1
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
2
|
Majumder N, Ghosh S. 3D biofabrication and space: A 'far-fetched dream' or a 'forthcoming reality'? Biotechnol Adv 2023; 69:108273. [PMID: 37863444 DOI: 10.1016/j.biotechadv.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
The long duration space missions across the Low Earth Orbit (LEO) often expose the voyagers to an abrupt zero gravity influence. The severe extraterrestrial cosmic radiation directly causes a plethora of moderate to chronic healthcare crises. The only feasible solution to manage critical injuries on board is surgical interventions or immediate return to Earth. This led the group of space medicine practitioners to adopt principles from tissue engineering and develop human tissue equivalents as an immediate regenerative therapy on board. The current review explicitly demonstrates the constructive application of different tissue-engineered equivalents matured under the available ground-based microgravity simulation facilities. Further, it elucidates how augmenting the superiority of biomaterial-based 3D bioprinting technology can enhance their clinical applicability. Additionally, the regulatory role of weightlessness condition on the underlying cellular signaling pathways governing tissue morphogenesis has been critically discussed. This information will provide future directions on how 3D biofabrication can be used as a plausible tool for healing on-flight chronic health emergencies. Thus, in our review, we aimed to precisely debate whether 3D biofabrication is deployed to cater to on-flight healthcare anomalies or space-like conditions are being utilized for generating 3D bioprinted human tissue constructs for efficient drug screening and regenerative therapy.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
3
|
Zhang L, Liao W, Chen S, Chen Y, Cheng P, Lu X, Ma Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front Oncol 2023; 13:1146477. [PMID: 37077835 PMCID: PMC10106600 DOI: 10.3389/fonc.2023.1146477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Three-dimensional cell culture technology (3DCC) sits between two-dimensional cell culture (2DCC) and animal models and is widely used in oncology research. Compared to 2DCC, 3DCC allows cells to grow in a three-dimensional space, better simulating the in vivo growth environment of tumors, including hypoxia, nutrient concentration gradients, micro angiogenesis mimicism, and the interaction between tumor cells and the tumor microenvironment matrix. 3DCC has unparalleled advantages when compared to animal models, being more controllable, operable, and convenient. This review summarizes the comparison between 2DCC and 3DCC, as well as recent advances in different methods to obtain 3D models and their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Long Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Liao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yukun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Transcriptomic response of bioengineered human cartilage to parabolic flight microgravity is sex-dependent. NPJ Microgravity 2023; 9:5. [PMID: 36658138 PMCID: PMC9852254 DOI: 10.1038/s41526-023-00255-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Spaceflight and simulated spaceflight microgravity induced osteoarthritic-like alterations at the transcriptomic and proteomic levels in the articular and meniscal cartilages of rodents. But little is known about the effect of spaceflight or simulated spaceflight microgravity on the transcriptome of tissue-engineered cartilage developed from human cells. In this study, we investigate the effect of simulated spaceflight microgravity facilitated by parabolic flights on tissue-engineered cartilage developed from in vitro chondrogenesis of human bone marrow mesenchymal stem cells obtained from age-matched female and male donors. The successful induction of cartilage-like tissue was confirmed by the expression of well-demonstrated chondrogenic markers. Our bulk transcriptome data via RNA sequencing demonstrated that parabolic flight altered mostly fundamental biological processes, and the modulation of the transcriptome profile showed sex-dependent differences. The secretome profile analysis revealed that two genes (WNT7B and WNT9A) from the Wnt-signaling pathway, which is implicated in osteoarthritis development, were only up-regulated for female donors. The results of this study showed that the engineered cartilage tissues responded to microgravity in a sex-dependent manner, and the reported data offers a strong foundation to further explore the underlying mechanisms.
Collapse
|
5
|
Long-Term Simulation of Microgravity Induces Changes in Gene Expression in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24021181. [PMID: 36674696 PMCID: PMC9864731 DOI: 10.3390/ijms24021181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Microgravity changes the gene expression pattern in various cell types. This study focuses on the breast cancer cell lines MCF-7 (less invasive) and MDA-MB-231 (triple-negative, highly invasive). The cells were cultured for 14 days under simulated microgravity (s-µg) conditions using a random positioning machine (RPM). We investigated cytoskeletal and extracellular matrix (ECM) factors as well as focal adhesion (FA) and the transmembrane proteins involved in different cellular signaling pathways (MAPK, PAM and VEGF). The mRNA expressions of 24 genes of interest (TUBB, ACTB, COL1A1, COL4A5, LAMA3, ITGB1, CD44, VEGF, FLK1, EGFR, SRC, FAK1, RAF1, AKT1, ERK1, MAPK14, MAP2K1, MTOR, RICTOR, VCL, PXN, CDKN1, CTNNA1 and CTNNB1) were determined by quantitative real-time PCR (qPCR) and studied using STRING interaction analysis. Histochemical staining was carried out to investigate the morphology of the adherent cells (ADs) and the multicellular spheroids (MCSs) after RPM exposure. To better understand this experimental model in the context of breast cancer patients, a weighted gene co-expression network analysis (WGCNA) was conducted to obtain the expression profiles of 35 breast cell lines from the HMS LINCS Database. The qPCR-verified genes were searched in the mammalian phenotype database and the human genome-wide association studies (GWAS) Catalog. The results demonstrated the positive association between the real metastatic microtumor environment and MCSs with respect to the extracellular matrix, cytoskeleton, morphology, different cellular signaling pathway key proteins and several other components. In summary, the microgravity-engineered three-dimensional MCS model can be utilized to study breast cancer cell behavior and to assess the therapeutic efficacies of drugs against breast cancer in the future.
Collapse
|
6
|
Ma Z, Li DX, Chee RKW, Kunze M, Mulet-Sierra A, Sommerfeldt M, Westover L, Graf D, Adesida AB. Mechanical Unloading of Engineered Human Meniscus Models Under Simulated Microgravity: A Transcriptomic Study. Sci Data 2022; 9:736. [PMID: 36450785 PMCID: PMC9712603 DOI: 10.1038/s41597-022-01837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) primarily affects mechanical load-bearing joints, with the knee being the most common. The prevalence, burden and severity of knee osteoarthritis (KOA) are disproportionately higher in females, but hormonal differences alone do not explain the disproportionate incidence of KOA in females. Mechanical unloading by spaceflight microgravity has been implicated in OA development in cartilaginous tissues. However, the mechanisms and sex-dependent differences in OA-like development are not well explored. In this study, engineered meniscus constructs were generated from healthy human meniscus fibrochondrocytes (MFC) seeded onto type I collagen scaffolds and cultured under normal gravity and simulated microgravity conditions. We report the whole-genome sequences of constructs from 4 female and 4 male donors, along with the evaluation of their phenotypic characteristics. The collected data could be used as valuable resources to further explore the mechanism of KOA development in response to mechanical unloading, and to investigate the molecular basis of the observed sex differences in KOA.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Surgery, Division of Orthopaedic Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - David Xinzheyang Li
- Department of Surgery, Division of Orthopaedic Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Ryan K W Chee
- Department of Surgery, Division of Orthopaedic Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Melanie Kunze
- Department of Surgery, Division of Orthopaedic Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Division of Orthopaedic Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mark Sommerfeldt
- Department of Surgery, Division of Orthopaedic Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Division of Orthopaedic Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
7
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal stromal/stem cells spheroid culture effect on the therapeutic efficacy of these cells and their exosomes: A new strategy to overcome cell therapy limitations. Biomed Pharmacother 2022; 152:113211. [PMID: 35696942 DOI: 10.1016/j.biopha.2022.113211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cell therapy is one of the new treatment methods in which mesenchymal stem/stromal cell (MSCs) transplantation is one of the cells widely used in this field. The results of MSCs application in the clinic prove their therapeutic efficacy. For this reason, many clinical trials have been designed based on the application of MSCs for various diseases, especially inflammatory disease and regenerative medicine. These cells perform their therapeutic functions through multiple mechanisms, including the differentiative potential, immunomodulatory properties, production of therapeutic exosomes, production of growth factors and cytokines, and anti-apoptotic effects. Exosomes are nanosized extracellular vesicles (EVs) that change target cell functions by transferring different cargos. The therapeutic ability of MSCs-derived exosomes has been demonstrated in many studies. However, some limitations, such as the low production of exosomes by cells and the need for large amounts of them and also their limited therapeutic ability, have encouraged researchers to find methods that increase exosomes' therapeutic potential. One of these methods is the spheroid culture of MSCs. Studies show that the three-dimensional culture (3DCC) of MSCs in the form of multicellular spheroids increases the therapeutic efficacy of these cells in laboratory and animal applications. In addition, the spheroid culture of MSCs leads to enhanced therapeutic properties of their exosomes and production rate. Due to the novelty of the field of using 3DCC MSCs-derived exosomes, examination of their properties and the results of their therapeutic application can increase our view of this field. This review discussed MSCs and their exosomes enhanced properties in spheroid culture.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Volz M, Wyse-Sookoo KR, Travascio F, Huang CY, Best TM. MECHANOBIOLOGICAL APPROACHES FOR STIMULATING CHONDROGENESIS OF STEM CELLS. Stem Cells Dev 2022; 31:460-487. [PMID: 35615879 DOI: 10.1089/scd.2022.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chondrogenesis is the process of differentiation of stem cells into mature chondrocytes. Such a process consists of chemical, functional, and structural changes which are initiated and mediated by the host environment of the cells. To date, the mechanobiology of chondrogenesis has not been fully elucidated. Hence, experimental activity is focused on recreating specific environmental conditions for stimulating chondrogenesis, and to look for a mechanistic interpretation of the mechanobiological response of cells in the cartilaginous tissues. There are a large number of studies on the topic that vary considerably in their experimental protocols used for providing environmental cues to cells for differentiation, making generalizable conclusions difficult to ascertain. The main objective of this contribution is to review the mechanobiological stimulation of stem cell chondrogenesis and methodological approaches utilized to date to promote chondrogenesis of stem cells in-vitro. In-vivo models will also be explored, but this area is currently limited. An overview of the experimental approaches used by different research groups may help the development of unified testing methods that could be used to overcome existing knowledge gaps, leading to an accelerated translation of experimental findings to clinical practice.
Collapse
Affiliation(s)
- Mallory Volz
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | | | - Francesco Travascio
- University of Miami, 5452, Mechanical and Aerospace Engineering, 1251 Memorial Drive, MEB 217B, Coral Gables, Florida, United States, 33146;
| | - Chun-Yuh Huang
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Thomas M Best
- University of Miami Miller School of Medicine, 12235, School of Medicine, Miami, Florida, United States;
| |
Collapse
|
9
|
Ma Z, Li DX, Kunze M, Mulet-Sierra A, Westover L, Adesida AB. Engineered Human Meniscus in Modeling Sex Differences of Knee Osteoarthritis in Vitro. Front Bioeng Biotechnol 2022; 10:823679. [PMID: 35284415 PMCID: PMC8904202 DOI: 10.3389/fbioe.2022.823679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Osteoarthritis (OA) primarily affects mechanical load-bearing joints. The knee joint is the most impacted by OA. Knee OA (KOA) occurs in almost all demographic groups, but the prevalence and severity are disproportionately higher in females. The molecular mechanism underlying the pathogenesis and progression of KOA is unknown. The molecular basis of biological sex matters of KOA is not fully understood. Mechanical stimulation plays a vital role in modulating OA-related responses of load-bearing tissues. Mechanical unloading by simulated microgravity (SMG) induced OA-like gene expression in engineered cartilage, while mechanical loading by cyclic hydrostatic pressure (CHP), on the other hand, exerted a pro-chondrogenic effect. This study aimed to evaluate the effects of mechanical loading and unloading via CHP and SMG, respectively, on the OA-related profile changes of engineered meniscus tissues and explore biological sex-related differences.Methods: Tissue-engineered menisci were made from female and male meniscus fibrochondrocytes (MFCs) under static conditions of normal gravity in chondrogenic media and subjected to SMG and CHP culture. Constructs were assayed via histology, immunofluorescence, GAG/DNA assays, RNA sequencing, and testing of mechanical properties.Results: The mRNA expression of ACAN and COL2A1, was upregulated by CHP but downregulated by SMG. COL10A1, a marker for chondrocyte hypertrophy, was downregulated by CHP compared to SMG. Furthermore, CHP increased GAG/DNA levels and wet weight in both female and male donors, but only significantly in females. From the transcriptomics, CHP and SMG significantly modulated genes related to the ossification, regulation of ossification, extracellular matrix, and angiogenesis Gene Ontology (GO) terms. A clear difference in fold-change magnitude and direction was seen between the two treatments for many of the genes. Furthermore, differences in fold-change magnitudes were seen between male and female donors within each treatment. SMG and CHP also significantly modulated genes in OA-related KEGG pathways, such as mineral absorption, Wnt signalling pathway, and HIF-1 signalling pathway.Conclusion: Engineered menisci responded to CHP and SMG in a sex-dependent manner. SMG may induce an OA-like profile, while CHP promotes chondrogenesis. The combination of SMG and CHP could serve as a model to study the early molecular events of KOA and potential drug-targetable pathways.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Surgery, Divisions of Orthopaedic Surgery, Surgical Research and Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David Xinzheyang Li
- Department of Surgery, Divisions of Orthopaedic Surgery, Surgical Research and Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopaedic Surgery, Surgical Research and Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopaedic Surgery, Surgical Research and Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Adetola B. Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery, Surgical Research and Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Adetola B. Adesida,
| |
Collapse
|
10
|
Wang CC, Chen IH, Yang YT, Chen YR, Yang KC. Infrapatellar Fat Pads-Derived Stem Cell Is a Favorable Cell Source for Articular Cartilage Tissue Engineering: An In Vitro and Ex Vivo Study Based on 3D Organized Self-Assembled Biomimetic Scaffold. Cartilage 2021; 13:508S-520S. [PMID: 33435725 PMCID: PMC8804804 DOI: 10.1177/1947603520988153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Adipose tissue-derived stem cells (ASCs) are a promising source of cells for articular cartilage regeneration. However, ASCs isolated from different adipose tissue depots have heterogeneous cell characterizations and differentiation potential when cultured in 3-dimensional (3D) niches. DESIGN We compared the chondrogenicity of ASCs isolated from infrapatellar fat pads (IPFPs) and subcutaneous fat pads (SCFPs) in 3D gelatin-based biomimetic matrix. RESULTS The IPFP-ASC-differentiated chondrocytes had higher ACAN, COL2A1, COL10, SOX6, SOX9, ChM-1, and MIA-3 mRNA levels and lower COL1A1 and VEGF levels than the SCFP-ASCs in 3D matrix. The difference in mRNA profile may have contributed to activation of the Akt, p38, RhoA, and JNK signaling pathways in the IPFP-ASCs. The chondrocytes differentiated from IPFP-ASCs had pronounced glycosaminoglycan and collagen type II production and a high chondroitin-6-sulfate/chondroitin-4-sulfate ratio with less polymerization of β-actin filaments. In an ex vivo mice model, magnetic resonance imaging revealed a shorter T2 relaxation time, indicating that more abundant extracellular matrix was secreted in the IPFP-ASC-matrix group. Histological examinations revealed that the IPFP-ASC matrix had higher chondrogenic efficacy of new cartilaginous tissue generation as evident in collagen type II and S-100 staining. Conclusion. ASCs isolated from IPFPs may be better candidates for cartilage regeneration, highlighting the translational potential of cartilage tissue engineering using the IPFP-ASC matrix technique.
Collapse
Affiliation(s)
- Chen-Chie Wang
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,Department of Orthopedics, School of
Medicine, Tzu Chi University, Hualien
| | - Ing-Ho Chen
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,Department of Orthopedics, School of
Medicine, Tzu Chi University, Hualien,Department of Orthopedic Surgery,
Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Ya-Ting Yang
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Yi-Ru Chen
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,School of Dental Technology, College of
Oral Medicine, Taipei Medical University, Taipei
| | - Kai-Chiang Yang
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,School of Dental Technology, College of
Oral Medicine, Taipei Medical University, Taipei,Kai-Chiang Yang, School of Dental
Technology, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing
Street, Xinyi District, Taipei, 11031.
| |
Collapse
|
11
|
Govoni M, Muscari C, Bonafè F, Morselli PG, Cortesi M, Dallari D, Giordano E. A brief very-low oxygen tension regimen is sufficient for the early chondrogenic commitment of human adipose-derived mesenchymal stem cells. Adv Med Sci 2021; 66:98-104. [PMID: 33461101 DOI: 10.1016/j.advms.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/19/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effects exerted over chondrogenic commitment of human adipose-derived mesenchymal stem cells (ADSCs) by a very low oxygen tension (<1% pO2). MATERIALS/METHODS Cell morphology, mRNA levels of chondrocyte-specific marker genes and the involvement of p38 MAPK signalling were monitored in human ADSCs under a very low oxygen tension. RESULTS Cell morphology was significantly changed after two days of hypoxic preconditioning when they featured as elongated spindle-shaped cells. SRY-box containing gene 9, aggrecan and collagen type II mRNA levels were enhanced under severe hypoxic culture conditions. Moreover, the inhibition of p38 MAPK resulted in a substantial reduction in transcription of the above-mentioned specific genes, proving the pivotal role of this pathway in the transcriptional regulation of chondrogenesis. CONCLUSIONS Here, we propose a protocol showing the early commitment of stem cells towards the chondrogenic phenotype in only 2 days of culture via a very low hypoxic environment, in the absence of growth factors added in the culture medium.
Collapse
|
12
|
Chen L, Liu G, Li W, Wu X. Synergistic effects of Indian hedgehog and sonic hedgehog on chondrogenesis during cartilage repair. J Mol Histol 2021; 52:407-418. [PMID: 33598817 DOI: 10.1007/s10735-021-09964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Sonic hedgehog (Shh) and Indian hedgehog (Ihh) have been shown to control the induction of early cartilaginous differentiation. However, it is unclear whether Ihh and Shh exert synergistic effects on chondrogenesis during articular cartilage repair. Herein, we investigate the effects of chondrogenesis of bone-derived mesenchymal stem cells (BMSCs) following co-transfection with Shh and Ihh via adenoviral vectors in vitro and in vivo. A rotary cell culture system (RCCS) and Cytodex 3 microcarriers were used to create a stereoscopic dynamic environment for cell culture. In the RCCS environment, BMSCs co-transfected with Ihh and Shh displayed stronger chondrogenic differentiation and chondrogenesis than BMSCs transfected with Ihh or Shh alone, and exhibited higher expression levels of Sox 9, ACAN and collagen II, stronger toluidine blue and collagen II immunohistochemical staining. After transplanted into the osteochondral defect at 8 weeks, Ihh/Shh co-transfected BMSCs showed a significantly better cartilage repair than BMSCs transfected with Ihh or Shh alone. Ihh and Shh have synergistic effects on the induction of chondrogenic differentiation and chondrogenesis under a microgravity environment, and help to repair damaged cartilage and reverse subchondral defects during the early stages.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Gejun Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Wenjun Li
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Xing Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
13
|
Kouroupis D, Correa D. Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Front Bioeng Biotechnol 2021; 9:621748. [PMID: 33644016 PMCID: PMC7907607 DOI: 10.3389/fbioe.2021.621748] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC) exist within their in vivo niches as part of heterogeneous cell populations, exhibiting variable stemness potential and supportive functionalities. Conventional extensive 2D in vitro MSC expansion, aimed at obtaining clinically relevant therapeutic cell numbers, results in detrimental effects on both cellular characteristics (e.g., phenotypic changes and senescence) and functions (e.g., differentiation capacity and immunomodulatory effects). These deleterious effects, added to the inherent inter-donor variability, negatively affect the standardization and reproducibility of MSC therapeutic potential. The resulting manufacturing challenges that drive the qualitative variability of MSC-based products is evident in various clinical trials where MSC therapeutic efficacy is moderate or, in some cases, totally insufficient. To circumvent these limitations, various in vitro/ex vivo techniques have been applied to manufacturing protocols to induce specific features, attributes, and functions in expanding cells. Exposure to inflammatory cues (cell priming) is one of them, however, with untoward effects such as transient expression of HLA-DR preventing allogeneic therapeutic schemes. MSC functionalization can be also achieved by in vitro 3D culturing techniques, in an effort to more closely recapitulate the in vivo MSC niche. The resulting spheroid structures provide spatial cell organization with increased cell–cell interactions, stable, or even enhanced phenotypic profiles, and increased trophic and immunomodulatory functionalities. In that context, MSC 3D spheroids have shown enhanced “medicinal signaling” activities and increased homing and survival capacities upon transplantation in vivo. Importantly, MSC spheroids have been applied in various preclinical animal models including wound healing, bone and osteochondral defects, and cardiovascular diseases showing safety and efficacy in vivo. Therefore, the incorporation of 3D MSC culturing approach into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved without requiring ex vivo stimulatory regimes. In the present review, we discuss the MSC functionalization in 3D settings and how this strategy can contribute to an improved MSC-based product for safer and more effective therapeutic applications.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
14
|
Tseng SJ, Wu CC, Cheng CH, Lin JC. Studies of surface grafted collagen and transforming growth factor β1 combined with cyclic stretching as a dual chemical and physical stimuli approach for rat adipose-derived stem cells (rADSCs) chondrogenesis differentiation. J Mech Behav Biomed Mater 2020; 112:104062. [PMID: 32891975 DOI: 10.1016/j.jmbbm.2020.104062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
The adipose-derived stem cell has been used in various regenerative medicine research due to its multiple differentiation capabilities. Developing a stable and quick approach for the differentiation of stem cells is a critical issue in tissue regenerative field. In this investigation, rat adipose-derived stem cells (rADSCs) were seeded onto the type I collagen/transforming growth factor β1 (TGF-β1) immobilized polydimethylsiloxane (PDMS) substrate and then combined with short term dynamic stretching stimulation (intermittent or continuous stretching for 6 h) to induce the rADSCs chondrogenesis differentiation using the induction medium without growth factors added in vitro. Via regulating the extracellular chemical- and mechano-receptors of the cultured rADSCs, the chondrogenic differentiation was examined. After 72 h of static culture, proteoglycan secretion was noted on the surfaces modified by collagen with or without TGF-β1. After different stretching stimulations, significant proteoglycan secretion was noted on the surface modified by both collagen and collagen/TGF-β1, especially after the intermittent stretching culturing. Nonetheless, genetic expression of the chondrogenic markers: SOX-9, Col2a1, and aggrecan, instead, were dependent upon the surface grafted layer and the stretching mode utilized. These findings suggested that the surface chemical characteristics and external mechanical stimulation could synergistically affect the efficacy of chondrogenic differentiation of rADSCs.
Collapse
Affiliation(s)
- Shen-Jui Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Hui Cheng
- Department of Pediatrics, College of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Huang P, Russell AL, Lefavor R, Durand NC, James E, Harvey L, Zhang C, Countryman S, Stodieck L, Zubair AC. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity 2020; 6:16. [PMID: 32529028 PMCID: PMC7264338 DOI: 10.1038/s41526-020-0106-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Growing stem cells on Earth is very challenging and limited to a few population doublings. The standard two-dimensional (2D) culture environment is an unnatural condition for cell growth. Therefore, culturing stem cells aboard the International Space Station (ISS) under a microgravity environment may provide a more natural three-dimensional environment for stem cell expansion and organ development. In this study, human-derived mesenchymal stem cells (MSCs) grown in space were evaluated to determine their potential use for future clinical applications on Earth and during long-term spaceflight. MSCs were flown in Plate Habitats for transportation to the ISS. The MSCs were imaged every 24-48 h and harvested at 7 and 14 days. Conditioned media samples were frozen at -80 °C and cells were either cryopreserved in 5% dimethyl sulfoxide, RNAprotect, or paraformaldehyde. After return to Earth, MSCs were characterized to establish their identity and cell cycle status. In addition, cell proliferation, differentiation, cytokines, and growth factors' secretion were assessed. To evaluate the risk of malignant transformation, the space-grown MSCs were subjected to chromosomal, DNA damage, and tumorigenicity assays. We found that microgravity had significant impact on the MSC capacity to secrete cytokines and growth factors. They appeared to be more potent in terms of immunosuppressive capacity compared to their identical ground control. Chromosomal, DNA damage, and tumorigenicity assays showed no evidence of malignant transformation. Therefore, it is feasible and potentially safe to grow MSCs aboard the ISS for potential future clinical applications.
Collapse
Affiliation(s)
- Peng Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Athena L Russell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Rebecca Lefavor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Nisha C Durand
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Elle James
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Larry Harvey
- Center for Applied Space Technologies, Merritt Island, FL USA
| | - Cuiping Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Stefanie Countryman
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | - Louis Stodieck
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| |
Collapse
|
16
|
Grimm D, Wehland M, Corydon TJ, Richter P, Prasad B, Bauer J, Egli M, Kopp S, Lebert M, Krüger M. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl Med 2020; 9:882-894. [PMID: 32352658 PMCID: PMC7381804 DOI: 10.1002/sctm.20-0084] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
A spaceflight has enormous influence on the health of space voyagers due to the combined effects of microgravity and cosmic radiation. Known effects of microgravity (μg) on cells are changes in differentiation and growth. Considering the commercialization of spaceflight, future space exploration, and long-term manned flights, research focusing on differentiation and growth of stem cells and cancer cells exposed to real (r-) and simulated (s-) μg is of high interest for regenerative medicine and cancer research. In this review, we focus on platforms to study r- and s-μg as well as the impact of μg on cancer stem cells in the field of gastrointestinal cancer, lung cancer, and osteosarcoma. Moreover, we review the current knowledge of different types of stem cells exposed to μg conditions with regard to differentiation and engineering of cartilage, bone, vasculature, heart, skin, and liver constructs.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Magdeburg, Germany.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Richter
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Binod Prasad
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johann Bauer
- Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Marcel Egli
- Institute of Medical Engineering, Space Biology Group, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Michael Lebert
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Space Biology Unlimited SAS, Bordeaux, France
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
17
|
Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front Cell Dev Biol 2020; 8:236. [PMID: 32363193 PMCID: PMC7180192 DOI: 10.3389/fcell.2020.00236] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) represent a promising tool for soft tissue engineering as well as for clinical treatment of inflammatory and autoimmune pathologies. The well-characterized multi-differentiation potential and self-renewal properties of ASCs are coupled with their immunomodulatory ability in providing therapeutic efficacy. Yet, their impact in immune or inflammatory disorders might rely both on cell contact-dependent mechanisms and paracrine effects, resulting in the release of various soluble factors that regulate immune cells functions. Despite the widespread use of ASCs in clinical trials addressing several pathologies, the pathophysiological mechanisms at the basis of their clinical use have been not yet fully investigated. In particular, a thorough analysis of ASC immunomodulatory potential is mandatory. Here we explore such molecular mechanisms involved in ASC immunomodulatory properties, emphasizing the relevance of the milieu composition. We review the potential clinical use of ASC secretome as a mediator for immunomodulation, with a focus on in vitro and in vivo environmental conditions affecting clinical outcome. We describe some potential strategies for optimization of ASCs immunomodulatory capacity in clinical settings, which act either on adult stem cells gene expression and local microenvironment. Finally, we discuss the limitations of both allogeneic and autologous ASC use, highlighting the issues to be fixed in order to significantly improve the efficacy of ASC-based cell therapy.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, Università della Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Stem Cell Culture Under Simulated Microgravity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:105-132. [PMID: 32424490 DOI: 10.1007/5584_2020_539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Challenging environment of space causes several pivotal alterations in living systems, especially due to microgravity. The possibility of simulating microgravity by ground-based systems provides research opportunities that may lead to the understanding of in vitro biological effects of microgravity by eliminating the challenges inherent to spaceflight experiments. Stem cells are one of the most prominent cell types, due to their self-renewal and differentiation capabilities. Research on stem cells under simulated microgravity has generated many important findings, enlightening the impact of microgravity on molecular and cellular processes of stem cells with varying potencies. Simulation techniques including clinostat, random positioning machine, rotating wall vessel and magnetic levitation-based systems have improved our knowledge on the effects of microgravity on morphology, migration, proliferation and differentiation of stem cells. Clarification of the mechanisms underlying such changes offers exciting potential for various applications such as identification of putative therapeutic targets to modulate stem cell function and stem cell based regenerative medicine.
Collapse
|
19
|
Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019; 8:cells8121620. [PMID: 31842346 PMCID: PMC6953111 DOI: 10.3390/cells8121620] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Owing to the importance of stem cell culture systems in clinical applications, researchers have extensively studied them to optimize the culture conditions and increase efficiency of cell culture. A spheroid culture system provides a similar physicochemical environment in vivo by facilitating cell–cell and cell–matrix interaction to overcome the limitations of traditional monolayer cell culture. In suspension culture, aggregates of adjacent cells form a spheroid shape having wide utility in tumor and cancer research, therapeutic transplantation, drug screening, and clinical study, as well as organic culture. There are various spheroid culture methods such as hanging drop, gel embedding, magnetic levitation, and spinner culture. Lately, efforts are being made to apply the spheroid culture system to the study of drug delivery platforms and co-cultures, and to regulate differentiation and pluripotency. To study spheroid cell culture, various kinds of biomaterials are used as building forms of hydrogel, film, particle, and bead, depending upon the requirement. However, spheroid cell culture system has limitations such as hypoxia and necrosis in the spheroid core. In addition, studies should focus on methods to dissociate cells from spheroid into single cells.
Collapse
|
20
|
Nordberg RC, Mellor LF, Krause AR, Donahue HJ, Loboa EG. LRP receptors in chondrocytes are modulated by simulated microgravity and cyclic hydrostatic pressure. PLoS One 2019; 14:e0223245. [PMID: 31584963 PMCID: PMC6777824 DOI: 10.1371/journal.pone.0223245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Mechanical loading is essential for the maintenance of musculoskeletal homeostasis. Cartilage has been demonstrated to be highly mechanoresponsive, but the mechanisms by which chondrocytes respond to mechanical stimuli are not clearly understood. The goal of the study was to determine how LRP4, LRP5, and LRP6 within canonical Wnt-signaling are regulated in simulated microgravity and cyclic hydrostatic pressure, and to investigate the potential role of LRP 4/5/6 in cartilage degeneration. Rat chondrosacroma cell (RCS) pellets were stimulated using either cyclic hydrostatic pressure (1Hz, 7.5 MPa, 4hr/day) or simulated microgravity in a rotating wall vessel (RWV) bioreactor (11RPM, 24hr/day). LRP4/5/6 mRNA expression was assessed by RT-qPCR and LRP5 protein expression was determined by fluorescent immunostaining. To further evaluate our in vitro findings in vivo, mice were subjected to hindlimb suspension for 14 days and the femoral heads stained for LRP5 expression. We found that, in vitro, LRP4/5/6 mRNA expression is modulated in a time-dependent manner by mechanical stimulation. Additionally, LRP5 protein expression is upregulated in response to both simulated microgravity and cyclic hydrostatic pressure. LRP5 is also upregulated in vivo in the articular cartilage of hindlimb suspended mice. This is the first study to examine how LRP4/5/6, critical receptors within musculoskeletal biology, respond to mechanical stimulation. Further elucidation of this mechanism could provide significant clinical benefit for the identification of pharmaceutical targets for the maintenance of cartilage health.
Collapse
Affiliation(s)
- Rachel C. Nordberg
- College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | | | - Andrew R. Krause
- Sport Health and Physical Education, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Elizabeth G. Loboa
- College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Chen L, Liu G, Li W, Wu X. Sonic hedgehog promotes chondrogenesis of rabbit bone marrow stem cells in a rotary cell culture system. BMC DEVELOPMENTAL BIOLOGY 2019; 19:18. [PMID: 31401976 PMCID: PMC6689882 DOI: 10.1186/s12861-019-0198-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sonic hedgehog (Shh) is an important signalling protein involved in the induction of early cartilaginous differentiation. Herein, we demonstrate that Shh markedly induces chondrogenesis of rabbit bone marrow stromal cells (BMSCs) under microgravity conditions, and promotes cartilage regeneration. RESULTS In the rotary cell culture system (RCCS), chondrogenic differentiation was revealed by stronger Toluidine Blue and collagen II immunohistochemical staining in the Shh transfection group, and chondroinductive activity of Shh was equivalent to that of TGF-β. Western blotting and qRT-PCR analysis results verified the stronger expression of Sox9, aggrecan (ACAN), and collagen II in rabbit BMSCs treated with Shh or TGF-β in a microgravity environment. Low levels of chondrogenic hypertrophy, osteogenesis, and adipogenesis-related factors were detected in all groups. After transplantation in vivo, histological analysis revealed a significant improvement in cartilage and subchondral repair in the Shh transfection group. CONCLUSIONS These results suggested that Shh signalling promoted chondrogenesis in rabbit BMSCs under microgravity conditions equivalent to TGF-β, and improved the early stages of the repair of cartilage and subchondral defects. Furthermore, RCCS provided a dynamic culture microenvironment conducive for cell proliferation, aggregation and differentiation.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China.,School of Medicine, Tongji University, Shanghai, 200072, China
| | - Gejun Liu
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China.,School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenjun Li
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China.,School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xing Wu
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200072, China. .,School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
22
|
Iseki T, Rothrauff BB, Kihara S, Sasaki H, Yoshiya S, Fu FH, Tuan RS, Gottardi R. Dynamic Compressive Loading Improves Cartilage Repair in an In Vitro Model of Microfracture: Comparison of 2 Mechanical Loading Regimens on Simulated Microfracture Based on Fibrin Gel Scaffolds Encapsulating Connective Tissue Progenitor Cells. Am J Sports Med 2019; 47:2188-2199. [PMID: 31307219 PMCID: PMC6637720 DOI: 10.1177/0363546519855645] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microfracture of focal chondral defects often produces fibrocartilage, which inconsistently integrates with the surrounding native tissue and possesses inferior mechanical properties compared with hyaline cartilage. Mechanical loading modulates cartilage during development, but it remains unclear how loads produced in the course of postoperative rehabilitation affect the formation of the new fibrocartilaginous tissue. PURPOSE To assess the influence of different mechanical loading regimens, including dynamic compressive stress or rotational shear stress, on an in vitro model of microfracture repair based on fibrin gel scaffolds encapsulating connective tissue progenitor cells. STUDY DESIGN Controlled laboratory study. METHODS Cylindrical cores were made in bovine hyaline cartilage explants and filled with either (1) cartilage plug returned to original location (positive control), (2) fibrin gel (negative control), or (3) fibrin gel with encapsulated connective tissue progenitor cells (microfracture mimic). Constructs were then subjected to 1 of 3 loading regimens: (1) no loading (ie, unloaded), (2) dynamic compressive loading, or (3) rotational shear loading. On days 0, 7, 14, and 21, the integration strength between the outer chondral ring and the central insert was measured with an electroforce mechanical tester. The central core component, mimicking microfracture neotissue, was also analyzed for gene expression by real-time reverse-transcription polymerase chain reaction, glycosaminoglycan, and double-stranded DNA contents, and tissue morphology was analyzed histologically. RESULTS Integration strengths between the outer chondral ring and central neotissue of the cartilage plug and fibrin + cells groups significantly increased upon exposure to compressive loading compared with day 0 controls (P = .007). Compressive loading upregulated expression of chondrogenesis-associated genes (SRY-related HGMG box-containing gene 9 [SOX9], collagen type II α1 [COL2A1], and increased ratio of COL2A1 to collagen type I α1 [COL1A1], an indicator of more hyaline phenotype) in the neotissue of the fibrin + cells group compared with the unloaded group at day 21 (SOX9, P = .0032; COL2A1, P < .0001; COL2A1:COL1A1, P = .0308). Fibrin + cells constructs exposed to shear loading expressed higher levels of chondrogenic genes compared with the unloaded condition, but the levels were not as high as those for the compressive loading condition. Furthermore, catabolic markers (MMP3 and ADAMTS 5) were significantly upregulated by shear loading (P = .0234 and P < .0001, respectively) at day 21 compared with day 0. CONCLUSION Dynamic compressive loading enhanced neotissue chondrogenesis and maturation in a simulated in vitro model of microfracture, with generation of more hyaline-like cartilage and improved integration with the surrounding tissue. CLINICAL RELEVANCE Controlled loading after microfracture may be beneficial in promoting the formation of more hyaline-like cartilage repair tissue; however, the loading regimens applied in this in vitro model do not yet fully reproduce the complex loading patterns created during clinical rehabilitation. Further optimization of in vitro models of cartilage repair may ultimately inform rehabilitation protocols.
Collapse
Affiliation(s)
- Tomoya Iseki
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hyogo College of Medicine, Nishinomiya, Hyōgo, Japan
| | - Benjamin B. Rothrauff
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shinsuke Kihara
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Sasaki
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Freddie H. Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- The Chinese University of Hong Kong, Hong Kong, China
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
23
|
Chen L, Liu G, Li W, Wu X. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells following transfection with Indian hedgehog and sonic hedgehog using a rotary cell culture system. Cell Mol Biol Lett 2019; 24:16. [PMID: 30858866 PMCID: PMC6390628 DOI: 10.1186/s11658-019-0144-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/19/2019] [Indexed: 01/22/2023] Open
Abstract
Background Indian hedgehog (IHH) and Sonic hedgehog (SHH) are important regulators of chondrogenesis. However, activation of IHH and SHH also promotes chondrocyte hypertrophy and ossification during chondrogenesis. The aims of this study were to investigate the effect of microgravity on IHH- and SHH-induced chondrogenic differentiation and to elucidate the role of microgravity in this process. Methods Adenovirus plasmids encoding the rabbit IHH gene and SHH genes were constructed in vitro and transfected into rabbit bone marrow-derived mesenchymal stem cells (BMSCs). A rotary cell culture system (RCCS), in which a dynamic three-dimensional culture system combines the mechanical environment with a three-dimensional culture surface, was used for cell culture and differentiation. During the induction of differentiation, expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Toluidine blue and collagen II immunohistochemical staining and annexin V-Cy3 staining were used to indicate investigate cartilage matrix synthesis and hypertrophic hypertrophy, respectively, on day 21 after induction of differentiation. Results In this study, IHH and SHH were shown to be equipotent inducers of chondrogenesis in rabbit BMSCs, as evidenced by strong staining for proteoglycans and collagen II, and increased expression of mRNAs and proteins associated with chondrogenesis in an RCCS environment. More importantly, chondrogenic hypertrophy and aging were effectively inhibited in the RCCS environment. In addition, levels of cartilage-related markers in the IHH and SHH transfection groups were initially increased and later decreased in the traditional two-dimensional environment, while cartilage hypertrophy-related factors revealed higher mRNA expression levels during induction. Conclusions In summary, microgravity significantly promoted chondrogenic differentiation of BMSCs induced by IHH and SHH and attenuated chondrogenic hypertrophy and aging during chondrogenesis. Furthermore, exogenous IHH and SHH had the same effect on chondrogenic differentiation of BMSCs in the RCCS environment. This study provides further evidence of chondrogenic induction of BMSCs in vitro via IHH and SHH gene delivery. Electronic supplementary material The online version of this article (10.1186/s11658-019-0144-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072 People's Republic of China
| | - Gejun Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072 People's Republic of China
| | - Wenjun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072 People's Republic of China
| | - Xing Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072 People's Republic of China
| |
Collapse
|
24
|
Aisenbrey EA, Bryant SJ. The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials 2018; 190-191:51-62. [PMID: 30391802 DOI: 10.1016/j.biomaterials.2018.10.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising for cartilage regeneration, but readily undergo terminal differentiation. The aim of this study was two-fold: a) investigate physiochemical cues from a cartilage-mimetic hydrogel under dynamic compressive loading on MSC chondrogenesis and hypertrophy and b) identify whether Smad signaling and p38 MAPK signaling mediate hypertrophy during MSC chondrogenesis. Human MSCs were encapsulated in photoclickable poly(ethylene glycol) hydrogels containing chondroitin sulfate and RGD, cultured under dynamic compressive loading or free swelling for three weeks, and evaluated by qPCR and immunohistochemistry. Loading inhibited hypertrophy in the cartilage-mimetic hydrogel indicated by a reduction in pSmad 1/5/8, Runx2, and collagen X proteins, while maintaining chondrogenesis by pSmad 2/3 and collagen II proteins. Inhibiting pSmad 1/5/8 under free swelling culture significantly reduced collagen X protein, similar to the loading condition. Chondroitin sulfate was necessary for load-inhibited hypertrophy and correlated with enhanced S100A4 expression, which is downstream of the osmotic responsive transcription factor NFAT5. Inhibiting p38 MAPK under loading reduced S100A4 expression, and upregulated Runx2 and collagen X protein. Findings from this study indicate that chondroitin sulfate with dynamic loading create physiochemical cues that support MSC chondrogenesis and attenuate hypertrophy through Smad 1/5/8 inhibition and p38 MAPK upregulation.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309-0596, USA; Material Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
25
|
Yin H, Wang Y, Sun X, Cui G, Sun Z, Chen P, Xu Y, Yuan X, Meng H, Xu W, Wang A, Guo Q, Lu S, Peng J. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomater 2018; 77:127-141. [PMID: 30030172 DOI: 10.1016/j.actbio.2018.07.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
Abstract
We developed a promising cell carrier prepared from articular cartilage slices, designated cartilage extracellular matrix (ECM)-derived particles (CEDPs), through processes involving physical pulverization, size screening, and chemical decellularization. Rabbit articular chondrocytes (ACs) or adipose-derived stem cells (ASCs) rapidly attached to the surface of the CEDPs and proliferated with high cell viability under microgravity (MG) condition in a rotary cell culture system (RCCS) or static condition. Gene profiling results demonstrated that ACs expanded on CEDPs exhibited significantly enhanced chondrogenic phenotypes compared with monolayer culture, and that ASCs differentiated into a chondrogenic phenotype without the use of exogenous growth factors. Moreover, MG culture conditions in a RCCS bioreactor were superior to static culture conditions in terms of maintaining the chondrogenic phenotype of ACs and inducing ACS chondrogenesis. With prolonged expansion, functional microtissue aggregates of AC- or ASC-laden CEDPs were formed. Further, AC- or ASC-based microtissues were directly implanted in vivo to repair articular osteochondral defects in a rabbit model. Histological results, biomechanical evaluations, and radiographic assessments indicated that AC- and ASC-based microtissues displayed equal levels of superior hyaline cartilage repair, whereas the other two treatment groups, in which osteochondral defects were treated with CEDPs alone or fibrin glue, exhibited primarily fibrous tissue repair. These findings provide an alternative method for cell culture and stem cell differentiation and a promising strategy for constructing tissue-engineered cartilage microtissues for cartilage regeneration. STATEMENT OF SIGNIFICANCE Despite the remarkable progress in cartilage tissue engineering, cartilage repair still remains elusive. In the present study, we developed a cell carrier, namely cartilage extracellular matrix-derived particles (CEDPs), for cell proliferation of articular chondrocytes (ACs) and adipose-derived stem cells (ASCs), which improved the maintenance of chondrogenic phenotype of ACs, and induced chondrogenesis of ASCs. Moreover, the functional microtissue aggregates of AC- or ASC-laden CEDPs induced equal levels of superior hyaline cartilage repair in a rabbit model. Therefore, our study demonstrated an alternative method for chondrocyte culture and stem cell differentiation, and a promising strategy for constructing tissue-engineered cartilage microtissues for in vivo articular cartilage repair and regeneration.
Collapse
Affiliation(s)
- Heyong Yin
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China; Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, D-80336 Munich, Germany
| | - Yu Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Xun Sun
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China; Department of Orthopaedics, Tianjin Hospital, No. 406 Jiefang Nan Road, Tianjin 300211, PR China
| | - Ganghua Cui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Zhen Sun
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Peng Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Yichi Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Xueling Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Haoye Meng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Wenjing Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China.
| |
Collapse
|
26
|
Baumgartner W, Schneider I, Hess SC, Stark WJ, Märsmann S, Brunelli M, Calcagni M, Cinelli P, Buschmann J. Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress. J Mech Behav Biomed Mater 2018; 83:84-93. [DOI: 10.1016/j.jmbbm.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
|
27
|
Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging. Oncotarget 2018; 7:62873-62885. [PMID: 27802423 PMCID: PMC5325333 DOI: 10.18632/oncotarget.11871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.
Collapse
|
28
|
Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, Wehland M, Wise P, Infanger M, Mann V, Sundaresan A. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Stem Cells Dev 2018; 27:787-804. [PMID: 29596037 DOI: 10.1089/scd.2017.0242] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental cell research studying three-dimensional (3D) tissues in space and on Earth using new techniques to simulate microgravity is currently a hot topic in Gravitational Biology and Biomedicine. This review will focus on the current knowledge of the use of stem cells and specialized cells for tissue engineering under simulated microgravity conditions. We will report on recent advancements in the ability to construct 3D aggregates from various cell types using devices originally created to prepare for spaceflights such as the random positioning machine (RPM), the clinostat, or the NASA-developed rotating wall vessel (RWV) bioreactor, to engineer various tissues such as preliminary vessels, eye tissue, bone, cartilage, multicellular cancer spheroids, and others from different cells. In addition, stem cells had been investigated under microgravity for the purpose to engineer adipose tissue, cartilage, or bone. Recent publications have discussed different changes of stem cells when exposed to microgravity and the relevant pathways involved in these biological processes. Tissue engineering in microgravity is a new technique to produce organoids, spheroids, or tissues with and without scaffolds. These 3D aggregates can be used for drug testing studies or for coculture models. Multicellular tumor spheroids may be interesting for radiation experiments in the future and to reduce the need for in vivo experiments. Current achievements using cells from patients engineered on the RWV or on the RPM represent an important step in the advancement of techniques that may be applied in translational Regenerative Medicine.
Collapse
Affiliation(s)
- Daniela Grimm
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Marcel Egli
- 3 Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts , Hergiswil, Switzerland
| | - Marcus Krüger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Stefan Riwaldt
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Thomas J Corydon
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,4 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | - Sascha Kopp
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Markus Wehland
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Petra Wise
- 5 Hematology/Oncology, University of Southern California , Children's Hospital Los Angeles, Los Angeles, California
| | - Manfred Infanger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Vivek Mann
- 6 Department of Biology, Texas Southern University , Houston, Texas
| | | |
Collapse
|
29
|
Li W, Wang D, Wang D. Regulation of the Response of Caenorhabditis elegans to Simulated Microgravity by p38 Mitogen-Activated Protein Kinase Signaling. Sci Rep 2018; 8:857. [PMID: 29339777 PMCID: PMC5770453 DOI: 10.1038/s41598-018-19377-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/29/2017] [Indexed: 11/24/2022] Open
Abstract
The in vivo function of p38 mitogen-activated protein kinase (MAPK) signaling in regulating the response to simulated microgravity is still largely unclear. Using Caenorhabditis elegans as an assay system, we investigated the in vivo function of p38 MAPK signaling in regulating the response of animals to simulated microgravity and the underlying molecular mechanism. Simulated microgravity treatment significantly increased the transcriptional expressions of genes (pmk-1, sek-1, and nsy-1) encoding core p38 MAPK signaling pathway and the expression of phosphorylated PMK-1/p38 MAPK. The pmk-1, sek-1, or nsy-1 mutant was susceptible to adverse effects of simulated microgravity. The intestine-specific activity of PMK-1 was required for its function in regulating the response to simulated microgravity, and the entire p38 MAPK signaling pathway could act in the intestine to regulate the response to simulated microgravity. In the intestine, SKN-1 and ATF-7, two transcriptional factors, were identified as downstream targets for PMK-1 in regulating the response to simulated microgravity. Therefore, the activation of p38 MAPK signaling may mediate a protection mechanism for nematodes against the adverse effects of simulated microgravity. Additionally, our results highlight the potential crucial role of intestinal cells in response to simulated microgravity in nematodes.
Collapse
Affiliation(s)
- Wenjie Li
- Medical School, Southeast University, Nanjing, 210009, China
| | - Daoyong Wang
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Nordberg RC, Bodle JC, Loboa EG. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain. Methods Mol Biol 2018; 1773:215-230. [PMID: 29687393 DOI: 10.1007/978-1-4939-7799-4_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Josie C Bodle
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Elizabeth G Loboa
- College of Engineering, University of Missouri, W1024 Thomas & Nell Lafferre Hall, Columbia, MO, USA.
| |
Collapse
|
31
|
Zhang S, Wu Y, Weng Y, Xu Z, Chen W, Zheng D, Lin W, Liu J, Zhou Y. In Vitro Growth of Mouse Preantral Follicles Under Simulated Microgravity. J Vis Exp 2017. [PMID: 29286463 PMCID: PMC5755603 DOI: 10.3791/55641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
14 day-old mouse ovarian tissue and preantral follicles isolated from same-aged mice were incubated in a simulated microgravity culture system. We quantitatively assessed follicle survival, measured follicle and oocyte diameters, and examined ultrastructure of the oocytes produced from the system. We observed decreased follicle survival, downregulation of expressions of proliferating cell nuclear antigen and growth differentiation factor 9, as indicators for the development of granulosa cells and oocytes, respectively, and oocyte ultrastructural abnormalities under the simulated microgravity condition. The simulated microgravity experimental setup needs to be optimized to provide a model for investigation of the mechanisms involved in the oocyte/follicle in vitro development.
Collapse
Affiliation(s)
- Shen Zhang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University
| | - Yonggen Wu
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University
| | - Yimin Weng
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University
| | - Zhihui Xu
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University
| | - Wenmin Chen
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University
| | - Dahan Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University
| | - Wei Lin
- School of Pharmaceutical Science, Wenzhou Medical University
| | - Jun Liu
- Stem Cells and Genetic Engineering Group, AgriBioscience Research Centre, Department of Economic Development, Jobs, Transport and Resources;
| | - Ying Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University; Department of Histology and Embryology, Wenzhou Medical University;
| |
Collapse
|
32
|
Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. NPJ Microgravity 2017; 3:28. [PMID: 29147680 PMCID: PMC5681589 DOI: 10.1038/s41526-017-0032-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023] Open
Abstract
Simulated microgravity has been shown to enhance cartilaginous matrix formation by chondrocytes and chondrogenesis of mesenchymal stem cells (MSCs). Similarly, coculture of primary chondrocytes with MSCs has been shown as a strategy to simultaneously retain the differentiated phenotype of chondrocytes and enhance cartilaginous matrix formation. In this study, we investigated the effect of simulated microgravity on cocultures of primary human meniscus cells and adipose-derived MSCs. We used biochemical, qPCR, and immunofluorescence assays to conduct our investigation. Simulated microgravity significantly enhanced cartilaginous matrix formation in cocultures of primary meniscus cells and adipose-derived MSCs. The enhancement was accompanied by increased hypertrophic differentiation markers, COL10A1 and MMP-13, and suppression of hypertrophic differentiation inhibitor, gremlin 1 (GREM1). Co-culture of meniscal cartilage-forming cells with fat-derived stem cells can lead to enhanced cartilage matrix production when cultured under simulated microgravity. Adetola Adesida from the University of Alberta in Edmonton, Canada, and colleagues cultured two types of cells found together in the knee—cartilage-forming chondrocyte cells (taken from the meniscus) and mesenchymal stem cells (isolated from the infrapatellar fat pad)—in a rotary cell culture system designed to model weightlessness on Earth. Simulated microgravity enhanced the synergistic interaction between the two types of cells in culture, resulting in more matrix production, but it also prompted the cartilage-forming cells to differentiate towards bone-forming cells, as evidenced by gene expression analysis. These findings suggest that microgravity and simulated microgravity-based culture technologies could help bioengineers grow knee replacements for people with meniscus tears, but increased bone-directed differentiation could pose a possible problem for astronauts on prolonged missions.
Collapse
|
33
|
孙 瑞, 龚 建, 邹 海, 张 林, 高 林. miR-17-92基因簇在肿瘤发生发展中作用的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1840-1853. [DOI: 10.11569/wcjd.v25.i20.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
肿瘤是威胁全世界人类健康和影响社会经济的重要因素. 近年来, 随着经济的发展, 肿瘤的发病率呈明显上升趋势, 但是其病因尚未完全阐明. 越来越多的证据显示肿瘤的发生和遗传因素有关, 随着病理生理学和遗传学的发展, 许多学者认为生物标志物可以预测癌症甚至指导临床治疗. 微小RNA(microRNA, miRNA)是非编码小分子RNA, 在发育、生理、病理过程以及肿瘤发生等环节中起着重要的调节作用. miR-17-92基因簇是研究较为深入、最有特点的miRNA, 被认为是原癌基因miRNA的代表, 在多种肿瘤的发生发展中起着至关重要的作用. 本文就miR-17-92基因簇在肿瘤发生发展中的作用及功能进行综述.
Collapse
|
34
|
Tang Y, Xu Y, Xiao Z, Zhao Y, Li J, Han S, Chen L, Dai B, Wang L, Chen B, Wang H. The combination of three-dimensional and rotary cell culture system promotes the proliferation and maintains the differentiation potential of rat BMSCs. Sci Rep 2017; 7:192. [PMID: 28298644 PMCID: PMC5428343 DOI: 10.1038/s41598-017-00087-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are a good candidate for tissue engineering and clinical application. One of the challenges in its cell therapy is how to quickly obtain an adequate number of seed cells and meanwhile maintain suitable differentiation potential. In this study we combined three-dimensional (3D) collagen porous scaffolds with rotary cell culture system (RCCS) (RCCS-3D) to create a stereoscopic dynamic environment for the amplification of rat BMSCs in vitro. The results revealed that this RCCS-3D system could enhance BMSCs' proliferation and colony formation, as well as maintain the differentiation potential compared with conventional static two-dimensional (2D) and 3D cell culture conditions. In addition, high-throughput microarray analysis showed that gene expressions of RCCS-3D system displayed significant differences in cell proliferation and differentiation compared with static-2D conditions. Thus, RCCS-3D system could provide an effective means for BMSCs cell proliferation in vitro and meanwhile maintain differentiation potential in tissue engineering.
Collapse
Affiliation(s)
- Yilong Tang
- Department of Spine Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Department of Spine Surgery, Sichuan Provincial Orthopedic Hospital, Chengdu, 610041, People's Republic of China
| | - Yan Xu
- Department of Spine Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Department of Spine Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671000, People's Republic of China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Bin Dai
- Department of Biotechnology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Ling Wang
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Hong Wang
- Department of Spine Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| |
Collapse
|
35
|
Proteomic analysis of chondromodulin-I-induced differentiation of mesenchymal stem cells into chondrocytes. J Proteomics 2017; 159:1-18. [PMID: 28263889 DOI: 10.1016/j.jprot.2017.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/13/2017] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
To identify novel proteins that might help clarify the molecular mechanisms underlying chondromodulin-I (ChM-I) induction of mesenchymal stem cells (MSCs) differentiate into chondrocytes. MSCs are triggered to differentiate into chondrocytes, which are recognized as important factors in cartilage tissue engineering. ChM-I is a glycoprotein that stimulates the growth of chondrocytes and inhibits angiogenesis in vitro. In this study, the proteomic approach was used to evaluate protein changes between undifferentiated MSCs and ChM-I-transfected MSCs. The expression of the protein spots was analyzed using two-dimensional gel electrophoresis. Then, 14 protein spots were identified between MSCs and ChM-I-transfected MSCs. 309 proteins were identified using mass spectrometry (MS). The differentially regulated proteins were categorized and annotated using Protein Analysis Through Evolutionary Relationships (PANTHER) analysis with the aid of the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool. These proteins are included in a variety of metabolic pathways and signal transduction pathways, such as focal adhesion, glycolysis, actin cytoskeleton regulation, and ribosome. These results demonstrate novel information about the molecular mechanism by which ChM-I induce MSCs to differentiate into chondrocytes. These results also provide a solid foundation for the development of tissue-engineered cartilage.
Collapse
|
36
|
Bielli A, Scioli MG, Gentile P, Cervelli V, Orlandi A. Adipose-derived stem cells in cartilage regeneration: current perspectives. Regen Med 2016; 11:693-703. [PMID: 27599358 DOI: 10.2217/rme-2016-0077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
Repair of cartilage injuries represents a musculoskeletal medicine criticism because of the poor ability to self-renewal of adult cartilage. Therefore, research focuses on developing new regenerative strategies combining chondrocytes or stem cells, scaffolds and growth factors. Because of the low proliferation capability of explanted chondrocytes, new chondrogenesis models, employing human adipose-derived stem cells (ASCs), have been investigated. ASCs are readily accessible with no morbidity and display the capability to differentiate into several cell lineages, including the spontaneous chondrogenic differentiation when entrapped in collagen gel scaffolds. Recent studies also defined some biomolecular mechanisms involved in ASC chondrogenesis in vitro, and their regenerative properties in bioengineered scaffolds and in the presence of growth factors. However, further investigations are required to validate these exciting preclinical results for the application of bioenginereed ASCs in the clinical practice.
Collapse
Affiliation(s)
- Alessandra Bielli
- Anatomic Pathology, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Pietro Gentile
- Plastic Surgery, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Valerio Cervelli
- Plastic Surgery, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine & Prevention, Tor Vergata University of Rome, Italy
| |
Collapse
|
37
|
Zhang X, Wang Q, Wan Z, Li J, Liu L, Zhang X. CKIP-1 knockout offsets osteoporosis induced by simulated microgravity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:140-148. [PMID: 27666961 DOI: 10.1016/j.pbiomolbio.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
Casein kinase 2-interacting protein 1 (CKIP-1) is a negative regulator for bone formation. CKIP-1 knockout (KO) mice are very important for research on countermeasures to bone loss induced by space microgravity. Under simulated microgravity, the bone metabolism of CKIP-1 KO mice was different than that of wild-type (WT) mice. Many experiments all showed that the KO mice had significantly enhanced ossification in the tail suspension conditions, and the differences were closely related to the time the mice were exposed to the microgravity environment. Our results reveal the effect of CKIP-1 on the regulation of bone metabolism and osteogenesis in vivo and the ability of this gene to offset osteoporosis, and they suggest an approach to the treatment of osteoporosis induced by microgravity in space.
Collapse
Affiliation(s)
- Xinchang Zhang
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China; Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China
| | - Qiangsong Wang
- Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China
| | - Zongming Wan
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Jianyu Li
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Lu Liu
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Xizheng Zhang
- Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China.
| |
Collapse
|
38
|
Heritability of in vitro phenotypes exhibited by murine adipose-derived stromal cells. Mamm Genome 2016; 27:460-8. [PMID: 27393554 DOI: 10.1007/s00335-016-9655-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023]
Abstract
Adipose-derived stromal cells (ADSCs) exhibit significant potential as therapeutic agents to promote tissue regeneration. Success of ADSC-based therapies is dependent upon efficient cell expansion in vitro as well as postinjection survival in the caustic milieu of damaged tissue. Genetic background regulates ADSC proliferative capacity and stress resistance, but the extent of the genetic effect size is not completely defined. The present study aimed to quantify phenotypic ranges and heritability of in vitro ADSC characteristics. ADSCs were isolated from mice representing 16 genetically diverse inbred mouse strains, including 12 classical inbred strains and four wild-derived strains. Cells were grown in vitro, and proliferative capacity and oxidative stress resistance were assessed. The fold change for ADSC growth ranged from 0.87 (BALB/cByJ) to 23.60 (POHN/DehJ), relative to original seeding density. The heritability of proliferative capacity was estimated to be 0.6462 (p = 9.967 × 10(-15)), and this phenotype was not associated with other ADSC traits. Cell viability following H2O2 treatment ranged from 39.81 % (CAST/EiJ) to 91.60 % (DBA/2 J), and the heritability of this phenotype was calculated as 0.6146 (p = 1.22 × 10(-12)). Relationships between cell viability and weight of the donor fat pad were also discovered. Donor genetic background is a major determinant of in vitro ADSC phenotypes. This study supports the development of forward genetics strategies to identify genes that underlie ADSC phenotypic diversity, which will inform efforts to improve cell-based therapies.
Collapse
|
39
|
Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, Lee SY, Chen YH. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev 2016; 25:1172-93. [PMID: 27269634 DOI: 10.1089/scd.2016.0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest stem cells (NCSCs) are a population of multipotent stem cells that are distributed broadly in many tissues and organs and are capable of differentiating into a variety of cell types that are dispersed throughout three germ layers. We are interested in studying the effects of simulated microgravity on the survival and self-renewal of NCSCs. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro, respectively, in a 2D adherent environment and a 3D suspension environment using the rotatory cell culture system (RCCS) to simulate microgravity. We found that rat NCSCs (rNCSCs) cultured in the RCCS for 24 h showed disrupted organization of filamentous actin, increased globular actin level, formation of plasma membrane blebbing and neurite-like artifact, as well as decreased levels of cortactin and vimentin. Interestingly, ∼70% of RCCS-cultured rNCSCs co-expressed cleaved (active) caspase-3 and neuronal markers microtubule-associated protein 2 (MAP2) and Tuj1 instead of NCSC markers, suggesting stress-induced formation of neurite-like artifact in rNCSCs. In addition, rNCSCs showed increased C-X-C chemokine receptor 4 (CXCR4) expression, RhoA GTPase activation, Rho-associated kinase 1 (ROCK1) and p38 mitogen-activated protein kinase (MAPK) phosphorylation, and p53 expression in the nucleus. Incubation of rNCSCs with the Gα protein inhibitor pertussis toxin or CXCR4 siRNA during RCCS-culturing prevented cytoskeleton disorganization and plasma membrane blebbing, and it suppressed apoptosis of rNCSCs. Taken together, we demonstrate for the first time that simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rNCSCs via upregulating CXCR4 expression and the RhoA-ROCK1-p38 MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Shing-Chen Lin
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Guo-Hau Gou
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,3 Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital , Longtan Township, Taoyuan County, Taiwan
| | - Kun-Lun Huang
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,4 Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Yung-Fu Wu
- 5 Department of Medical Research, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Shih-Yu Lee
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| |
Collapse
|
40
|
Massai D, Isu G, Madeddu D, Cerino G, Falco A, Frati C, Gallo D, Deriu MA, Falvo D'Urso Labate G, Quaini F, Audenino A, Morbiducci U. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids. PLoS One 2016; 11:e0154610. [PMID: 27144306 PMCID: PMC4856383 DOI: 10.1371/journal.pone.0154610] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/15/2016] [Indexed: 11/27/2022] Open
Abstract
A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future.
Collapse
Affiliation(s)
- Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giuseppe Isu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Denise Madeddu
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Giulia Cerino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Angela Falco
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Caterina Frati
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco A Deriu
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola universitaria professionale della Svizzera italiana, Università della Svizzera italiana, Manno, Switzerland
| | | | - Federico Quaini
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Alberto Audenino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
41
|
Oberbauer E, Steffenhagen C, Feichtinger G, Hildner F, Hacobian A, Danzer M, Gabriel C, Redl H, Wolbank S. A Luciferase-Based Quick Potency Assay to Predict Chondrogenic Differentiation. Tissue Eng Part C Methods 2016; 22:487-95. [DOI: 10.1089/ten.tec.2015.0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Eleni Oberbauer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Carolin Steffenhagen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Georg Feichtinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Biomaterials and Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Florian Hildner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Martin Danzer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Christian Gabriel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
42
|
Zhang S, Zheng D, Wu Y, Lin W, Chen Z, Meng L, Liu J, Zhou Y. Simulated Microgravity Using a Rotary Culture System Compromises the In Vitro Development of Mouse Preantral Follicles. PLoS One 2016; 11:e0151062. [PMID: 26963099 PMCID: PMC4786255 DOI: 10.1371/journal.pone.0151062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Background Growing cells in simulated weightlessness condition might be a highly promising new technique to maintain or generate tissue constructs in a scaffold-free manner. There is limited evidence that microgravity condition may affect development of ovarian follicles. The objective of the present study was to investigate the effects of simulated microgravity on the in vitro development of mouse preantral follicles. Methods and Results Ovarian tissue from 14-day-old mice, or preantral follicles mechanically isolated from 14-day-old mouse ovaries were cultured at a simulated microgravity condition generated using a rotating wall vessel apparatus. Follicle survival was assessed quantitatively using H&E staining. Follicle diameter and oocyte diameter were measured under an inverted microscope. Ultrastructure of oocytes was evaluated using transmission electron microscopy. We observed that simulated microgravity compromised follicle survival in vitro, downregulated PCNA and GDF-9 expressions, and caused ultrastructural abnormalities in oocytes. Conclusion This study showed for the first time that three-dimensional culture condition generated by simulated microgravity is detrimental to the initial stage development of mouse preantral follicles in vitro. The experimental setup provides a model to further investigate the mechanisms involved in the in vitro developmental processes of oocytes/granulosa cells under the microgravity condition.
Collapse
Affiliation(s)
- Shen Zhang
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Dahan Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yonggen Wu
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei Lin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zaichong Chen
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Luhe Meng
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jun Liu
- Stem Cells and Genetic Engineering Group, Department of Materials Engineering, Monash University, Clayton, Victoria, Australia
- * E-mail: (JL); (YZ)
| | - Ying Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- * E-mail: (JL); (YZ)
| |
Collapse
|
43
|
Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. J Mech Behav Biomed Mater 2015; 55:21-31. [PMID: 26521085 DOI: 10.1016/j.jmbbm.2015.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022]
Abstract
Engineering tissues with comparable structure, composition and mechanical functionality to native articular cartilage remains a challenge. One possible solution would be to decellularize xenogeneic articular cartilage in such a way that the structure of the tissue is maintained, and to then repopulate this decellularized matrix with human chondroprogenitor cells that will facilitate the reconstitution, maintenance and eventual turnover of the construct following implantation. The overall objective of this study was to develop a protocol to efficiently decellularize porcine articular cartilage grafts and to identify a methodology to subsequently repopulate such explants with human chondroprogenitor cells. To this end, channels were first introduced into cylindrical articular cartilage explants, which were then decellularized with a combination of various chemical reagents including sodium dodecyl sulfate (SDS) and nucleases. The decellularization protocol resulted in a ~90% reduction in porcine DNA content, with little observed effect on the collagen content and the collagen architecture of the tissue, although a near-complete removal of sulfated glycosaminoglycans (sGAG) and a related reduction in tissue compressive properties was observed. The introduction of channels did not have any detrimental effect on the biochemical or the mechanical properties of the decellularized tissue. Next, decellularized cartilage explants with or without channels were seeded with human infrapatellar fat pad derived stem cells (FPSCs) and cultured chondrogenically under either static or rotational conditions for 10 days. Both channeled and non-channeled explants supported the viability, proliferation and chondrogenic differentiation of FPSCs. The addition of channels facilitated cell migration and subsequent deposition of cartilage-specific matrix into more central regions of these explants. The application of rotational culture appeared to promote a less proliferative cellular phenotype and led to an increase in sGAG synthesis within the explants. Rotational culture also appeared to promote higher cell viability and led to a more even distribution of cells within the channels of decellularized explants. To conclude, this study describes an effective protocol for the decellularization of porcine articular cartilage grafts and a novel methodology for the partial recellularization of such explants with human stem cells. Decellularized soft tissue explants that maintain their native collagen architecture may represent promising scaffolds for musculoskeletal tissue engineering applications.
Collapse
|
44
|
Luna C, Yew AG, Hsieh AH. Effects of angular frequency during clinorotation on mesenchymal stem cell morphology and migration. NPJ Microgravity 2015; 1:15007. [PMID: 28725712 PMCID: PMC5515506 DOI: 10.1038/npjmgrav.2015.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/15/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
AIMS To determine the short-term effects of simulated microgravity on mesenchymal stem cell behaviors-as a function of clinorotation speed-using time-lapse microscopy. BACKGROUND Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). METHODS We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 h in a recently developed lab-on-chip-based clinostat system. Time-lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time-lapse light microscopy of cells in NGF (100 ng/ml) gradients. RESULTS Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (P<0.005), though average cell area at 30 rpm after 8 h became statistically similar to control (P=0.794). Cells at 75 rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers, clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility. CONCLUSIONS These results indicate that hMSCs respond to clinorotation by adopting more rounded, less-spread morphologies. The angular frequency-dependence suggests that a cell's ability to sense the changing gravity vector is governed by the rate of perturbation. For migration studies, cells cultured in clinorotated chemotaxis chambers were generally less motile and exhibited retraction instead of migration.
Collapse
Affiliation(s)
- Carlos Luna
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alvin G Yew
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Department of Orthopaedics, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
45
|
Zhang C, Li L, Chen J, Wang J. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation. Cell Biol Int 2015; 39:647-56. [PMID: 25712570 DOI: 10.1002/cbin.10452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022]
Abstract
With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells.
Collapse
Affiliation(s)
- Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jianling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
46
|
Du HM, Wang LY, Zheng XH, Tang W, Liu L, Jing W, Lin YF, Tian WD, Long J. The Role of the Wnt Signaling Pathway in the Osteogenic Differentiation of Human Adipose-derived Stem Cells under Mechanical Stimulation. J HARD TISSUE BIOL 2015; 24:169-180. [DOI: 10.2485/jhtb.24.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hong-ming Du
- The State Key Laboratory of Oral Diseases, Sichuan University
| | - Li-ya Wang
- Department of Stomatology, The First Affiliated Hospital of Soochow University
| | - Xiao-hui Zheng
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Lei Liu
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Wei Jing
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Yun-feng Lin
- The State Key Laboratory of Oral Diseases, Sichuan University
| | - Wei-dong Tian
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Jie Long
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
- The State Key Laboratory of Oral Diseases, Sichuan University
| |
Collapse
|
47
|
Ding D, Mao D, Li K, Wang X, Qin W, Liu R, Chiam DS, Tomczak N, Yang Z, Tang BZ, Kong D, Liu B. Precise and long-term tracking of adipose-derived stem cells and their regenerative capacity via superb bright and stable organic nanodots. ACS NANO 2014; 8:12620-12631. [PMID: 25427294 DOI: 10.1021/nn505554y] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Monitoring and understanding long-term fate and regenerative therapy of administrated stem cells in vivo is of great importance. Herein we report organic nanodots with aggregation-induced emission characteristics (AIE dots) for long-term tracking of adipose-derived stem cells (ADSCs) and their regenerative capacity in living mice. The AIE dots possess high fluorescence (with a high quantum yield of 25±1%), excellent biological and photophysical stabilities, low in vivo toxicity, and superb retention in living ADSCs with negligible interference on their pluripotency and secretome. These AIE dots also exhibit superior in vitro cell tracking capability compared to the most popular commercial cell trackers, PKH26 and Qtracker 655. In vivo quantitative studies with bioluminescence and GFP labeling as the controls reveal that the AIE dots can precisely and quantitatively report the fate of ADSCs and their regenerative capacity for 42 days in an ischemic hind limb bearing mouse model.
Collapse
Affiliation(s)
- Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Luo H, Zhu B, Zhang Y, Jin Y. Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration. Tissue Eng Part A 2014; 21:267-76. [PMID: 25088840 DOI: 10.1089/ten.tea.2013.0565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mesenchymal stem cells (MSCs) seeded in a 3D scaffold often present characteristics of low proliferation and migration, which affect the microstructure of tissue-engineered nerves (TENs) and impair the therapeutic effects of nerve defects. By promoting MSC differentiation and mass/nutrient transport, rotary cell culture systems (RCCSs) display potential for advancing the construction of MSC-based TENs. Thus, in this study, we attempted to construct a TEN composed of adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve graft (ANG) utilizing an RCCS. Compared to TENs prepared in a static 3D approach, MTT and cell count results displayed an increased number of ADSCs for TENs in an RCCS. The similarity in cell cycle states and high rates of apoptosis in the static 3D culture demonstrated that the higher proliferation in the RCCS was not due to microgravity regulation but a result of preferential mass/nutrient transport. Quantitative PCR and ELISA indicated that the RCCS promoted the expression of ADSC neural differentiation-associated genes compared to the static 3D culture. Furthermore, this difference was eliminated by adding the Notch1 signaling pathway inhibitor DAPT to the 3D static culture. TEM, axon immunostaining, and retrograde labeling analysis after sciatic nerve transplantation indicated that the TENs prepared in the RCCS exhibited more regenerative characteristics for repairing peripheral nerves than those prepared in a static 3D approach. Therefore, these findings suggest that the RCCS can modulate the construction, morphology, and function of engineered nerves as a promising alternative for nerve regeneration.
Collapse
Affiliation(s)
- Hailang Luo
- 1 Research and Development Center for Tissue Engineering, Fourth Military Medical University , Xi'an, China
| | | | | | | |
Collapse
|
49
|
Mayer-Wagner S, Hammerschmid F, Redeker JI, Schmitt B, Holzapfel BM, Jansson V, Betz OB, Müller PE. Simulated microgravity affects chondrogenesis and hypertrophy of human mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2014; 38:2615-21. [PMID: 25030964 DOI: 10.1007/s00264-014-2454-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/26/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE During in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) hypertrophy is an inadvertent event associated with cell differentiation toward the osteogenic lineage. Up to now, there is no stringent experimental control mechanism to prevent hypertrophy of MSCs. Microgravity is known to have an impact on osteogenesis. In this study, the influence of simulated microgravity (SMG) on both chondrogenesis and hypertrophy of hMSCs was evaluated. METHODS A bioreactor using a rotating wall vessel was constructed to simulate microgravity. Pellet cultures formed from hMSCs (P5) were supplemented with human transforming growth factor-β3 (TGF-β3). The hMSC pellet cultures treated with TGF-β3 were either kept in SMG or in a control system. After three weeks of culture, the chondrogenic differentiation status and level of hypertrophy were examined by safranin-O staining, immunohistochemistry and quantitative real-time PCR. RESULTS SMG reduced the staining for safranin-O and collagen type II. The expression of collagen type X α1 chain (COL10A1) and collagen type II α1 chain (COL2A1) were both significantly reduced. There was a higher decrease in COL2A1 than in COL10A1 expression, resulting in a low COL2A1/COL10A1 ratio. CONCLUSIONS SMG reduced hypertrophy of hMSCs during chondrogenic differentiation. However, the expression of COL2A1 was likewise reduced. Even more, the COL2A1/COL10A1 ratio decreased under SMG conditions. We therefore assume that SMG has a significant impact on the chondrogenic differentiation of hMSCs. However, due to the high COL2A1 suppression under SMG, this culture system does not yet seem to be suitable for a potential application in cartilage repair.
Collapse
Affiliation(s)
- Susanne Mayer-Wagner
- Department of Orthopaedic Surgery, Ludwig-Maximilians-University, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:928507. [PMID: 25110709 PMCID: PMC4119729 DOI: 10.1155/2014/928507] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/03/2023]
Abstract
How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning
machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.
Collapse
|