1
|
Sario GD, Dionisi T, Addolorato G. Redefining thiamine requirements in alcohol use disorder: Aligning treatment with neurocognitive needs. Eur J Intern Med 2025; 134:33-34. [PMID: 40023678 DOI: 10.1016/j.ejim.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Giovanna Di Sario
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy
| | - Tommaso Dionisi
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy
| | - Giovanni Addolorato
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy; Department of Medical and Surgical Sciences, Università Cattolica di Roma, Rome, Italy.
| |
Collapse
|
2
|
Hanaford AR, Khanna A, Truong V, James K, Chen Y, Mulholland M, Kayser B, Liao RW, Sedensky M, Morgan P, Andrew Baertsch N, Kalia V, Sarkar S, Johnson SC. Peripheral macrophages drive CNS disease in the Ndufs4(-/-) model of Leigh syndrome. Brain Pathol 2023; 33:e13192. [PMID: 37552802 PMCID: PMC10580015 DOI: 10.1111/bpa.13192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Subacute necrotizing encephalopathy, or Leigh syndrome (LS), is the most common pediatric presentation of genetic mitochondrial disease. LS is a multi-system disorder with severe neurologic, metabolic, and musculoskeletal symptoms. The presence of progressive, symmetric, and necrotizing lesions in the brainstem are a defining feature of the disease, and the major cause of morbidity and mortality, but the mechanisms underlying their pathogenesis have been elusive. Recently, we demonstrated that high-dose pexidartinib, a CSF1R inhibitor, prevents LS CNS lesions and systemic disease in the Ndufs4(-/-) mouse model of LS. While the dose-response in this study implicated peripheral immune cells, the immune populations involved have not yet been elucidated. Here, we used a targeted genetic tool, deletion of the colony-stimulating Factor 1 receptor (CSF1R) macrophage super-enhancer FIRE (Csf1rΔFIRE), to specifically deplete microglia and define the role of microglia in the pathogenesis of LS. Homozygosity for the Csf1rΔFIRE allele ablates microglia in both control and Ndufs4(-/-) animals, but onset of CNS lesions and sequalae in the Ndufs4(-/-), including mortality, are only marginally impacted by microglia depletion. The overall development of necrotizing CNS lesions is not altered, though microglia remain absent. Finally, histologic analysis of brainstem lesions provides direct evidence of a causal role for peripheral macrophages in the characteristic CNS lesions. These data demonstrate that peripheral macrophages play a key role in the pathogenesis of disease in the Ndufs4(-/-) model.
Collapse
Affiliation(s)
- Allison R. Hanaford
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Asheema Khanna
- Ben Towne Center for Childhood Cancer ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Vivian Truong
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Katerina James
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Yihan Chen
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Michael Mulholland
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Bernhard Kayser
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Ryan W. Liao
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Margaret Sedensky
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Phil Morgan
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Nathan Andrew Baertsch
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Vandana Kalia
- Ben Towne Center for Childhood Cancer ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Surojit Sarkar
- Ben Towne Center for Childhood Cancer ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Simon C. Johnson
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
- Department of Applied Sciences, Translational BioscienceNorthumbria UniversityNewcastle Upon TyneUK
| |
Collapse
|
3
|
Mrowicka M, Mrowicki J, Dragan G, Majsterek I. The importance of thiamine (vitamin B1) in humans. Biosci Rep 2023; 43:BSR20230374. [PMID: 37389565 PMCID: PMC10568373 DOI: 10.1042/bsr20230374] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Thiamine (thiamin, B1) is a vitamin necessary for proper cell function. It exists in a free form as a thiamine, or as a mono-, di- or triphosphate. Thiamine plays a special role in the body as a coenzyme necessary for the metabolism of carbohydrates, fats and proteins. In addition, it participates in the cellular respiration and oxidation of fatty acids: in malnourished people, high doses of glucose result in acute thiamine deficiency. It also participates in energy production in the mitochondria and protein synthesis. In addition, it is also needed to ensure the proper functioning of the central and peripheral nervous system, where it is involved in neurotransmitter synthesis. Its deficiency leads to mitochondrial dysfunction, lactate and pyruvate accumulation, and consequently to focal thalamic degeneration, manifested as Wernicke's encephalopathy or Wernicke-Korsakoff syndrome. It can also lead to severe or even fatal neurologic and cardiovascular complications, including heart failure, neuropathy leading to ataxia and paralysis, confusion, or delirium. The most common risk factor for thiamine deficiency is alcohol abuse. This paper presents current knowledge of the biological functions of thiamine, its antioxidant properties, and the effects of its deficiency in the body.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jerzy Mrowicki
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Grzegorz Dragan
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Effects of Marginal Zn Excess and Thiamine Deficiency on Microglial N9 Cell Metabolism and Their Interactions with Septal SN56 Cholinergic Cells. Int J Mol Sci 2023; 24:ijms24054465. [PMID: 36901896 PMCID: PMC10002586 DOI: 10.3390/ijms24054465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.
Collapse
|
5
|
A Clinician's View of Wernicke-Korsakoff Syndrome. J Clin Med 2022; 11:jcm11226755. [PMID: 36431232 PMCID: PMC9693280 DOI: 10.3390/jcm11226755] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this article is to improve recognition and treatment of Wernicke-Korsakoff syndrome. It is well known that Korsakoff syndrome is a chronic amnesia resulting from unrecognized or undertreated Wernicke encephalopathy and is caused by thiamine (vitamin B1) deficiency. The clinical presentation of thiamine deficiency includes loss of appetite, dizziness, tachycardia, and urinary bladder retention. These symptoms can be attributed to anticholinergic autonomic dysfunction, as well as confusion or delirium, which is part of the classic triad of Wernicke encephalopathy. Severe concomitant infections including sepsis of unknown origin are common during the Wernicke phase. These infections can be prodromal signs of severe thiamine deficiency, as has been shown in select case descriptions which present infections and lactic acidosis. The clinical symptoms of Wernicke delirium commonly arise within a few days before or during hospitalization and may occur as part of a refeeding syndrome. Wernicke encephalopathy is mostly related to alcohol addiction, but can also occur in other conditions, such as bariatric surgery, hyperemesis gravidarum, and anorexia nervosa. Alcohol related Wernicke encephalopathy may be identified by the presence of a delirium in malnourished alcoholic patients who have trouble walking. The onset of non-alcohol-related Wernicke encephalopathy is often characterized by vomiting, weight loss, and symptoms such as visual complaints due to optic neuropathy in thiamine deficiency. Regarding thiamine therapy, patients with hypomagnesemia may fail to respond to thiamine. This may especially be the case in the context of alcohol withdrawal or in adverse side effects of proton pump inhibitors combined with diuretics. Clinician awareness of the clinical significance of Wernicke delirium, urinary bladder retention, comorbid infections, refeeding syndrome, and hypomagnesemia may contribute to the recognition and treatment of the Wernicke-Korsakoff syndrome.
Collapse
|
6
|
Cassiano LMG, Oliveira MS, Pioline J, Salim ACM, Coimbra RS. Neuroinflammation regulates the balance between hippocampal neuron death and neurogenesis in an ex vivo model of thiamine deficiency. J Neuroinflammation 2022; 19:272. [DOI: 10.1186/s12974-022-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Thiamine (vitamin B1) is a cofactor for enzymes of central energy metabolism and its deficiency (TD) impairs oxidative phosphorylation, increases oxidative stress, and activates inflammatory processes that can lead to neurodegeneration. Wernicke–Korsakoff syndrome (WKS) is a consequence of chronic TD, which leads to extensive neuronal death, and is associated with neuropathological disorders, including cognitive deficits and amnesia. The hippocampus is one of the brain areas most affected by WKS. B1 replacement may not be enough to prevent the irreversible cognitive deficit associated with WKS.
Materials and methods
An organotypic hippocampal slice culture (OHC) model was developed to investigate, using immunofluorescence and confocal microscopy and transcriptome analysis, the molecular mechanisms underlying the neurodegeneration associated with TD. The effect of anti-inflammatory pharmacological intervention with resveratrol (RSV) was also assessed in B1-deprived OHCs.
Results
In OHCs cultured without B1, neuronal density decayed after 5 days and, on the 7th day, the epigenetic markings H3K4me3 and H3K9me3 were altered in mature neurons likely favoring gene transcription. Between the 7th and the 14th day, a pulse of neurogenesis was observed followed by a further massive neuron loss. Transcriptome analysis at day nine disclosed 89 differentially expressed genes in response to B1 deprivation. Genes involved in tryptophan metabolism and lysine degradation KEGG pathways, and those with Gene Ontology (GO) annotations related to the organization of the extracellular matrix, cell adhesion, and positive regulation of synaptic transmission were upregulated. Several genes of the TNF and FoxO signaling pathways and with GO terms related to inflammation were inhibited in response to B1 deprivation. Nsd1, whose product methylates histone H3 lysine 36, was upregulated and the epigenetic marking H3K36me3, associated with negative regulation of neurogenesis, was increased in neurons. Treating B1-deprived OHCs with RSV promoted an earlier neurogenesis pulse.
Conclusion
Neuroregeneration occurs in B1-deficient hippocampal tissue during a time window. This phenomenon depends on reducing neuroinflammation and, likely, on metabolic changes, allowing acetyl-CoA synthesis from amino acids to ensure energy supply via oxidative phosphorylation. Thus, neuroinflammation is implicated as a major regulator of hippocampal neurogenesis in TD opening a new search space for treating WKS.
Collapse
|
7
|
Gomes KC, Lima FWB, da Silva Aguiar HQ, de Araújo SS, de Cordova CAS, de Cordova FM. Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2289-2307. [PMID: 34468817 DOI: 10.1007/s00210-021-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine. Even so, severe and permanent neurological disorders can occur in recurrent episodes of TD. In this study, we used a murine model to assess the efficacy of TD recovery treatments using thiamine with or without additional administration of the antioxidant Trolox or the anti-inflammatory dimethyl sulfoxide (DMSO) after a single or recurrent episode of TD. TD was induced for 9 days with deficient chow and pyrithiamine, and the recovery period was 7 days with standard amounts of chow and thiamine, Trolox, and/or DMSO. After these periods, we evaluated behavior, histopathology, and ERK1/2 modulation in the brain. Deficient animals showed reductions in locomotor activity, motor coordination, and spatial memory. Morphologically, after a single episode of TD and recovery, deficient mice showed neuronal vacuolization in the dorsal thalamus and, after two episodes, a reduction in neuronal cell number. These effects were attenuated or reversed by the recovery treatments, mainly in the treatments with thiamine associated with Trolox or DMSO. Deficient animals showed a strong increase in ERK1/2 phosphorylation in the thalamus, hippocampus, and cerebral cortex after one deficiency episode and recovery. Interestingly, after recurrent TD and recovery, ERK1/2 phosphorylation remained high only in the deficient mice treated with thiamine and/or Trolox or thiamine with DMSO. Our data suggest that a protocol for TD treatment with thiamine in conjunction with Trolox or DMSO enhances the recovery of animals and possibly minimizes the late neurological sequelae.
Collapse
Affiliation(s)
- Ketren Carvalho Gomes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Suiane Silva de Araújo
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
8
|
Martins DO, Marques DP, Venega RAG, Chacur M. Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain Behav Immun Health 2020; 2:100040. [PMID: 34589831 PMCID: PMC8474295 DOI: 10.1016/j.bbih.2020.100040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic constriction injury (CCI) of infraorbital nerve (IoN) results in whisker pad mechanical allodynia in rats and activation glial cells contributing to the development of orofacial pain. Whisker pad mechanical allodynia (von Frey stimuli) was tested pre and postoperatively and conducted during the treatment time. Photobiomodulation (PBM) and vitamins B complex (VBC) has been demonstrated therapeutic efficacy in ameliorate neuropathic pain. The aim of this study was to evaluate the antinociceptive effect of PBM, VBC or the combined treatment VBC + PBM on orofacial pain due to CCI-IoN. Behavioral and molecular approaches were used to analyses nociception, cellular and neurochemical alterations. CCI-IoN caused mechanical allodynia and cellular alterations including increased expression of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba-1), administration of VBC (B1/B6/B12 at 180/180/1.8 mg/kg, s.c., 5 times all long 10 sessions) and PBM therapy (904 nm, power of 75Wpico, average power of 0.0434 W, pulse frequency of 9500 Hz, area of the beam 0.13 cm2, 18 s duration, energy density 6 J/cm2, with an energy per point of 0.78 J for 10 sessions) or their combination presented improvement of the nociceptive behavior and decreased expression of GFAP and Iba-1. Additionally, CCI-IoN rats exhibited an upregulation of IL1β, IL6 and TNF-α expression and all treatments prevented this upregulation and also increased IL10 expression. Overall, the present results highlight the pain reliever effect of VBC or PBM alone or in combination, through the modulation of glial cells and cytokines expression in the spinal trigeminal nucleus of rats.
Collapse
Affiliation(s)
- D O Martins
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - D P Marques
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - R A G Venega
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - M Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| |
Collapse
|
9
|
Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:101-168. [PMID: 31733663 PMCID: PMC7372724 DOI: 10.1016/bs.irn.2019.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with brain damage and impaired cognitive functioning. The relative contributions of different etiological factors, such as alcohol, thiamine deficiency and age vulnerability, to the development of alcohol-related neuropathology and cognitive impairment are still poorly understood. One reason for this quandary is that both alcohol toxicity and thiamine deficiency produce brain damage and cognitive problems that can be modulated by age at exposure, aging following alcohol toxicity or thiamine deficiency, and aging during chronic alcohol exposure. Pre-clinical models of alcohol-related brain damage (ARBD) have elucidated some of the contributions of ethanol toxicity and thiamine deficiency to neuroinflammation, neuronal loss and functional deficits. However, the critical variable of age at the time of exposure or long-term aging with ARBD has been relatively ignored. Acute thiamine deficiency created a massive increase in neuroimmune genes and proteins within the thalamus and significant increases within the hippocampus and frontal cortex. Chronic ethanol treatment throughout adulthood produced very minor fluctuations in neuroimmune genes, regardless of brain region. Intermittent "binge-type" ethanol during the adolescent period established an intermediate neuroinflammatory response in the hippocampus and frontal cortex, that can persist into adulthood. Chronic excessive drinking throughout adulthood, adolescent intermittent ethanol exposure, and thiamine deficiency all led to a loss of the cholinergic neuronal phenotype within the basal forebrain, reduced hippocampal neurogenesis, and alterations in the frontal cortex. Only thiamine deficiency results in gross pathological lesions of the thalamus. The behavioral impairment following these types of treatments is hierarchical: Thiamine deficiency produces the greatest impairment of hippocampal- and prefrontal-dependent behaviors, chronic ethanol drinking ensues mild impairments on both types of tasks and adolescent intermittent ethanol exposure leads to impairments on frontocortical tasks, with sparing on most hippocampal-dependent tasks. However, our preliminary data suggest that as rodents age following adolescent intermittent ethanol exposure, hippocampal functional deficits began to emerge. A necessary requirement for the advancement of understanding the neural consequences of alcoholism is a more comprehensive assessment and understanding of how excessive alcohol drinking at different development periods (adolescence, early adulthood, middle-aged and aged) influences the trajectory of the aging process, including pathological aging and disease.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Brian T Kipp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Nicole L Reitz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States.
| |
Collapse
|
10
|
Fernández-Sanz P, Ruiz-Gabarre D, García-Escudero V. Modulating Effect of Diet on Alzheimer's Disease. Diseases 2019; 7:E12. [PMID: 30691140 PMCID: PMC6473547 DOI: 10.3390/diseases7010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
As life expectancy is growing, neurodegenerative disorders, such as Alzheimer's disease, are increasing. This disease is characterised by the accumulation of intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein, senile plaques composed of an extracellular deposit of β-amyloid peptide (Aβ), and neuronal loss. This is accompanied by deficient mitochondrial function, increased oxidative stress, altered inflammatory response, and autophagy process impairment. The present study gathers scientific evidence that demonstrates that specific nutrients exert a direct effect on both Aβ production and Tau processing and their elimination by autophagy activation. Likewise, certain nutrients can modulate the inflammatory response and the oxidative stress related to the disease. However, the extent to which these effects come with beneficial clinical outcomes remains unclear. Even so, several studies have shown the benefits of the Mediterranean diet on Alzheimer's disease, due to its richness in many of these compounds, to which can be attributed their neuroprotective properties due to the pleiotropic effect they show on the aforementioned processes. These indications highlight the potential role of adequate dietary recommendations for clinical management of both Alzheimer's diagnosed patients and those in risk of developing it, emphasising once again the importance of diet on health.
Collapse
Affiliation(s)
- Paloma Fernández-Sanz
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Vega García-Escudero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| |
Collapse
|
11
|
Yu Q, Liu H, Sang S, Chen L, Zhao Y, Wang Y, Zhong C. Thiamine deficiency contributes to synapse and neural circuit defects. Biol Res 2018; 51:35. [PMID: 30231926 PMCID: PMC6145320 DOI: 10.1186/s40659-018-0184-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/09/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The previous studies have demonstrated the reduction of thiamine diphosphate is specific to Alzheimer's disease (AD) and causal factor of brain glucose hypometabolism, which is considered as a neurodegenerative index of AD and closely correlates with the degree of cognitive impairment. The reduction of thiamine diphosphate may contribute to the dysfunction of synapses and neural circuits, finally leading to cognitive decline. RESULTS To demonstrate this hypothesis, we established abnormalities in the glucose metabolism utilizing thiamine deficiency in vitro and in vivo, and we found dramatically reduced dendrite spine density. We further detected lowered excitatory neurotransmission and impaired hippocampal long-term potentiation, which are induced by TPK RNAi in vitro. Importantly, via treatment with benfotiamine, Aβ induced spines density decrease was considerably ameliorated. CONCLUSIONS These results revealed that thiamine deficiency contributed to synaptic dysfunction which strongly related to AD pathogenesis. Our results provide new insights into pathogenesis of synaptic and neuronal dysfunction in AD.
Collapse
Affiliation(s)
- Qiujian Yu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Huimin Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Institutes of Brain Science & Collaborative Innovation Center for Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Lulan Chen
- Institutes of Brain Science & Collaborative Innovation Center for Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yingya Zhao
- Institutes of Brain Science & Collaborative Innovation Center for Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yun Wang
- Institutes of Brain Science & Collaborative Innovation Center for Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Institutes of Brain Science & Collaborative Innovation Center for Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| |
Collapse
|
12
|
Li QX, Shen YX, Ahmad A, Shen YJ, Zhang YQ, Xu PK, Chen WW, Yu YQ. Mesencephalic Astrocyte-Derived Neurotrophic Factor Prevents Traumatic Brain Injury in Rats by Inhibiting Inflammatory Activation and Protecting the Blood-Brain Barrier. World Neurosurg 2018; 117:e117-e129. [PMID: 29883817 DOI: 10.1016/j.wneu.2018.05.202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Our previous studies have shown that mesencephalic astrocyte-derived neurotrophic factor (MANF) provides a neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This study investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). METHODS The model of TBI was induced by Feeney free falling methods with male Sprague-Dawley rats. The expression of MANF, 24 hours after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot, and reverse transcription polymerase chain reaction techniques. After treatment with recombinant human MANF after TBI, assessment was conducted 24 hours later for brain water content, cerebral edema volume in magnetic resonance imaging, neurobehavioral testing, and Evans blue extravasation. Moreover, by the techniques of Western blot and reverse transcription polymerase chain reaction, the expression of inflammatory cytokines (interleukin 1β and tumor necrosis factor α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. RESULTS At 24 hours after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with a high dose of recombinant human MANF (20 μg/20 μL) significantly increased the modified Garcia score, and reduced brain water content as well as cerebral edema volume on magnetic resonance imaging. Furthermore, MANF alleviated not only the permeability of the blood-brain barrier (BBB) but also the expressions of interleukin 1β and tumor necrosis factor α messenger RNA and protein. Besides, the activation of P65 was also inhibited. CONCLUSIONS These results suggest that MANF provides a neuroprotective effect against acute brain injury after TBI, via attenuating blood-brain barrier disruption and intracranial neuroinflammation; the inhibition of the NF-κB signaling pathway might be a potential mechanism.
Collapse
Affiliation(s)
- Qing-Xin Li
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China; Biopharmaceutical Institute, Anhui Medical University, Hefei, People's Republic of China
| | - Akhlaq Ahmad
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yu-Jun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China; Biopharmaceutical Institute, Anhui Medical University, Hefei, People's Republic of China
| | - Yi-Quan Zhang
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Pei-Kun Xu
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Wei-Wei Chen
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Yong-Qiang Yu
- The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
13
|
Tsepkova PM, Artiukhov AV, Boyko AI, Aleshin VA, Mkrtchyan GV, Zvyagintseva MA, Ryabov SI, Ksenofontov AL, Baratova LA, Graf AV, Bunik VI. Thiamine Induces Long-Term Changes in Amino Acid Profiles and Activities of 2-Oxoglutarate and 2-Oxoadipate Dehydrogenases in Rat Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:723-736. [PMID: 28601082 DOI: 10.1134/s0006297917060098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.
Collapse
Affiliation(s)
- P M Tsepkova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Long-Term Cognitive Improvement After Benfotiamine Administration in Patients with Alzheimer's Disease. Neurosci Bull 2016; 32:591-596. [PMID: 27696179 DOI: 10.1007/s12264-016-0067-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 10/20/2022] Open
Abstract
To date, we still lack disease-modifying therapies for Alzheimer's disease (AD). Here, we report that long-term administration of benfotiamine improved the cognitive ability of patients with AD. Five patients with mild to moderate AD received oral benfotiamine (300 mg daily) over 18 months. All patients were examined by positron emission tomography with Pittsburgh compound B (PiB-PET) and exhibited positive imaging with β-amyloid deposition, and three received PiB-PET imaging at follow-up. The five patients exhibited cognitive improvement as assayed by the Mini-Mental Status Examination (MMSE) with an average increase of 3.2 points at month 18 of benfotiamine administration. The three patients who received follow-up PiB-PET had a 36.7% increase in the average standardized uptake value ratio in the brain compared with that in the first scan. Importantly, the MMSE scores of these three had an average increase of 3 points during the same period. Benfotiamine significantly improved the cognitive abilities of mild to moderate AD patients independently of brain amyloid accumulation. Our study provides new insight to the development of disease-modifying therapy.
Collapse
|
16
|
Severe Infections are Common in Thiamine Deficiency and May be Related to Cognitive Outcomes: A Cohort Study of 68 Patients With Wernicke-Korsakoff Syndrome. PSYCHOSOMATICS 2016; 57:624-633. [PMID: 27498674 DOI: 10.1016/j.psym.2016.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Wernicke encephalopathy can have different clinical outcomes. Although infections may precipitate the encephalopathy itself, it is unknown whether infections also modify the long-term outcome in patients developing Korsakoff syndrome. OBJECTIVE To determine whether markers of infection, such as white blood cell (WBC) counts and absolute neutrophil counts in the Wernicke phase, are associated with cognitive outcomes in the end-stage Korsakoff syndrome. METHOD Retrospective, descriptive study of patients admitted to Slingedael Korsakoff Center, Rotterdam, The Netherlands. Hospital discharge letters of patients with Wernicke encephalopathy were searched for relevant data on infections present upon hospital admission. Patients were selected for further analysis if data were available on WBC counts in the Wernicke phase and at least 1 of 6 predefined neuropsychological tests on follow-up. RESULTS Infections were reported in 35 of 68 patients during the acute phase of Wernicke-Korsakoff syndrome-meningitis (1), pneumonia (14), urinary tract infections (9), acute abdominal infections (4), sepsis (5) empyema, (1) and infection "of unknown origin" (4). The neuropsychological test results showed significant lower scores on the Cambridge Cognitive Examination nonmemory section with increasing white blood cell counts (Spearman rank correlation, ρ = -0.34; 95% CI: -0.57 to -0.06; 44 patients) and on the "key search test" of the behavioral assessment of the dysexecutive syndrome with increasing absolute neutrophil counts (ρ= -0.85; 95% CI: -0.97 to -0.42; 9 patients). CONCLUSIONS Infections may be the presenting manifestation of thiamine deficiency. Patients with Wernicke-Korsakoff syndrome who suffered from an infection during the acute phase are at risk of worse neuropsychological outcomes on follow-up.
Collapse
|
17
|
Oudman E, Nijboer TCW, Postma A, Wijnia JW, Van der Stigchel S. Procedural Learning and Memory Rehabilitation in Korsakoff's Syndrome - a Review of the Literature. Neuropsychol Rev 2015; 25:134-48. [PMID: 26047664 PMCID: PMC4464729 DOI: 10.1007/s11065-015-9288-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/15/2015] [Indexed: 12/01/2022]
Abstract
Korsakoff's syndrome (KS) is a chronic neuropsychiatric disorder caused by alcohol abuse and thiamine deficiency. Patients with KS show restricted autonomy due to their severe declarative amnesia and executive disorders. Recently, it has been suggested that procedural learning and memory are relatively preserved in KS and can effectively support autonomy in KS. In the present review we describe the available evidence on procedural learning and memory in KS and highlight advances in memory rehabilitation that have been demonstrated to support procedural memory. The specific purpose of this review was to increase insights in the available tools for successful memory rehabilitation and give suggestions how to apply these tools in clinical practice to increase procedural learning in KS. Current evidence suggests that when memory rehabilitation is adjusted to the specific needs of KS patients, this will increase their ability to learn procedures and their typically compromised autonomy gets enhanced.
Collapse
Affiliation(s)
- Erik Oudman
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands,
| | | | | | | | | |
Collapse
|
18
|
Bozic I, Savic D, Laketa D, Bjelobaba I, Milenkovic I, Pekovic S, Nedeljkovic N, Lavrnja I. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia. PLoS One 2015; 10:e0118372. [PMID: 25695433 PMCID: PMC4335016 DOI: 10.1371/journal.pone.0118372] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/14/2015] [Indexed: 01/21/2023] Open
Abstract
Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may have therapeutic potential for neurodegenerative diseases by inhibiting inflammatory mediators and enhancing anti-inflammatory factor production in activated microglia.
Collapse
Affiliation(s)
- Iva Bozic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Ivan Milenkovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sanja Pekovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
19
|
Vernau K, Napoli E, Wong S, Ross-Inta C, Cameron J, Bannasch D, Bollen A, Dickinson P, Giulivi C. Thiamine Deficiency-Mediated Brain Mitochondrial Pathology in Alaskan Huskies with Mutation in SLC19A3.1. Brain Pathol 2014; 25:441-53. [PMID: 25117056 DOI: 10.1111/bpa.12188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/05/2014] [Indexed: 02/05/2023] Open
Abstract
Alaskan Husky encephalopathy (AHE(1) ) is a fatal brain disease associated with a mutation in SLC19A3.1 (c.624insTTGC, c.625C>A). This gene encodes for a thiamine transporter 2 with a predominately (CNS) central nervous system distribution. Considering that brain is particularly vulnerable to thiamine deficiency because of its reliance on thiamine pyrophosphate (TPP)-dependent metabolic pathways involved in energy metabolism and neurotransmitter synthesis, we characterized the impact of this mutation on thiamine status, brain bioenergetics and the contribution of oxidative stress to this phenotype. In silico modeling of the mutated transporter indicated a significant loss of alpha-helices resulting in a more open protein structure suggesting an impaired thiamine transport ability. The cerebral cortex and thalamus of affected dogs were severely deficient in TPP-dependent enzymes accompanied by decreases in mitochondrial mass and oxidative phosphorylation (OXPHOS) capacity, and increases in oxidative stress. These results along with the behavioral and pathological findings indicate that the phenotype associated with AHE is consistent with a brain-specific thiamine deficiency, leading to brain mitochondrial dysfunction and increased oxidative stress. While some of the biochemical deficits, neurobehavior and affected brain areas in AHE were shared by Wernicke's and Korsakoff's syndromes, several differences were noted likely arising from a tissue-specific vs. that from a whole-body thiamine deficiency.
Collapse
Affiliation(s)
- Karen Vernau
- Department of Surgical and Radiological Sciences, University of California Davis, Toronto, Ontario, Canada
| | - Eleonora Napoli
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Sarah Wong
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Catherine Ross-Inta
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Jessie Cameron
- Department of Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danika Bannasch
- Pathology, Microbiology and Immunology, University of California Davis, Sacramento, CA
| | - Andrew Bollen
- Department of Pathology and Laboratory Medicine, University of California San Francisco
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Toronto, Ontario, Canada
| | - Cecilia Giulivi
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada.,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA
| |
Collapse
|
20
|
Abdou E, Hazell AS. Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 2014; 40:353-61. [PMID: 25297573 DOI: 10.1007/s11064-014-1430-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Abstract
Thiamine is an essential vitamin that is necessary to maintain the functional integrity of cells in the brain. Its deficiency is the underlying cause of Wernicke's encephalopathy (WE), a disorder primarily associated with, but not limited to, chronic alcoholism. Thiamine deficiency leads to the development of impaired energy metabolism due to mitochondrial dysfunction in focal regions of the brain resulting in cerebral vulnerability. The consequences of this include oxidative stress, excitotoxicity, inflammatory responses, decreased neurogenesis, blood-brain barrier disruption, lactic acidosis and a reduction in astrocyte functional integrity involving a loss of glutamate transporters and other astrocyte-specific proteins which together contribute in a major way to the resulting neurodegeneration. Exactly how these factors acting in concert lead to the demise of neurons is unclear. In this review we reassess their relative importance in the light of more recent findings and discuss therapeutic possibilities that may provide hope for the future for individuals with WE.
Collapse
Affiliation(s)
- Eman Abdou
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | | |
Collapse
|
21
|
Hazell AS, Wang D, Oanea R, Sun S, Aghourian M, Yong JJ. Pyrithiamine-induced thiamine deficiency alters proliferation and neurogenesis in both neurogenic and vulnerable areas of the rat brain. Metab Brain Dis 2014; 29:145-52. [PMID: 24078061 DOI: 10.1007/s11011-013-9436-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022]
Abstract
Thiamine deficiency (TD) leads to Wernicke's encephalopathy (WE), in which focal histological lesions occur in periventricular areas of the brain. Recently, impaired neurogenesis has been reported in the hippocampus during the dietary form of TD, and in pyrithiamine-induced TD (PTD), a well-characterized model of WE. To further characterize the consequences of PTD on neural stem/progenitor cell (NSPC) activity, we have examined the effect of this treatment in the rat on both the subventricular zone (SVZ) of the rostral lateral ventricle and subgranular layer (SGL) of the hippocampus, and in the thalamus and inferior colliculus, two vulnerable brain regions in this disorder. In both the SVZ and SGL, PTD led to a decrease in the numbers of bromodeoxyuridine-stained cells, indicating that proliferation of NSPCs destined for neurogenesis in these areas was reduced. Doublecortin (DCX) immunostaining in the SGL was decreased, indicating a reduction in neuroblast formation, consistent with impaired NSPC activity. DCX labeling was not apparent in focal areas of vulnerability. In the thalamus, proliferation of cells was absent while in the inferior colliculus, numerous actively dividing cells were apparent, indicative of a differential response between these two brain regions. Exposure of cultured neurospheres to PTD resulted in decreased proliferation of NSPCs, consistent with our in vivo findings. Together, these results indicate that PTD considerably affects cell proliferation and neurogenesis activity in both neurogenic areas and parts of the brain known to display structural and functional vulnerability, confirming and extending recent findings on the effects of TD on neurogenesis. Future use of NSPCs in vitro may allow a closer and more detailed examination of the mechanism(s) underlying inhibition of these cells during TD.
Collapse
|
22
|
Qin L, Crews FT. Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 2013; 38:657-71. [PMID: 24117525 PMCID: PMC3959259 DOI: 10.1111/acer.12272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
23
|
Wijnia JW, Oudman E. Biomarkers of delirium as a clue to diagnosis and pathogenesis of Wernicke-Korsakoff syndrome. Eur J Neurol 2013; 20:1531-8. [PMID: 23790077 DOI: 10.1111/ene.12217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Wernicke's encephalopathy (WE) and Korsakoff's syndrome are considered to be different stages of the same disorder due to thiamine deficiency, which is called Wernicke-Korsakoff syndrome (WKS). The earliest biochemical change is the decrease of α-ketoglutarate-dehydrogenase activity in astrocytes. According to autopsy-based series, mental status changes are present in 82% of WE cases. The objective of the present review is to identify possible underlying mechanisms relating the occurrence of delirium to WKS. METHODS Studies involving delirium in WKS, however, are rare. Therefore, first, a search was done for candidate biomarkers of delirium irrespective of the clinical setting. Secondly, the results were focused on identification of these biomarkers in reports on WKS. RESULTS In various settings, 10 biochemical and/or genetic biomarkers showed strong associations with the occurrence of delirium. For WKS three of these candidate biomarkers were identified, namely brain tissue cell counts of CD68 positive cells as a marker of microglial activation, high cerebrospinal fluid lactate levels, and MHPG, a metabolite of norepinephrine. Based on current literature, markers of microglial activation may present an interesting patho-etiological relationship between thiamine deficiency and delirium in WKS. CONCLUSIONS In WKS cases, changes in astroglia and microglial proliferation were reported. The possible loss-of-function mechanisms following thiamine deficiency in WKS are proposed to come from microglial activation, resulting in a delirium in the initial phase of WKS.
Collapse
Affiliation(s)
- J W Wijnia
- Lelie Care Group, Slingedael Korsakoff Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
24
|
Shen Y, Sun A, Wang Y, Cha D, Wang H, Wang F, Feng L, Fang S, Shen Y. Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation. J Neuroinflammation 2012; 9:254. [PMID: 23173607 PMCID: PMC3576245 DOI: 10.1186/1742-2094-9-254] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022] Open
Abstract
Background Mesencephalic astrocyte-derived neurotrophic factor (MANF), a 20 kDa secreted protein, was originally derived from a rat mesencephalic type-1 astrocyte cell line. MANF belongs to a novel evolutionally conserved family of neurotrophic factors along with conserved dopamine neurotrophic factor. In recent years, ever-increasing evidence has shown that both of them play a remarkable protective role against various injuries to neurons in vivo or in vitro. However, the characteristics of MANF expression in the different types of glial cells, especially in astrocytes, remain unclear. Methods The model of focal cerebral ischemia was induced by rat middle cerebral artery occlusion. Double-labeled immunofluorescent staining was used to identify the types of neural cells expressing MANF. Primarily cultured glial cells were used to detect the response of glial cells to endoplasmic reticulum stress stimulation. Propidium iodide staining was used to determine dead cells. Reverse transcription PCR and western blotting were used to detect the levels of mRNA and proteins. Results We found that MANF was predominantly expressed in neurons in both normal and ischemic cortex. Despite its name, MANF was poorly expressed in glial cells, including astrocytes, in normal brain tissue. However, the expression of MANF was upregulated in the glial cells under focal cerebral ischemia, including the astrocytes. This expression was also induced by several endoplasmic reticulum stress inducers and nutrient deprivation in cultured primary glial cells. The most interesting phenomenon observed in this study was the pattern of MANF expression in the microglia. The expression of MANF was closely associated with the morphology and state of microglia, accompanied by the upregulation of BIP/Grp78. Conclusions These results indicate that MANF expression was upregulated in the activated glial cells, which may contribute to the mechanism of ischemia-induced neural injury.
Collapse
Affiliation(s)
- Yujun Shen
- Biopharmaceutical Research Institute, Hefei 230032, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blaylock RL, Maroon J. Natural plant products and extracts that reduce immunoexcitotoxicity-associated neurodegeneration and promote repair within the central nervous system. Surg Neurol Int 2012; 3:19. [PMID: 22439110 PMCID: PMC3307240 DOI: 10.4103/2152-7806.92935] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/11/2012] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the pathophysiological and biochemical basis of a number of neurological disorders has increased enormously over the last three decades. Parallel with this growth of knowledge has been a clearer understanding of the mechanism by which a number of naturally occurring plant extracts, as well as whole plants, can affect these mechanisms so as to offer protection against injury and promote healing of neurological tissues. Curcumin, quercetin, green tea catechins, balcalein, and luteolin have been extensively studied, and they demonstrate important effects on cell signaling that go far beyond their antioxidant effects. Of particular interest is the effect of these compounds on immunoexcitotoxicity, which, the authors suggest, is a common mechanism in a number of neurological disorders. By suppressing or affecting microglial activation states as well as the excitotoxic cascade and inflammatory mediators, these compounds dramatically affect the pathophysiology of central nervous system disorders and promote the release and generation of neurotrophic factors essential for central nervous system healing. We discuss the various aspects of these processes and suggest future directions for study.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, Department of Biology, Belhaven University, Jackson, MS 39157, USA
| | | |
Collapse
|