catenin. WNT3A down-regulated transcripts for Runx2, Alp and Ocn in SVF4 cells compared with untreated cells. In contrast, BMP2 induction of Bsp transcripts occurred independently of Wnt/β-catenin signaling. CONCLUSION These data suggest that stabilization of β-catenin by WNT3A inhibits BMP2-mediated induction of cementoblast/osteoblast differentiation in SVF4 cells, although BMP2 requires endogenous Wnt/β-catenin signaling to promote cell maturation.
Collapse
Affiliation(s)
- K G Silvério
- Institute for Stem Cells and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu L, van der Valk M, Cao J, Han CYE, Juan T, Bass MB, Deshpande C, Damore MA, Stanton R, Babij P. Sclerostin expression is induced by BMPs in human Saos-2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element. Bone 2011; 49:1131-40. [PMID: 21890009 DOI: 10.1016/j.bone.2011.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/09/2011] [Accepted: 08/14/2011] [Indexed: 12/15/2022]
Abstract
Sclerostin is a secreted inhibitor of Wnt signaling and plays an essential role in the regulation of bone mass. The expression of sclerostin is largely restricted to osteocytes although its mode of transcriptional regulation is not well understood. We observed regulated expression of sclerostin mRNA and protein that was directly correlated with the mineralization response in cultured human Saos-2 osteosarcoma cells and rat primary calvarial cells. Sclerostin mRNA and protein levels were increased following treatment of cells with BMP2, BMP4 and BMP7. Analysis of deletion mutants from the -7.4 kb upstream region of the human sclerostin promoter did not reveal any specific regions that were responsive to BMPs, Wnt3a, PTH, TGFβ1 or Activin A in Saos-2 cells. The downstream ECR5 element did not show enhancer activity in Saos-2 cells and also was not affected when Saos-2 cells were treated with BMPs or PTH. Genome-wide microarray analysis of Saos-2 cells treated with BMP2 showed significant changes in expression of several transcription factors with putative consensus DNA binding sites in the region of the sclerostin promoter. However, whereas most factors tested showed either a range of inhibitory activity (DLX family, MSX2, HEY1, SMAD6/7) or lack of activity on the sclerostin promoter including SMAD9, only MEF2B showed a positive effect on both the promoter and ECR5 element. These results suggest that the dramatic induction of sclerostin gene expression by BMPs in Saos-2 cells occurs indirectly and is associated with late stage differentiation of osteoblasts and the mineralization process.
Collapse
MESH Headings
- Activins/pharmacology
- Adaptor Proteins, Signal Transducing
- Animals
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/pharmacology
- Calcification, Physiologic/drug effects
- Calcification, Physiologic/genetics
- Cell Line, Tumor
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Genetic Markers/genetics
- Humans
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Osteosarcoma/genetics
- Osteosarcoma/pathology
- Parathyroid Hormone/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transforming Growth Factor beta1/pharmacology
- Wnt3A Protein/pharmacology
Collapse
Affiliation(s)
- Longchuan Yu
- Department of Metabolic Disorders, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tang W, Yang F, Li Y, de Crombrugghe B, Jiao H, Xiao G, Zhang C. Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts. J Biol Chem 2011; 287:1671-8. [PMID: 22110141 PMCID: PMC3265850 DOI: 10.1074/jbc.m111.288472] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for bone formation and osteoblast differentiation. The critical step in bone formation is to replace the avascular cartilage template with vascularized bone. Osteogenesis and angiogenesis are associated with each other, sharing some essential regulators. Vascular endothelial growth factor (VEGF) is involved in both angiogenesis and osteogenesis. Transcriptional regulation of VEGF expression is not well known in osteoblasts. In this study, quantitative real-time RT-PCR results revealed that VEGF expression was down-regulated in Osx-null calvarial cells and that osteoblast marker osteocalcin expression was absent. Overexpression of Osx in stable C2C12 mesenchymal cells using a Tet-off system resulted in up-regulation of both osteocalcin and VEGF expression. The inhibition of Osx by siRNA led to repression of VEGF expression in osteoblasts. These results suggest that Osx controls VEGF expression. Transfection assays demonstrated that Osx activated VEGF promoter activity. A series of VEGF promoter deletion mutants were examined and the minimal Osx-responsive region was defined to the proximal 140-bp region of the VEGF promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VEGF promoter activation by Osx. Gel shift assay showed that Osx bound to the VEGF promoter sequence directly. Chromatin immunoprecipitation assays indicated that endogenous Osx associated with the native VEGF promoter in primary osteoblasts. Moreover, immunohistochemistry staining showed decreased VEGF protein levels in the tibiae of Osx conditional knock-out mice. We provide the first evidence that Osx controlled VEGF expression, suggesting a potential role of Osx in coordinating osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Wanjin Tang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts. PLoS One 2011; 6:e26504. [PMID: 22028889 PMCID: PMC3196580 DOI: 10.1371/journal.pone.0026504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.
Collapse
|
39
|
Abstract
The past decade has seen rapid advancement in the dissection of the molecular events and players in the development and homeostasis of mineralized tissues, that is, teeth and bones. Much of this is due to research efforts toward the regeneration of these organs and also to develop treatments for pathologies of bone, especially osteoporosis. Of late, great interest has been focused on the Wnt family of proteins and their involvement in tooth and bone development and in the regulation of postnatal bone mass. The purpose of this review is to summarize these findings and to explore new areas of Wnt research such as Wnt?bone morphogenetic protein interactions and the exciting revelation of systemic serotonin being involved in bone mass regulation.
Collapse
Affiliation(s)
- Kevin A Tompkins
- Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
40
|
Niger C, Lima F, Yoo DJ, Gupta RR, Buo AM, Hebert C, Stains JP. The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter. Bone 2011; 49:683-92. [PMID: 21820092 PMCID: PMC3170016 DOI: 10.1016/j.bone.2011.07.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 12/11/2022]
Abstract
The transcription factor osterix (Osx/Sp7) is required for osteogenic differentiation and bone formation in vivo. While Osx can act at canonical Sp1 DNA-binding sites and/or interact with NFATc1 to cooperatively regulate transcription in some osteoblast promoters, little is known about the molecular details by which Osx regulates osteocalcin (OCN) transcription. We previously identified in the OCN proximal promoter a minimal C/T-rich motif, termed OCN-CxRE (connexin-response element) that binds Sp1 and Sp3 in a gap junction-dependent manner. In the present study, we hypothesized that Osx could act via this non-canonical Sp1/Sp3-binding element to regulate OCN transcription. OCN promoter luciferase reporter assays show that Osx alone is an insufficient activator that requires Sp1, but not Sp3, to synergistically stimulate OCN promoter activity. Moreover, promoter deletion analyses demonstrate that both the Sp1/Sp3-binding OCN-CxRE (-70 to -57) and the -92 to -87 region of the OCN proximal promoter are critical for Osx/Sp1 synergistic activities. Our data show that Sp1 influences Osx activity by enhancing Osx occupancy on the OCN promoter, perhaps via physical interactions between the two transcription factors. Finally, alteration of the expression of the gap junction protein connexin43 modulates the recruitment of both Sp1 and Osx to the OCN promoter. In total, our data are strongly in support of Sp1 as an essential transcription factor required for Osx recruitment and transactivation of the OCN promoter. Further, these data lend insight into a mechanism by which alteration of connexin43 impacts osteogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Tang W, Li Y, Osimiri L, Zhang C. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem 2011; 286:32995-3002. [PMID: 21828043 PMCID: PMC3190908 DOI: 10.1074/jbc.m111.244236] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor essential for osteoblast differentiation and bone formation. Osx knock-out mice lack bone completely. Satb2 is critical for osteoblast differentiation as a special AT-rich binding transcription factor. It is not known how Satb2 is transcriptionally regulated during bone formation. In this study, quantitative real-time RT-PCR results demonstrated that Satb2 was down-regulated in Osx-null calvaria. In stable C2C12 mesenchymal cells using the tetracycline (Tet)-Off system, overexpression of Osx stimulated Satb2 expression. Moreover, inhibition of Osx by siRNA led to repression of Satb2 expression in osteoblasts. These results suggest that Osx controls Satb2 expression. Transient transfection assay showed that Osx activated 1kb Satb2 promoter reporter activity in a dose-dependent manner. To define the region of Satb2 promoter responsive to Osx activation, a series of deletion mutants of Satb2 constructs were made, and the minimal region was narrowed down to the proximal 130 bp of the Satb2 promoter. Further point mutation studies found that two GC-rich region mutations disrupted the Satb2 130bp promoter activation by Osx, suggesting that these GC-rich binding sites were responsible for Satb2 activation by Osx. Gel shift assay showed that Osx bound to the Satb2 promoter sequence directly. ChIP assays indicated that endogenous Osx associated with the native Satb2 promoter in osteoblasts. Importantly, Satb2 siRNA significantly inhibited Osx-induced osteoblast marker gene expressions. Taken together, our findings indicate that Osx is an upstream regulator of Satb2 during bone formation. This reveals a new additional link of the transcriptional regulation mechanism that Osx controls bone formation.
Collapse
Affiliation(s)
- Wanjin Tang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
42
|
Lee JA, Chu S, Willard FS, Cox KL, Sells Galvin RJ, Peery RB, Oliver SE, Oler J, Meredith TD, Heidler SA, Gough WH, Husain S, Palkowitz AD, Moxham CM. Open innovation for phenotypic drug discovery: The PD2 assay panel. ACTA ACUST UNITED AC 2011; 16:588-602. [PMID: 21521801 DOI: 10.1177/1087057111405379] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.
Collapse
Affiliation(s)
- Jonathan A Lee
- Department of Quantitative and Structural Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|