1
|
Li C, Yang Y. Advancements in the study of inward rectifying potassium channels on vascular cells. Channels (Austin) 2023; 17:2237303. [PMID: 37463317 PMCID: PMC10355679 DOI: 10.1080/19336950.2023.2237303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Inward rectifier potassium channels (Kir channels) exist in a variety of cells and are involved in maintaining resting membrane potential and signal transduction in most cells, as well as connecting metabolism and membrane excitability of body cells. It is closely related to normal physiological functions of body and the occurrence and development of some diseases. Although the functional expression of Kir channels and their role in disease have been studied, they have not been fully elucidated. In this paper, the functional expression of Kir channels in vascular endothelial cells and smooth muscle cells and their changes in disease states were reviewed, especially the recent research progress of Kir channels in stem cells was introduced, in order to have a deeper understanding of Kir channels in vascular tissues and provide new ideas and directions for the treatment of related ion channel diseases.
Collapse
Affiliation(s)
- Chunshu Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Kito H, Kawagishi R, Ryu T, Endo K, Kajikuri J, Giles WR, Ohya S. K Ca3.1 regulates cell cycle progression by modulating Ca 2+ signaling in murine preosteoblasts. J Pharmacol Sci 2023; 153:142-152. [PMID: 37770155 DOI: 10.1016/j.jphs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Osteoblasts synthesize and deposit essential components of the extracellular bone matrix and collagen scaffolds, leading to mineralized bone formation. Therefore, the proliferation of preosteoblasts (precursors of mature osteoblasts) helps in regulating skeletal homeostasis. This study demonstrated that the functional expression of KCa3.1, an intermediate-conductance Ca2+-activated K+ channel, is markedly upregulated in murine preosteoblastic MC3T3-E1 cells in the G0/G1 phase. The enhancement of KCa3.1 is involved in the establishment of more negative membrane potentials in MC3T3-E1 cells. This hyperpolarization can promote intracellular Ca2+ signaling because store-operated Ca2+ channels are activated. Treatment with TRAM-34, a specific KCa3.1 inhibitor, attenuated the cell cycle progression from the G0/G1 phase to the S/G2/M phases. In MC3T3-E1 cells, KCa3.1 significantly promoted the transition from the G1 phase to the S phase. KCa3.1 inhibition also caused G0 phase cell accumulation. Furthermore, TRAM-34 decreased the expression of alkaline phosphatase, bone sialoprotein, and osteocalcin, osteoblast differentiation markers in MC3T3-E1 cells, and inhibited the endochondral ossification of murine metatarsals. These results reveal novel ways by which KCa3.1 activity can strongly modulate osteoblast maturation during bone formation.
Collapse
Affiliation(s)
- Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | - Reiko Kawagishi
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takusei Ryu
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Endo
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
3
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
4
|
Suzuki T, Yasumoto M, Suzuki Y, Asai K, Imaizumi Y, Yamamura H. TMEM16A Ca 2+-Activated Cl - Channel Regulates the Proliferation and Migration of Brain Capillary Endothelial Cells. Mol Pharmacol 2020; 98:61-71. [PMID: 32358165 DOI: 10.1124/mol.119.118844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022] Open
Abstract
The blood-brain barrier (BBB) is essential for the maintenance of homeostasis in the brain. Brain capillary endothelial cells (BCECs) comprise the BBB, and thus a delicate balance between their proliferation and death is required. Although the activity of ion channels in BCECs is involved in BBB functions, the underlying molecular mechanisms remain unclear. In the present study, the molecular components of Ca2+-activated Cl- (ClCa) channels and their physiological roles were examined using mouse BCECs (mBCECs) and a cell line derived from bovine BCECs, t-BBEC117. Expression analyses revealed that TMEM16A was strongly expressed in mBCECs and t-BBEC117 cells. In t-BBEC117 cells, whole-cell Cl- currents were sensitive to the ClCa channel blockers, 100 μM niflumic acid and 10 μM T16Ainh-A01, and were also reduced markedly by small-interfering RNA (siRNA) knockdown of TMEM16A. Importantly, block of ClCa currents with ClCa channel blockers or TMEM16A siRNA induced membrane hyperpolarization. Moreover, treatment with TMEM16A siRNA caused an increase in resting cytosolic Ca2+ concentration ([Ca2+]cyt). T16Ainh-A01 reduced cell viability in a concentration-dependent manner. Either ClCa channel blockers or TMEM16A siRNA also curtailed cell proliferation and migration. Furthermore, ClCa channel blockers attenuated the trans-endothelial permeability. In combination, these results strongly suggest that TMEM16A contributes to ClCa channel conductance and can regulate both the resting membrane potential and [Ca2+]cyt in BCECs. Our data also reveal how these BCECs may be involved in the maintenance of BBB functions, as both the proliferation and migration are altered following changes in channel activity. SIGNIFICANCE STATEMENT: In brain capillary endothelial cells (BCECs) of the blood-brain barrier (BBB), TMEM16A is responsible for Ca2+-activated Cl- channels and can regulate both the resting membrane potential and cytosolic Ca2+ concentration, contributing to the proliferation and migration of BCECs. The present study provides novel information on the molecular mechanisms underlying the physiological functions of BCECs in the BBB and a novel target for therapeutic drugs for disorders associated with dysfunctions in the BBB.
Collapse
Affiliation(s)
- Takahisa Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan
| | - Miki Yasumoto
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan
| | - Kiyofumi Asai
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan
| |
Collapse
|
5
|
Oxidative stress facilitates cell death by inhibiting Orai1-mediated Ca 2+ entry in brain capillary endothelial cells. Biochem Biophys Res Commun 2019; 523:153-158. [PMID: 31839216 DOI: 10.1016/j.bbrc.2019.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Brain capillary endothelial cells (BCECs) form the blood-brain barrier (BBB) and play an essential role in the regulation of its functions. Oxidative stress accumulates excessive reactive oxygen species (ROS) and facilitates the death of BCECs, leading to a dysfunctional BBB. However, the mechanisms underlying the death of BCECs under oxidative stress remain unclear. In the present study, the effects of oxidative stress on cell viability, ROS production, intracellular Ca2+ concentration, and protein expression were examined using a cell line derived from bovine BCECs, t-BBEC117. When t-BBEC117 cells were exposed to oxidative stress induced by hydrogen peroxide (H2O2, 10-100 μM), cell growth was inhibited in a dose-dependent manner. Oxidative stress by 30 μM H2O2 increased the production of ROS and its effects were blocked by the ROS scavenger, 10 mM N-acetyl-l-cysteine (NAC). In addition, oxidative stress reduced store-operated Ca2+ entry (SOCE) and this decrease was recovered by NAC or the Orai channel activator, 5 μM 2-aminoethyl diphenylborinate (2-APB). The siRNA knockdown of Orai1 revealed that Orai1 was mainly responsible for SOCE channels and its activity was decreased by oxidative stress. However, the protein expression of Orai1 and STIM1 was not affected by oxidative stress. Oxidative stress-induced cell death was rescued by 2-APB, NAC, or the STIM-Orai activating region. In conclusion, oxidative stress reduces Orai1-mediated SOCE and, thus, facilitates the death of BCECs.
Collapse
|
6
|
Zhang X, Cui X, Li X, Yan H, Li H, Guan X, Wang Y, Liu S, Qin X, Cheng M. Inhibition of Kir2.1 channel-induced depolarization promotes cell biological activity and differentiation by modulating autophagy in late endothelial progenitor cells. J Mol Cell Cardiol 2019; 127:57-66. [DOI: 10.1016/j.yjmcc.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
|
7
|
Yamamura H, Suzuki Y, Yamamura H, Asai K, Giles W, Imaizumi Y. Hypoxic stress upregulates Kir2.1 expression by a pathway including hypoxic-inducible factor-1α and dynamin2 in brain capillary endothelial cells. Am J Physiol Cell Physiol 2018; 315:C202-C213. [DOI: 10.1152/ajpcell.00154.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Brain capillary endothelial cells (BCECs) play a central role in maintenance of blood-brain barrier (BBB) function and, therefore, are essential for central nervous system homeostasis and integrity. Although brain ischemia damages BCECs and causes disruption of BBB, the related influence of hypoxia on BCECs is not well understood. Hypoxic stress can upregulate functional expression of specific K+ currents in endothelial cells, e.g., Kir2.1 channels without any alterations in the mRNA level, in t-BBEC117, a cell line derived from bovine BCECs. The hyperpolarization of membrane potential due to Kir2.1 channel upregulation significantly facilitates cell proliferation. In the present study, the mechanisms underlying the hypoxia-induced Kir2.1 upregulation was examined. We emphasize the involvement of dynamin2, a protein known to be involved in a number of surface expression pathways. Hypoxic culture upregulated dynamin2 expression in t-BBEC117 cells. The inhibition of dynamin2 by Dynasore canceled hypoxia-induced upregulation of Kir2.1 currents by reducing surface expression. On the contrary, Kir2.1 currents and proteins in t-BBEC117 cultured under normoxia were increased by overexpression of dynamin2, but not by dominant-negative dynamin2. Molecular imaging based on bimolecular fluorescence complementation, double-immunostaining, and coimmunoprecipitation assays revealed that dynamin2 can directly bind to the Kir2.1 channel. Moreover, hypoxic culture downregulated hypoxic-inducible factor-1α (HIF-1α) expression. Knockdown of HIF-1α increased dynamin2 expression in t-BBEC117 cells, in both normoxic and hypoxic culture conditions. In summary, our results demonstrated that hypoxia downregulates HIF-1α, increases dynamin2 expression, and facilitates Kir2.1 surface expression, resulting in hyperpolarization of membrane potential and subsequent increase in Ca2+ influx in BCECs.
Collapse
Affiliation(s)
- Hideto Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kiyofumi Asai
- Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
8
|
Wang Y, Xuan L, Cui X, Wang Y, Chen S, Wei C, Zhao M. Ibutilide treatment protects against ER stress induced apoptosis by regulating calumenin expression in tunicamycin treated cardiomyocytes. PLoS One 2017; 12:e0173469. [PMID: 28399139 PMCID: PMC5388464 DOI: 10.1371/journal.pone.0173469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Background Ibutilide, a class III antiarrhythmic agent has been shown to be cardioprotective in treating atrial fibrillation, promoting cardioconversion and recently this agent has been shown to protect against ER stress induced apoptosis in cardiomyocytes. In this study we begin to identify the mechanism by which ibutilide exerts its cardioprotection in tunicamycin treated cardiomyocytes. We examined ER stress markers including calumenin; a calcium binding ER chaperone protein that has recently been linked to ER stress in cardiomyocytes, in our treated cells. Methods To assess the effect of ibutilide we used the well characterized in vitro model of ER stress induced apoptosis in rat neonatal cardiomyocytes (RNC). RNC were treated with tunicamycin and the degree of ER stress was assessed by quantifying mRNA and protein levels of GRP78, GRP94 and calumenin, and examined the extent of apoptosis by assessing the protein levels of caspase-3/9/12, CHOP, ATF6, p-PERK, spliced XBP-1, the ratio of Bax/Bcl-2 and the percentage of deoxynucleotidyl-transferase- mediated dUTP nick end labeling (TUNEL) positive cells. Results We demonstrate ibutilide attenuated the up-regulation of ER stress markers GRP78 and GRP94 and rescued the decline in calumenin mRNA and protein levels in tunicamycin treated cardiomyocytes. The up-regulation of apoptotic markers caspase-3, CHOP, ATF6, p-PERK, spliced XBP-1, the ratio of Bax/Bcl-2 and the percentage of TUNEL positive cells were also attenuated after ibutilide treatment while the protein levels of Caspase-9 and Caspase-12 were unaffected. Conclusions This study suggests another cardioprotective effect of the antiarrhythmic agent ibutilide whereby pretreatment leads to the attenuation of ER stress induced apoptosis by regulating calumenin expression. This study provides further evidence for the role of calumenin in the cardiomyocyte ER stress response.
Collapse
Affiliation(s)
- Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Provincial Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Liying Xuan
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Provincial Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Xiaoxue Cui
- First Clinical Medical College of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
| | - Yilin Wang
- First Clinical Medical College of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
| | - Shaoqing Chen
- First Clinical Medical College of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
| | - Chengxi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Provincial Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
- * E-mail: (CXW); (MZ)
| | - Ming Zhao
- Inner Mongolia Provincial Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
- First Clinical Medical College of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- * E-mail: (CXW); (MZ)
| |
Collapse
|
9
|
Yamamura H, Suzuki Y, Yamamura H, Asai K, Imaizumi Y. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells. Biochem Biophys Res Commun 2016; 476:386-392. [DOI: 10.1016/j.bbrc.2016.05.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
|
10
|
Ko AR, Kim JY, Hyun HW, Kim JE. Endothelial NOS activation induces the blood-brain barrier disruption via ER stress following status epilepticus. Brain Res 2015; 1622:163-73. [PMID: 26115585 DOI: 10.1016/j.brainres.2015.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
Abstract
The blood-brain barrier (BBB) maintains the unique brain microenvironment, which is separated from the systemic circulating system. Since the endoplasmic reticulum (ER) is an important cell organelle that is responsible for protein synthesis, the correct folding and sorting of proteins contributing to cell survivals, ER stress is a potential cause of cell damage in various diseases. Therefore, it would be worthy to explore the the relationship between the ER stress and BBB disruption during vasogenic edema formation induced by epileptogenic insults. In the present study, we investigated the roles of ER stress in vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced status epilepticus (SE). SE-induced eNOS activation induces BBB breakdown via up-regulation of GRP78 expression and dysfunction of SMI-71 (an endothelial BBB marker) in the piriform cortex (PC). In addition, caveolin-1 peptide (an eNOS inhibitor) effectively attenuated GRP78 expression and down-regulation of SMI-71. Taken together, our findings suggest that eNOS-mediated ER stress may participate in SE-induced vasogenic edema formation. Therefore, the modulation of ER stress may be a considerable strategy for therapy in impairments of endothelial cell function.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea
| | - Ji Yang Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea.
| |
Collapse
|
11
|
Kito H, Yamamura H, Suzuki Y, Yamamura H, Ohya S, Asai K, Imaizumi Y. Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells. Biochem Biophys Res Commun 2015; 459:457-62. [DOI: 10.1016/j.bbrc.2015.02.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 12/30/2022]
|
12
|
TREK-King the Blood–Brain-Barrier. J Neuroimmune Pharmacol 2014; 9:293-301. [DOI: 10.1007/s11481-014-9530-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
13
|
Kito H, Yamamura H, Suzuki Y, Ohya S, Asai K, Imaizumi Y. Membrane Hyperpolarization Induced by Endoplasmic Reticulum Stress Facilitates Ca2+ Influx to Regulate Cell Cycle Progression in Brain Capillary Endothelial Cells. J Pharmacol Sci 2014; 125:227-32. [DOI: 10.1254/jphs.14002sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Fonseca ACRG, Ferreiro E, Oliveira CR, Cardoso SM, Pereira CF. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2191-203. [PMID: 23994613 DOI: 10.1016/j.bbadis.2013.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/28/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023]
Abstract
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.
Collapse
Affiliation(s)
- Ana Catarina R G Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
15
|
Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012; 75:425-36. [PMID: 22884327 DOI: 10.1016/j.neuron.2012.03.043] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2012] [Indexed: 01/08/2023]
Abstract
VIDEO ABSTRACT The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (K(ATP)) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing a reduction of food intake and body weight. Conversely, young mice lacking the mTOR-negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity.
Collapse
Affiliation(s)
- Shi-Bing Yang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|