1
|
Zamfirov L, Nguyen NM, Fernández-Sánchez ME, Cambronera Ghiglione P, Teston E, Dizeux A, Tiennot T, Farge E, Demené C, Tanter M. Acoustic-pressure-driven ultrasonic activation of the mechanosensitive receptor RET and of cell proliferation in colonic tissue. Nat Biomed Eng 2025; 9:742-753. [PMID: 39706982 DOI: 10.1038/s41551-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/31/2024] [Indexed: 12/23/2024]
Abstract
Ultrasound generates both compressive and shear mechanical forces in soft tissues. However, the specific mechanisms by which these forces activate cellular processes remain unclear. Here we show that low-intensity focused ultrasound can activate the mechanosensitive RET signalling pathway. Specifically, in mouse colon tissues ex vivo and in vivo, focused ultrasound induced RET phosphorylation in colonic crypts cells, which correlated with markers of proliferation and stemness when using hours-long insonication. The activation of the RET pathway is non-thermal, is linearly related to acoustic pressure and is independent of radiation-force-induced shear strain in tissue. Our findings suggest that ultrasound could be used to regulate cell proliferation, particularly in the context of regenerative medicine, and highlight the importance of adhering to current ultrasound-safety regulations for medical imaging.
Collapse
Affiliation(s)
- Laura Zamfirov
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Ngoc-Minh Nguyen
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France
| | - Maria Elena Fernández-Sánchez
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France
| | - Paula Cambronera Ghiglione
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France
| | - Eliott Teston
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Alexandre Dizeux
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Thomas Tiennot
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development team, Physics of Cells and Cancer UMR168, INSERM, Université PSL, Sorbonne Université, Institut Curie, Paris, France.
| | - Charlie Demené
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France.
| | - Mickael Tanter
- Institute Physics for Medicine Paris, ESPCI PSL Paris, INSERM U1273, CNRS UMR 8361, Paris Sciences et Lettres University, Paris, France.
| |
Collapse
|
2
|
Sassi A, Seaman K, Song X, Lin CY, Sun Y, You L. Low-magnitude high-frequency vibration reduces prostate cancer growth and extravasation in vitro. MECHANOBIOLOGY IN MEDICINE 2024; 2:100095. [PMID: 40395224 PMCID: PMC12082162 DOI: 10.1016/j.mbm.2024.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 05/22/2025]
Abstract
Prostate cancer (PCa) continues to rank among the most common malignancies in Europe and North America with significant mortality rates despite advancements in detection and treatment. Physical activity is often recommended to PCa patients due to its benefits in preventing disease recurrence and managing treatment-related side effects. However, physical activity may be challenging for elderly or bedridden patients. As such, vibration therapy has been proposed as a safe, effective, and easy to perform alternative treatment that may confer similar effects as physical exercise. Specifically, low-magnitude high frequency (LMHF) vibration has been shown to decrease breast cancer extravasation into the bone and reduce other types of cancer proliferation by impacting cell viability. Here, we investigated the effects of daily application of LMHF vibration (0.3 g, 60 Hz, 1 hour/day for 3 days) on prostate cancer growth and bone metastasis in vitro. Our findings suggest that LMHF vibration significantly reduces colony formation through a decrease in cell growth and proliferation. Moreover, using a 3D cell culture model, LMHF vibration significantly reduces PC3 spheroid size. Additionally, LMHF vibration reduces PCa cell extravasation into the bone microenvironment through the stimulation of osteocytes and subsequent osteocyte-endothelial cell cross talk. These findings highlight the potential of LMHF vibration for managing PCa growth and metastasis.
Collapse
Affiliation(s)
- Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, M5S 3G9, Canada
| | - Kimberly Seaman
- Department of Mechanical & Industrial Engineering, University of Toronto, M5S 3G9, Canada
| | - Xin Song
- Department of Mechanical & Industrial Engineering, University of Toronto, M5S 3G9, Canada
| | - Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, M5S 3G9, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, M5S 3G9, Canada
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, M5S 3G9, Canada
- Department of Mechanical and Materials Engineering, Queen's University, K7L 3N6, Canada
| |
Collapse
|
3
|
Li S, Liu H, Li M, Zhang C. Multiscale simulation of the effect of low-intensity pulsed ultrasound on the mechanical properties distribution of osteocytes. Comput Methods Biomech Biomed Engin 2024; 27:2058-2070. [PMID: 37842824 DOI: 10.1080/10255842.2023.2270103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a potential effective means for the prevention and treatment of disuse osteoporosis. In this paper, the effect of LIPUS exposure on the mechanical properties distribution of the osteocyte system (osteocyte body contains nucleus, osteocyte process, and primary cilia) is simulated. The results demonstrate that the mechanical micro-environment of the osteocyte is significantly improved by ultrasound exposure, and the mean von Mises stress of the osteocyte system increases linearly with the excitation sound pressure amplitude. The mechanical effect of LIPUS on osteocytes is enhanced by the stress amplification mechanism of the primary cilia and osteocyte processes.
Collapse
Affiliation(s)
- Shenggang Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Mingzhi Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Xiong H, Cao M, Yu Y, Duan X, Sun L, Tang L, Fan X. Study on the Effects of Low-Intensity Pulsed Ultrasound and Iron Ions for Proliferation and Differentiation of Osteoblasts. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00265-5. [PMID: 39209558 DOI: 10.1016/j.ultrasmedbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study involved the proliferation and differentiation of osteoblasts treated with low-intensity pulsed ultrasound (LIPUS) and iron (Fe3+) ions, respectively. The biological effects of LIPUS and Fe3+ ions on the proliferation and differentiation of osteoblasts were also evaluated. METHODS MC3T3-E1 cells were seeded in six-well plates with the medium, which contained different concentrations of Fe3+ (0, 100, 200, 300, 400, 500, 600 and 700 μg L-1, respectively). LIPUS treatment was directed at the bottom of the plate for 20 min at an intensity of 80 mW cm-2 every day. RESULTS Viability results showed that a dose of 400 μg L-1 Fe3+ ions had the best effect at promoting osteogenic proliferation in cell culture. The results of alkaline phosphatase staining and mineralization indicated that the differentiation of osteoblasts was promoted by LIPUS and Fe3+ ions. Fluorescence staining results showed that the number of cell nuclei in the LIPUS, Fe3+ and LIPUS-Fe groups increased by 37.20%, 55.81% and 89.76%, respectively. Migration data indicated that migration and proliferation rates were increased by LIPUS and Fe3+, and the results of protein expression indicated that LIPUS and Fe3+ may increase the expression of Wnt, β-catenin, and Runx2, hence promoting normal bone regeneration and development. CONCLUSION The combination of LIPUS (1.5 MHz, 80 mW cm-2) and Fe3+ accelerates the proliferation and differentiation of osteoblasts significantly compared with single-factor treatment (stimulated by LIPUS and Fe3+ ions, respectively). This study could establish a foundation for LIPUS-responsive biomaterials in the repair and regeneration of bone tissues.
Collapse
Affiliation(s)
- Huanbin Xiong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Mengshu Cao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xueyou Duan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
5
|
Malekmohammadi S, Jamshidi R, Sadowska JM, Meng C, Abeykoon C, Akbari M, Gong RH. Stimuli-Responsive Codelivery System-Embedded Polymeric Nanofibers with Synergistic Effects of Growth Factors and Low-Intensity Pulsed Ultrasound to Enhance Osteogenesis Properties. ACS APPLIED BIO MATERIALS 2024; 7:4293-4306. [PMID: 38917363 PMCID: PMC11253091 DOI: 10.1021/acsabm.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
The present work aims to develop optimized scaffolds for bone repair by incorporating mesoporous nanoparticles into them, thereby combining bioactive factors for cell growth and preventing rapid release or loss of effectiveness. We synthesized biocompatible and biodegradable scaffolds designed for the controlled codelivery of curcumin (CUR) and recombinant human bone morphogenic protein-2 (rhBMP-2). Active agents in dendritic silica/titania mesoporous nanoparticles (DSTNs) were incorporated at different weight percentages (0, 2, 5, 7, 9, and 10 wt %) into a matrix of polycaprolactone (PCL) and polyethylene glycol (PEG) nanofibers, forming the CUR-BMP-2@DSTNs/PCL-PEG delivery system (S0, S2, S5, S7, S9, and S10, respectively, with the number showing the weight percentage). To enhance the formation process, the system was treated using low-intensity pulsed ultrasound (LIPUS). Different advanced methods were employed to assess the physical, chemical, and mechanical characteristics of the fabricated scaffolds, all confirming that incorporating the nanoparticles improves their mechanical and structural properties. Their hydrophilicity increased by approximately 25%, leading to ca. 53% enhancement in their water absorption capacity. Furthermore, we observed a sustained release of approximately 97% for CUR and 70% for BMP-2 for the S7 (scaffold with 7 wt % DSTNs) over 28 days, which was further enhanced using ultrasound. In vitro studies demonstrated accelerated scaffold biodegradation, with the highest level observed in S7 scaffolds, approximately three times higher than the control group. Moreover, the cell viability and proliferation on DSTNs-containing scaffolds increased when compared to the control group. Overall, our study presents a promising nanocomposite scaffold design with notable improvements in structural, mechanical, and biological properties compared to the control group, along with controlled and sustained drug release capabilities. This makes the scaffold a compelling candidate for advanced bone tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Rashid Jamshidi
- Department
of Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
| | - Joanna M. Sadowska
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin D02 YN77, Ireland
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Chen Meng
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Chamil Abeykoon
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Mohsen Akbari
- Laboratory
for Innovations in Microengineering (LiME), Department of Mechanical
Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Terasaki
Institute for Biomedical Innovations, Los Angeles, California 90024, United States
| | - R. Hugh Gong
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Wu T, Zheng F, Tang HY, Li HZ, Cui XY, Ding S, Liu D, Li CY, Jiang JH, Yang RL. Low-intensity pulsed ultrasound reduces alveolar bone resorption during orthodontic treatment via Lamin A/C-Yes-associated protein axis in stem cells. World J Stem Cells 2024; 16:267-286. [PMID: 38577236 PMCID: PMC10989285 DOI: 10.4252/wjsc.v16.i3.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years, which also may lead to some complications such as alveolar bone resorption or tooth root resorption. Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, has been shown to promote bone fracture healing. It is also reported that LIPUS could reduce the duration of orthodontic treatment; however, how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear. AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement (OTM) model and explore the underlying mechanisms. METHODS A rat model of OTM was established, and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction, Western blot, alkaline phosphatase (ALP) staining, and Alizarin red staining. The expression of Yes-associated protein (YAP1), the actin cytoskeleton, and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA (siRNA) application via immunofluorescence. RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs; moreover, the expression of osteogenesis markers, such as type 1 collagen (COL1), runt-related transcription factor 2, ALP, and osteocalcin (OCN), decreased. LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force. Mechanically, the expression of LaminA/C, F-actin, and YAP1 was downregulated after force treatment, which could be rescued by LIPUS. Moreover, the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment. Consistently, LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo. The decreased expression of COL1, OCN, and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS. CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis, which may be a promising strategy to reduce the orthodontic treatment process.
Collapse
Affiliation(s)
- Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Hong-Yi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Hua-Zhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xin-Yu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Shuai Ding
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Duo Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Cui-Ying Li
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rui-Li Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
| |
Collapse
|
7
|
Anderson H, Hersh DS, Khan Y. The potential role of mechanotransduction in the management of pediatric calvarial bone flap repair. Biotechnol Bioeng 2024; 121:39-52. [PMID: 37668193 PMCID: PMC10841298 DOI: 10.1002/bit.28534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
Pediatric patients suffering traumatic brain injuries may require a decompressive craniectomy to accommodate brain swelling by removing a portion of the skull. Once the brain swelling subsides, the preserved calvarial bone flap is ideally replaced as an autograft during a cranioplasty to restore protection of the brain, as it can reintegrate and grow with the patient during immature skeletal development. However, pediatric patients exhibit a high prevalence of calvarial bone flap resorption post-cranioplasty, causing functional and cosmetic morbidity. This review examines possible solutions for mitigating pediatric calvarial bone flap resorption by delineating methods of stimulating mechanosensitive cell populations with mechanical forces. Mechanotransduction plays a critical role in three main cell types involved with calvarial bone repair, including mesenchymal stem cells, osteoblasts, and dural cells, through mechanisms that could be exploited to promote osteogenesis. In particular, physiologically relevant mechanical forces, including substrate deformation, external forces, and ultrasound, can be used as tools to stimulate bone repair in both in vitro and in vivo systems. Ultimately, combating pediatric calvarial flap resorption may require a combinatorial approach using both cell therapy and bioengineering strategies.
Collapse
Affiliation(s)
- Hanna Anderson
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
| | - David S Hersh
- Department of Surgery, UConn School of Medicine, Farmington, Connecticut, USA
- Division of Neurosurgery, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Yusuf Khan
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
- Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
8
|
Inoue S, Li C, Hatakeyama J, Jiang H, Kuroki H, Moriyama H. Higher-intensity ultrasound accelerates fracture healing via mechanosensitive ion channel Piezo1. Bone 2023; 177:116916. [PMID: 37777037 DOI: 10.1016/j.bone.2023.116916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Osteoporosis-related fractures are a major public health problem. Mechanobiological stimulation utilizing low-intensity pulsed ultrasound (LIPUS) is the most widely accepted modality for accelerating fracture healing. However, recent evidence has demonstrated the ineffectiveness of LIPUS, and the biophysical mechanisms of ultrasound-induced bone formation also remain elusive. Here, we demonstrate that ultrasound at a higher intensity than LIPUS effectively accelerates fracture healing in a mouse osteoporotic fracture model. Higher-intensity ultrasound promoted chondrogenesis and hypertrophic differentiation of chondrocytes in the fracture callus. Higher-intensity ultrasound also increased osteoblasts and newly formed bone in the callus, resulting in accelerated endochondral ossification during fracture healing. In addition, we found that accelerated fracture healing by ultrasound exposure was attenuated when the mechanosensitive ion channel Piezo1 was inhibited by GsMTx4. Ultrasound-induced new bone formation in the callus was attenuated in fractured mice treated with GsMTx4. Similar results were also confirmed in a 3D osteocyte-osteoblast co-culture system, where osteocytic Piezo1 knockdown attenuated the expression of osteoblastic genes after ultrasound exposure. Together these results demonstrate that higher-intensity ultrasound than clinically used LIPUS can accelerate endochondral ossification after fractures. Furthermore, our results suggest that mechanotransduction via Piezo1 mediates ultrasound-stimulated fracture healing and bone formation.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Changxin Li
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan; Research Fellowship of the Japan Society for the Promotion of Science, Japan
| | - Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan.
| |
Collapse
|
9
|
Puts R, Khaffaf A, Shaka M, Zhang H, Raum K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering (Basel) 2023; 10:bioengineering10030387. [PMID: 36978778 PMCID: PMC10045139 DOI: 10.3390/bioengineering10030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell-cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival.
Collapse
Affiliation(s)
- Regina Puts
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Aseel Khaffaf
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Maria Shaka
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Hui Zhang
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Kay Raum
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| |
Collapse
|
10
|
Tang L, Wu T, Zhou Y, Zhong Y, Sun L, Guo J, Fan X, Ta D. Study on synergistic effects of carboxymethyl cellulose and LIPUS for bone tissue engineering. Carbohydr Polym 2022; 286:119278. [DOI: 10.1016/j.carbpol.2022.119278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023]
|
11
|
Liang H, Ge X, Xia D, Ren M, Mi H, Pan L. The role of dietary chromium supplementation in relieving heat stress of juvenile blunt snout bream Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2022; 120:23-30. [PMID: 34774732 DOI: 10.1016/j.fsi.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The present study assessed the role of dietary chromium (Cr) supplementation in relieving heat stress (HS) of juvenile blunt snout bream Megalobrama amblycephala. The supplemented Cr contents by chromium picolinate (Cr-Pic) was 0 mg/kg (control group), 0.4 mg/kg, 1.6 mg/kg and 12.0 mg/kg, respectively. The fish continued to be fed four diets at suitable temperatures (26 °C) for 2 weeks, and then the temperature was then heated up to 33 °C through thermo-regulated system. The results showed that Cr supplementation had no significant effect on the immune indices and antioxidant indices before HS (P > 0.05). However, Cr supplementation played an important role in relieving HS. After HS, compared with the control group, 1.6 mg/kg and 12.0 mg/kg Cr supplementation groups significantly lowered the plasma glucose level and aspartate transaminase (AST) activity (P < 0.05), and 0.4 mg/kg and 1.6 mg/kg Cr supplementation groups significantly lowered alanine aminotransferase (ALT) activity (P < 0.05). 0.4 mg/kg and 1.6 mg/kg supplementation groups significantly improved hepatic total superoxide dismutase (T-SOD) activity (P < 0.05). Furthermore, 0.4mg/kg-12.0 mg/kg Cr supplementation groups significantly improved the activities of hepatic glutathione peroxidase (GPx) and catalase (CAT) and lowered hepatic malondialdehyde (MDA) level in liver (P < 0.05). The mRNA levels of hepatic copper zinc superoxide dismutase (Cu/Zn-SOD), CAT and GPx were significantly improved in 0.4mg/kg-12.0 mg/kg supplementation Cr groups (P < 0.05), however, there was no significant variation of hepatic manganese superoxide dismutase (Mn-SOD) mRNA levels under different levels of supplementation (P > 0.05). Significantly lower mRNA levels of hepatic pro-inflammatory cytokines observed in 0.4mg/kg-12.0 mg/kg Cr supplementation groups including tumour necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and interleukin 8 (IL-8) (P < 0.05), and 0.4mg/kg-12.0 mg/kg Cr supplementation significantly improved the relative expressions of hepatic heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90) (P < 0.05). The present study indicated that dietary Cr supplementation might have no significant effect on immune capacity and antioxidant capacity under normal physiological conditions, whereas it played an important role in relieving HS.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Dong Xia
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Mingchun Ren
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Haifeng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China.
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
12
|
McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. MICROMACHINES 2021; 12:1488. [PMID: 34945337 PMCID: PMC8707172 DOI: 10.3390/mi12121488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.
Collapse
Affiliation(s)
- Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
13
|
Serna JA, Rueda-Gensini L, Céspedes-Valenzuela DN, Cifuentes J, Cruz JC, Muñoz-Camargo C. Recent Advances on Stimuli-Responsive Hydrogels Based on Tissue-Derived ECMs and Their Components: Towards Improving Functionality for Tissue Engineering and Controlled Drug Delivery. Polymers (Basel) 2021; 13:3263. [PMID: 34641079 PMCID: PMC8512780 DOI: 10.3390/polym13193263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Due to their highly hydrophilic nature and compositional versatility, hydrogels have assumed a protagonic role in the development of physiologically relevant tissues for several biomedical applications, such as in vivo tissue replacement or regeneration and in vitro disease modeling. By forming interconnected polymeric networks, hydrogels can be loaded with therapeutic agents, small molecules, or cells to deliver them locally to specific tissues or act as scaffolds for hosting cellular development. Hydrogels derived from decellularized extracellular matrices (dECMs), in particular, have gained significant attention in the fields of tissue engineering and regenerative medicine due to their inherently high biomimetic capabilities and endowment of a wide variety of bioactive cues capable of directing cellular behavior. However, these hydrogels often exhibit poor mechanical stability, and their biological properties alone are not enough to direct the development of tissue constructs with functional phenotypes. This review highlights the different ways in which external stimuli (e.g., light, thermal, mechanical, electric, magnetic, and acoustic) have been employed to improve the performance of dECM-based hydrogels for tissue engineering and regenerative medicine applications. Specifically, we outline how these stimuli have been implemented to improve their mechanical stability, tune their microarchitectural characteristics, facilitate tissue morphogenesis and enable precise control of drug release profiles. The strategic coupling of the bioactive features of dECM-based hydrogels with these stimulation schemes grants considerable advances in the development of functional hydrogels for a wide variety of applications within these fields.
Collapse
Affiliation(s)
| | | | | | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (J.A.S.); (L.R.-G.); (D.N.C.-V.); (J.C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (J.A.S.); (L.R.-G.); (D.N.C.-V.); (J.C.)
| |
Collapse
|
14
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
15
|
Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Sci Rep 2021; 11:10298. [PMID: 33986415 PMCID: PMC8119462 DOI: 10.1038/s41598-021-89672-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Ultrasound stimulation is a type of mechanical stress, and low-intensity pulsed ultrasound (LIPUS) devices have been used clinically to promote fracture healing. However, it remains unclear which skeletal cells, in particular osteocytes or osteoblasts, primarily respond to LIPUS stimulation and how they contribute to fracture healing. To examine this, we utilized medaka, whose bone lacks osteocytes, and zebrafish, whose bone has osteocytes, as in vivo models. Fracture healing was accelerated by ultrasound stimulation in zebrafish, but not in medaka. To examine the molecular events induced by LIPUS stimulation in osteocytes, we performed RNA sequencing of a murine osteocytic cell line exposed to LIPUS. 179 genes reacted to LIPUS stimulation, and functional cluster analysis identified among them several molecular signatures related to immunity, secretion, and transcription. Notably, most of the isolated transcription-related genes were also modulated by LIPUS in vivo in zebrafish. However, expression levels of early growth response protein 1 and 2 (Egr1, 2), JunB, forkhead box Q1 (FoxQ1), and nuclear factor of activated T cells c1 (NFATc1) were not altered by LIPUS in medaka, suggesting that these genes are key transcriptional regulators of LIPUS-dependent fracture healing via osteocytes. We therefore show that bone-embedded osteocytes are necessary for LIPUS-induced promotion of fracture healing via transcriptional control of target genes, which presumably activates neighboring cells involved in fracture healing processes.
Collapse
|
16
|
Sun S, Tang L, Zhao T, Kang Y, Sun L, Liu C, Li Y, Xu F, Qin YX, Ta D. Longitudinal effects of low-intensity pulsed ultrasound on osteoporosis and osteoporotic bone defect in ovariectomized rats. ULTRASONICS 2021; 113:106360. [PMID: 33561635 DOI: 10.1016/j.ultras.2021.106360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) with an intensity (spatial average temporal average, ISATA) of 30 mW/cm2 has been widely proved to be effective on impaired bone healing, but showing little effectiveness in the treatment of osteoporosis. We hypothesized that the intensity of LIPUS may be a key factor in explaining this difference, thus two intensity levels, the widely used 30 mW/cm2 and a higher 150 mW/cm2, were used to simultaneously treat osteoporosis and osteoporotic bone defect in ovariectomized (OVX) rats with a 1-mm drill hole on their left femurs.Results showed that 150 mW/cm2 LIPUS augmented the healing rate of the drill hole than 30 mW/cm2 after 3-week LIPUS treatment, although did not further enhance the healing rate after 6-week LIPUS treatment. For ameliorating osteoporosis, 150 mW/cm2 LIPUS achieved more advantages over 30 mW/cm2 in improving bone density, microstructure and biomechanics 6 weeks after LIPUS intervention. In conclusion, LIPUS with an intensity of 30 mW/cm2 was sufficient to facilitate bone defect healing, but a higher intensity can be considered as a rapid trigger for osteoporotic bone repair. In addition, improving the intensity of LIPUS may be a potentially effective consideration for alleviation of osteoporosis, and the LIPUS regimen in the treatment of osteoporosis remains to be optimized.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Tingting Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yiting Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ying Li
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Feng Xu
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
17
|
de Lucas B, Pérez LM, Bernal A, Gálvez BG. Ultrasound Therapy: Experiences and Perspectives for Regenerative Medicine. Genes (Basel) 2020; 11:genes11091086. [PMID: 32957737 PMCID: PMC7563547 DOI: 10.3390/genes11091086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Ultrasound has emerged as a novel tool for clinical applications, particularly in the context of regenerative medicine. Due to its unique physico-mechanical properties, low-intensity ultrasound (LIUS) has been approved for accelerated fracture healing and for the treatment of established non-union, but its utility has extended beyond tissue engineering to other fields, including cell regeneration. Cells and tissues respond to acoustic ultrasound by switching on genetic repair circuits, triggering a cascade of molecular signals that promote cell proliferation, adhesion, migration, differentiation, and extracellular matrix production. LIUS also induces angiogenesis and tissue regeneration and has anti-inflammatory and anti-degenerative effects. Accordingly, the potential application of ultrasound for tissue repair/regeneration has been tested in several studies as a stand-alone treatment and, more recently, as an adjunct to cell-based therapies. For example, ultrasound has been proposed to improve stem cell homing to target tissues due to its ability to create a transitional and local gradient of cytokines and chemokines. In this review, we provide an overview of the many applications of ultrasound in clinical medicine, with a focus on its value as an adjunct to cell-based interventions. Finally, we discuss the various preclinical and clinical studies that have investigated the potential of ultrasound for regenerative medicine.
Collapse
Affiliation(s)
- Beatriz de Lucas
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Laura M. Pérez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain;
| | - Beatriz G. Gálvez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
- Correspondence:
| |
Collapse
|
18
|
Alshihah N, Alhadlaq A, El-Bialy T, Aldahmash A, Bello IO. The effect of low intensity pulsed ultrasound on dentoalveolar structures during orthodontic force application in diabetic ex-vivo model. Arch Oral Biol 2020; 119:104883. [PMID: 32932147 DOI: 10.1016/j.archoralbio.2020.104883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of the low intensity pulsed ultrasound (LIPUS) on the dentoalveolar structures during orthodontic force application in ex-vivo model using mandible slice organ culture (MSOC) of diabetic rats. DESIGN 18 male Wistar rats with a mean weight (275 g) were randomly divided into three main groups: 1) normal rats, 2) Insulin treated diabetic rats, and 3) diabetic rats. Diabetes mellitus (DM) was induced by streptozotocin. Four weeks later, rats were euthanized, mandibles were dissected, divided into 1.5-mm slices creating mandible slice organ cultures (MSOCs). MSOCs were cultured at 37 °C in air with 5 % CO2. The following day, orthodontic spring delivering a 50-g of force was applied to each slice. In each group, rats were randomly assigned to 2 subgroups; one received 10 min of LIPUS daily and the other was the control. Culture continued for 7 days, and then the sections were prepared for histological and histomorphometric analysis. RESULTS For all study groups (Normal, Insulin Treated Diabetic and Diabetic), LIPUS treatment significantly increased the thickness of predentin, cementum, and improved bone remodeling on the tension side and increased odontoblast, sub-odontoblast, and periodontal ligaments cell counts and bone resorption lacunae number on the compression side. CONCLUSIONS Application of LIPUS treatment for 10 min daily for a week enhanced bone remodeling and repair of cementum and dentin in normal as well as diabetic MSOCs.
Collapse
Affiliation(s)
- Nada Alshihah
- Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Adel Alhadlaq
- Division of Orthodontics, Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - Tarek El-Bialy
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Ibrahim Olajide Bello
- Department of Oral Medicine and Diagnostic Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Wu Y, Gao Q, Zhu S, Wu Q, Zhu R, Zhong H, Xing C, Qu H, Wang D, Li B, Ning G, Feng S. Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through notch signaling pathway. Biochem Biophys Res Commun 2020; 526:793-798. [PMID: 32268957 DOI: 10.1016/j.bbrc.2020.03.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is widely used to regulate stem cell proliferation and differentiation. However, the effect of LIPUS stimulation on neural stem cells (NSCs) is not well documented. In this study, we have identified the optimal parameters, and investigated the cellular mechanisms of LIPUS to regulate the proliferation and differentiation of NSCs in vitro. NSCs were obtained and identified by nestin immunostaining. The proliferation of NSCs were measured by using Cell Counting Kit-8 (CCK-8). The expressions of nutritional factors (NTFs) were detected with immunoassay (ELISA). NSCs differentiation were detected by immunofluorescence and immunoblotting analysis. The expression level of proteins involved in the Notch signaling pathway was also measured by immunoblotting assay. Our results showed the intensity of 69.3 mW/cm2 (1 MHz, 8 V) was applicable for LIPUS stimulation. ELISA analysis demonstrated that LIPUS treatment promoted the expression of nutritional factors of NSCs in vitro. Immunofluorescence and immunoblotting analyses suggested that the LIPUS not only reduced the astrocyte differentiation, but also stimulated the differentiation to neurons. Additionally, LIPUS stimulation significantly upregulated expression level of Notch1 and Hes1. Results from our study suggest that LIPUS triggers NSCs proliferation and differentiation by modulating the Notch signaling pathway. This study implies LIPUS as a potential and promising therapeutic platform for the optimization of stem cells and enable noninvasive neuromodulation for central nervous system diseases.
Collapse
Affiliation(s)
- Yu Wu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Qiang Gao
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Shibo Zhu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Qiuli Wu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, China
| | - Hao Zhong
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Cong Xing
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Haodong Qu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Dawei Wang
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Bo Li
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Guangzhi Ning
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
20
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
21
|
Amini A, Chien S, Bayat M. Impact of Ultrasound Therapy on Stem Cell Differentiation - A Systematic Review. Curr Stem Cell Res Ther 2020; 15:462-472. [PMID: 32096749 DOI: 10.2174/1574888x15666200225124934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This is a systematic review of the effects of low-intensity pulsed ultrasound (LIPUS) on stem cell differentiation. BACKGROUND DATA Recent studies have investigated several types of stem cells from different sources in the body. These stem cells should strictly be certified and promoted for cell therapies before being used in medical applications. LIPUS has been used extensively in treatment centers and in research to promote stem cell differentiation, function, and proliferation. MATERIALS AND METHODS The databases of PubMed, Google Scholar, and Scopus were searched for abstracts and full-text scientific papers published from 1989-2019 that reported the application of LIPUS on stem cell differentiation. Related English language articles were found using the following defined keywords: low-intensity pulsed ultrasound, stem cell, differentiation. Criteria for inclusion in the review were: LIPUS with frequencies of 1-3 MHz and pulsed ultrasound intensity of <500 mW/cm2. Duration, exposure time, and cell sources were taken into consideration. RESULTS Fifty-two articles were selected based on the inclusion criteria. Most articles demonstrated that the application of LIPUS had positive effects on stem cell differentiation. However, some authors recommended that LIPUS combined with other physical therapy aides was more effective in stem cell differentiation. CONCLUSION LIPUS significantly increases the level of stem cell differentiation in cells derived mainly from bone marrow mesenchymal stem cells. There is a need for further studies to analyze the effect of LIPUS on cells derived from other sources, particularly adipose tissue-derived mesenchymal stem cells, for treating hard diseases, such as osteoporosis and diabetic foot ulcer. Due to a lack of reporting on standard LIPUS parameters in the field, more experiments comparing the protocols for standardization of LIPUS parameters are needed to establish the best protocol, which would allow for the best results.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| |
Collapse
|
22
|
Jiang X, Savchenko O, Li Y, Qi S, Yang T, Zhang W, Chen J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans Biomed Eng 2019; 66:2704-2718. [DOI: 10.1109/tbme.2018.2889669] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Nicholson JA, Tsang STJ, MacGillivray TJ, Perks F, Simpson AHRW. What is the role of ultrasound in fracture management?: Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019; 8:304-312. [PMID: 31463038 PMCID: PMC6691369 DOI: 10.1302/2046-3758.87.bjr-2018-0215.r2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods A review of relevant literature was undertaken, including articles indexed in PubMed with keywords "ultrasound" or "sonography" combined with "diagnosis", "fracture healing", "impaired fracture healing", "nonunion", "microbiology", and "fracture-related infection". Results The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote union in the management of acute fractures is currently a controversial topic. However, there is strong in vitro evidence that ultrasound can stimulate a biological effect with potential clinical benefit in established nonunions, which supports the need for further investigation. Conclusion Modern ultrasound image processing has the potential to replace traditional imaging modalities in several areas of trauma practice, particularly in the early prediction of impaired fracture healing. Further understanding of the therapeutic application of ultrasound is required to understand and identify the use in promoting fracture healing.Cite this article: J. A. Nicholson, S. T. J. Tsang, T. J. MacGillivray, F. Perks, A. H. R. W. Simpson. What is the role of ultrasound in fracture management? Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019;8:304-312. DOI: 10.1302/2046-3758.87.BJR-2018-0215.R2.
Collapse
Affiliation(s)
- J A Nicholson
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - S T J Tsang
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - T J MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - F Perks
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - A H R W Simpson
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
He R, Chen J, Jiang J, Liu B, Liang D, Zhou W, Chen W, Wang Y. Synergies of accelerating differentiation of bone marrow mesenchymal stem cells induced by low intensity pulsed ultrasound, osteogenic and endothelial inductive agent. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:674-684. [PMID: 30835554 DOI: 10.1080/21691401.2019.1576704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In terms to investigate the effect of low-intensity pulsed ultrasound (LIPUS) for differentiation of bone marrow mesenchymal stem cells (BMSCs) and the feasibility of simultaneously inducing into osteoblasts and vascular endothelial cells within the cell culture medium in which two inductive agents are added at the same time with or without LIPUS. Cells were divided into a non-induced group, an osteoblast-induced group, a vascular endothelial-induced group, and a bidirectional differentiation-induced group. Each group was further subdivided into LIPUS and non-LIPUS groups. The cell proliferation in each group was measured by MTT assay. Cell morphological and ultrastructural changes were observed by inverted phase contrast microscopy and transmission electron microscopy. The differentiation of BMSCs was detected by confocal microscopy, flow cytometry and quantitative RT-PCR. Results demonstrated that both osteoblast and vascular endothelial cell differentiation markers were expressed in the bidirectional differentiation induction group and early osteogenesis and angiogenesis appeared. The cell proliferation, differentiation rate and expression of osteocalcin and vWF in the LIPUS groups were all significantly higher than those in the corresponding non-LIPUS group (p < .05), suggesting LIPUS treatment can promote the differentiation efficiency and rate of BMSCs, especially in the bidirectional differentiation induction group. This study suggests the combination of LIPUS and dual-inducing agents could induce and accelerate simultaneous differentiation of BMSCs to osteoblasts and vascular endothelial cells. These findings indicate the method could be applied to research on generating vascularized bone tissue with a shape and function that mimics natural bone to accelerate early osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ruixin He
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Junlin Chen
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Jingwei Jiang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Baoru Liu
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Dandan Liang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Weichen Zhou
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| | - Wenzhi Chen
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China.,b The Second Affiliated Hospital of Chongqing Medical University , Chongqing , P.R.China
| | - Yan Wang
- a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China
| |
Collapse
|
25
|
Grivas KN, Vavva MG, Polyzos D, Carlier A, Geris L, Van Oosterwyck H, Fotiadis DI. Effect of ultrasound on bone fracture healing: A computational mechanobioregulatory model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1048. [PMID: 30823826 DOI: 10.1121/1.5089221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Bone healing process is a complicated phenomenon regulated by biochemical and mechanical signals. Experimental studies have shown that ultrasound (US) accelerates bone ossification and has a multiple influence on cell differentiation and angiogenesis. In a recent work of the authors, a bioregulatory model for providing bone-healing predictions was addressed, taking into account for the first time the salutary effect of US on the involved angiogenesis. In the present work, a mechanobioregulatory model of bone solidification under the US presence incorporating also the mechanical environment on the regeneration process, which is known to affect cellular processes, is presented. An iterative procedure is adopted, where the finite element method is employed to compute the mechanical stimuli at the linear elastic phases of the poroelastic callus region and a coupled system of partial differential equations to simulate the enhancement by the US cell angiogenesis process and thus the oxygen concentration in the fractured area. Numerical simulations with and without the presence of US that illustrate the influence of progenitor cells' origin in the healing pattern and the healing rate and simultaneously demonstrate the salutary effect of US on bone repair are presented and discussed.
Collapse
Affiliation(s)
- Konstantinos N Grivas
- Department of Mechanical Engineering and Aeronautics, University of Patras, GR 26500, Patras, Greece
| | - Maria G Vavva
- Department of Mechanical Engineering and Aeronautics, University of Patras, GR 26500, Patras, Greece
| | - Demosthenes Polyzos
- Department of Mechanical Engineering and Aeronautics, University of Patras, GR 26500, Patras, Greece
| | - Aurélie Carlier
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C-PB 2419, B-3001, Leuven, Belgium
| | - Liesbet Geris
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C-PB 2419, B-3001, Leuven, Belgium
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C-PB 2419, B-3001, Leuven, Belgium
| | - Dimitrios I Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece
| |
Collapse
|
26
|
Matsumoto K, Shimo T, Kurio N, Okui T, Ibaragi S, Kunisada Y, Obata K, Masui M, Pai P, Horikiri Y, Yamanaka N, Takigawa M, Sasaki A. Low‐intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling. J Cell Biochem 2018; 119:4352-4360. [DOI: 10.1002/jcb.26418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Kenichi Matsumoto
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Tsuyoshi Shimo
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Advanced Research Center for Oral and Craniofacial SciencesOkayama University Dental School/Graduate School of Medicine and Pharmaceutical ScienceOkayamaJapan
| | - Naito Kurio
- Department of Oral Surgery, Subdivision of Molecular Oral MedicineDivision of Integrated Sciences of Translational ResearchInstitute of Health BiosciencesGraduate School of Tokushima UniversityTokushimaJapan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Masanori Masui
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Pang Pai
- Department of Oromaxillofacial‐Head and Neck SurgeryDepartment of Oral and Maxillofacial SurgerySchool of StomatologyChina Medical UniversityShenyangP. R. China
| | - Yuu Horikiri
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial SciencesOkayama University Dental School/Graduate School of Medicine and Pharmaceutical ScienceOkayamaJapan
| | - Akira Sasaki
- Department of Oral and Maxillofacial SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
27
|
Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 133:36-48. [PMID: 29126668 DOI: 10.1016/j.pbiomolbio.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
To compare the in vitro effectiveness of Low-Level Laser Therapy (LLLT) and Low Intensity Pulsed Ultrasound (LIPUS) on bony cells and related stem cells. In this study, we aim to systematically review the published scientific literature which explores the use of LLLT and LIPUS to biostimulate the activity or the proliferation of bony cells or stem cells in vitro. We searched the database PubMed for LLLT or LIPUS, with/without bone, osteoblast, osteocyte, stem cells, the human osteosarcoma cell line (MG63), bone-forming cells, and cell culture (or in vitro). These studies were subdivided into categories exploring the effect of LLLT or LIPUS on bony cells, stem cells, and other related cells. 75 articles were found between 1987 and 2016; these included: 50 full paper articles on LLLT and 25 full papers on LIPUS. These articles met the eligibility criteria and were included in our review. A detailed and concise description of the LLLT and the LIPUS protocols and their individual effects on bony cells or stem cells and their results are presented in five tables. Based on the main results and the conclusions of the reviewed articles in the current work, both, LLLT and LIPUS, apply a biostimulatory effect on osteoblasts, osteocytes, and enhance osteoblast proliferation and differentiation on different bony cell lines used in in vitro studies, and therefore, these may be useful tools for bone regeneration therapy. Moreover, in consideration of future cell therapy protocols, both, LLLT and LIPUS (especially LLLT), enhnce a significant increase in the initial number of SCs before differentiation, thus increasing the number of differentiated cells for tissue engineering, regenerative medicine, and healing. Further studies are necessary to determine the LLLT or the LIPUS parameters, which are optimal for biostimsulating bony cells and SCs for bone healing and regenerative medicine.
Collapse
|
28
|
Xiao W, Xu Q, Zhu Z, Li L, Chen W. Different performances of CXCR4, integrin-1β and CCR-2 in bone marrow stromal cells (BMSCs) migration by low-intensity pulsed ultrasound stimulation. ACTA ACUST UNITED AC 2017; 62:89-95. [PMID: 27107829 DOI: 10.1515/bmt-2015-0166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/24/2016] [Indexed: 01/04/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is an established therapy for fracture healing where bone marrow stromal cells (BMSCs) migration is crucial to bone regeneration. This work focused on different performances of C-X-C-receptor 4 (CXCR4), integrin-1β and chemokine-chemokine receptor2 (CCR-2) in BMSCs migration by LIPUS stimulation. Single 20-min LIPUS treatment was applied to BMSCs during wound healing assay with or without the inhibitor AMD3100. The migration rate of BMSCs with LIPUS stimulation exhibited a higher closure rate than that of BMSCs without LIPUS stimulation, which was 1.89 μm/h and 1.38 μm/h, respectively. After LIPUS stimulation, significant elevation of the expression of CXCR4, integrin-1β and CCR-2 was observed. When AMD3100 was added, the migration rate of the BMSCs was obviously declined with or without LIPUS treatment. Furthermore, the expression of CXCR4 was significantly down-regulated by AMD3100, while integrin-1β and CCR-2 were less affected. It suggested that the enhancement of the migration of the BMSCs by LIPUS was inhibited by AMD3100. The results confirmed that LIPUS stimulation was able to activate and improve migration of BMSCs. Nevertheless, CXCR4 and both integrin-1β and CCR-2 had different roles in BMSCs migration after LIPUS treatment.
Collapse
|
29
|
Low Intensity Pulsed Ultrasound Promotes the Extracellular Matrix Synthesis of Degenerative Human Nucleus Pulposus Cells Through FAK/PI3K/Akt Pathway. Spine (Phila Pa 1976) 2016; 41:E248-54. [PMID: 26571160 DOI: 10.1097/brs.0000000000001220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro experimental study. OBJECTIVE To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on the extracellular matrix (ECM) synthesis of degenerative human nucleus pulposus cells and explore the molecular mechanism. SUMMARY OF BACKGROUND DATA LIPUS has been used successfully for bone fracture healing and been proved to be effective in stimulating ECM metabolism in animal intervertebral disc cells. However, whether LIPUS also exerts an anabolic effect on degenerative human nucleus pulposus cells and the possible molecular mechanism is still unclear. METHODS The degenerative human nucleus pulposus cells were cultured in calcium alginate beads. In the LIPUS group, cells were exposed to an average temporal intensity of 30 mW/cm2 and a frequency of 1.5 MHz of LIPUS 20 minutes daily for 1 week. The control group was cultured in the same way but without LIPUS stimulation. The LY294002 group was stimulated by LIPUS and treated with LY294002 simultaneously. The expression of aggrecan, collagen-II, Sox9, tissue inhibitor of metalloproteinase-,1 and matrix metalloproteinase-3 were evaluated by Enzyme-Linked Immunosorbent Assay, Western blot or RT-PCR. Expression of signaling proteins involved in FAK/PI3K/Akt pathway was studied by Western blot analysis. RESULTS LIPUS significantly upregulated expression of aggrecan, collagen-II, Sox9, and tissue inhibitor of metalloproteinase-1 compared with control group, but inhibited secretion of matrix metalloproteinase-3. The study further demonstrated that the upregulation of aggrecan, collagen-II, and Sox9 was related to the activation of focal adhesion kinase (FAK)//PI3K/Akt pathway caused by LIPUS. Moreover, inhibition of PI3K/Akt significantly suppressed the special biological effect activated by LIPUS. CONCLUSION LIPUS promotes the ECM synthesis of degenerative human nucleus pulposus cells through activation of FAK/PI3K/Akt pathway. LEVEL OF EVIDENCE N/A.
Collapse
|
30
|
Kang KL, Kim EC, Park JB, Heo JS, Choi Y. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:493-502. [PMID: 26653935 DOI: 10.1016/j.ultrasmedbio.2015.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats.
Collapse
Affiliation(s)
- Kyung Lhi Kang
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea; Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea.
| | - Eun-Cheol Kim
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea; Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Tissue Regeneration (MRC), Kyung Hee University, Seoul, Korea
| | - Joon Bong Park
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea; Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jung Sun Heo
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea; Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Yumi Choi
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
31
|
Yamaguchi D, Takeuchi K, Furuta H, Miyamae S, Murakami H, Hattori M. Gene Expression in Response to Low-Intensity Pulsed Ultrasound Treatment of Bone Marrow Cells under Osteogenic Conditions In Vitro. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Daisuke Yamaguchi
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
| | - Kazuo Takeuchi
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Hiroki Furuta
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Shin Miyamae
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Hiroshi Murakami
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| | - Masami Hattori
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
- Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
32
|
Miyasaka M, Nakata H, Hao J, Kim YK, Kasugai S, Kuroda S. Low-Intensity Pulsed Ultrasound Stimulation Enhances Heat-Shock Protein 90 and Mineralized Nodule Formation in Mouse Calvaria-Derived Osteoblasts. Tissue Eng Part A 2015; 21:2829-39. [PMID: 26421522 DOI: 10.1089/ten.tea.2015.0234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) has demonstrated its positive effects on osteogenic differentiation of mesenchymal stem cells and the proliferation and differentiation of osteoblasts, negative effects on osteoclast growth, and promotion of angiogenesis, leading to improvement of the tissue perfusion. Heat-shock proteins (HSPs) are initially identified as molecules encouraged and expressed by heat stress or chemical stress to cells and involved in the balance between differentiation and apoptosis of osteoblasts. However, it remains unclear if the effect of LIPUS on osteoblast differentiation could involve HSP expression and contribution. In this study, mouse calvarial osteoblasts were exposed to LIPUS at a frequency of 3.0 MHz by 30 mW/cm(2) for 15 min or to 42°C heat shock for 20 min at day 3 of cell culture and examined for osteogenesis with pursuing induction of HSP27, HSP70, and HSP90. LIPUS as well as heat shock initially upregulated HSP90 and phosphorylation of Smad1 and Smad5, encouraging cell viability and proliferation at 24 h, enhancing mineralized nodule formation stronger by LIPUS after 10 days. However, HSP27, associated with BMP2-stimulated p38 mitogen-activated protein kinase during osteoblast differentiation, was downregulated by both stimulations at this early time point. Notably, these two stimuli maintained Smad1 phosphorylation with mineralized nodule formation even under BMP2 signal blockage. Therefore, LIPUS might be a novel inducer of osteoblastic differentiation through a noncanonical signal pathway. In conclusion, LIPUS stimulation enhanced cell viability and proliferation as early as 24 h after treatment, and HSP90 was upregulated, leading to dense mineralization in the osteoblast cell culture after 10 days.
Collapse
Affiliation(s)
- Munemitsu Miyasaka
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Jia Hao
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - You-Kyoung Kim
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo, Japan
| |
Collapse
|
33
|
Niedźwiedzki T, Filipowska J. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 2015; 55:R23-36. [PMID: 26307562 DOI: 10.1530/jme-15-0067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Bone is a dynamic tissue that undergoes constant remodeling. The appropriate course of this process determines development and regeneration of the skeleton. Tight molecular control of bone remodeling is vital for the maintenance of appropriate physiology and microarchitecture of the bone, providing homeostasis, also at the systemic level. The process of remodeling is regulated by a rich innervation of the skeleton, being the source of various growth factors, neurotransmitters, and hormones regulating function of the bone. Although the course of bone remodeling at the cellular level is mainly associated with the activity of osteoclasts and osteoblasts, recently also osteocytes have gained a growing interest as the principal regulators of bone turnover. Osteocytes play a significant role in the regulation of osteogenesis, releasing sclerostin (SOST), an inhibitor of bone formation. The process of bone turnover, especially osteogenesis, is also modulated by extra-skeletal molecules. Proliferation and differentiation of osteoblasts are promoted by the brain-derived serotonin and hypothetically inhibited by its intestinal equivalent. The activity of SOST and serotonin is either directly or indirectly associated with the canonical Wnt/β-catenin signaling pathway, the main regulatory pathway of osteoblasts function. The impairment of bone remodeling may lead to many skeletal diseases, such as high bone mass syndrome or osteoporosis. In this paper, we review the most recent data on the cellular and molecular mechanisms of bone remodeling control, with particular emphasis on the role of osteocytes and the nervous system in this process.
Collapse
Affiliation(s)
- Tadeusz Niedźwiedzki
- Department of Orthopedics and PhysiotherapyCollegium Medicum, Jagiellonian University, Cracow, PolandDepartment of Cell Biology and ImagingInstitute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Cracow, Poland
| | - Joanna Filipowska
- Department of Orthopedics and PhysiotherapyCollegium Medicum, Jagiellonian University, Cracow, PolandDepartment of Cell Biology and ImagingInstitute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Cracow, Poland
| |
Collapse
|
34
|
Yan H, Liu X, Zhu M, Luo G, Sun T, Peng Q, Zeng Y, Chen T, Wang Y, Liu K, Feng B, Weng J, Wang J. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering. J Biomed Mater Res A 2015; 104:195-208. [DOI: 10.1002/jbm.a.35556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Haoran Yan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Xia Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Minghua Zhu
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Guilin Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Tao Sun
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Qiang Peng
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Yi Zeng
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Yingying Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Keliang Liu
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Bo Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| |
Collapse
|
35
|
Edwards JH, Reilly GC. Vibration stimuli and the differentiation of musculoskeletal progenitor cells: Review of results in vitro and in vivo. World J Stem Cells 2015; 7:568-582. [PMID: 25914764 PMCID: PMC4404392 DOI: 10.4252/wjsc.v7.i3.568] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Due to the increasing burden on healthcare budgets of musculoskeletal system disease and injury, there is a growing need for safe, effective and simple therapies. Conditions such as osteoporosis severely impact on quality of life and result in hundreds of hours of hospital time and resources. There is growing interest in the use of low magnitude, high frequency vibration (LMHFV) to improve bone structure and muscle performance in a variety of different patient groups. The technique has shown promise in a number of different diseases, but is poorly understood in terms of the mechanism of action. Scientific papers concerning both the in vivo and in vitro use of LMHFV are growing fast, but they cover a wide range of study types, outcomes measured and regimens tested. This paper aims to provide an overview of some effects of LMHFV found during in vivo studies. Furthermore we will review research concerning the effects of vibration on the cellular responses, in particular for cells within the musculoskeletal system. This includes both osteogenesis and adipogenesis, as well as the interaction between MSCs and other cell types within bone tissue.
Collapse
|
36
|
DeGuire JR, Mak IL, Lavery P, Agellon S, Wykes LJ, Weiler HA. Orchidectomy-induced alterations in volumetric bone density, cortical porosity and strength of femur are attenuated by dietary conjugated linoleic acid in aged guinea pigs. Bone 2015; 73:42-50. [PMID: 25524178 DOI: 10.1016/j.bone.2014.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 11/20/2022]
Abstract
Age-related osteoporosis and sarcopenia are ascribed in part to reductions in anabolic hormones. Dietary conjugated linoleic acid (CLA) improves lean and bone mass, but its impact during androgen deficiency is not known. This study tested if CLA would attenuate the effects of orchidectomy (ORX)-induced losses of bone and lean tissue. Male guinea pigs (n=40; 70-72 weeks), were randomized into four groups: (1) SHAM+Control diet, (2) SHAM+CLA diet, (3) ORX+Control diet, (4) ORX+CLA diet. Baseline blood sampling and dual-energy X-ray absorptiometry (DXA) scans were conducted, followed by surgery 4 days later with the test diets started 7 days after baseline sampling. Serial blood sampling and DXA scans were repeated 2, 4, 8 and 16 weeks on the test diets. Body composition and areal BMD (aBMD) of whole body, lumbar spine, femur and tibia were measured using DXA. At week 16, muscle protein fractional synthesis rate (FSR), volumetric BMD (vBMD), microarchitecture and bone strength were assessed. Body weight declined after SHAM and ORX surgery, with slower recovery in the ORX group. Dietary CLA did not affect weight or lean mass, but attenuated gains in fat mass. Lean mass was stable in SHAM and reduced in ORX by 2 weeks with whole body and femur bone mineral content (BMC) reduced by 4 weeks; CLA did not alter BMC. By week 16 ORX groups had lower free testosterone and myofibrillar FSR, yet higher cortisol, osteocalcin and ionized calcium with no alterations due to CLA. ORX+Control had higher prostaglandin E2 (PGE2) and total alkaline phosphatase compared to SHAM+Control whereas ORX+CLA were not different from SHAM groups. Femur metaphyseal vBMD was reduced in ORX+CTRL with the reduction attenuated by CLA. Femur cortical thickness (Ct.Th.) and biomechanical strength were reduced and cortical porosity (Ct.Po.) elevated by ORX and attenuated by CLA. This androgen deficient model with a sarcopenic-osteoporotic phenotype similar to aging men responded to dietary CLA with significant benefits to femur density and strength.
Collapse
Affiliation(s)
- Jason R DeGuire
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ivy L Mak
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Paula Lavery
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Sherry Agellon
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Linda J Wykes
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Hope A Weiler
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
37
|
Vazquez M, Evans BAJ, Riccardi D, Evans SL, Ralphs JR, Dillingham CM, Mason DJ. A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol (Lausanne) 2014; 5:208. [PMID: 25538684 PMCID: PMC4260042 DOI: 10.3389/fendo.2014.00208] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte-osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000-4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte-osteoblast co-culture model that may be useful for investigating mechanically induced osteocyte control of osteoblast bone formation.
Collapse
Affiliation(s)
- Marisol Vazquez
- Arthritis Research UK Biomechanics and Bioengineering Centre, School of Biosciences, Cardiff University, Cardiff, UK
| | - Bronwen A. J. Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniela Riccardi
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| | - Sam L. Evans
- Institute of Mechanical and Manufacturing Engineering, School of Engineering, Cardiff University, Cardiff, UK
| | - Jim R. Ralphs
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Deborah J. Mason
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
38
|
Fung CH, Cheung WH, Pounder NM, Harrison A, Leung KS. Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors. ULTRASONICS 2014; 54:1358-1365. [PMID: 24560187 DOI: 10.1016/j.ultras.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/17/2014] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
Low intensity pulsed ultrasound (LIPUS) was reported to accelerate the rate of fracture healing. When LIPUS is applied to fractures transcutaneously, bone tissues at different depths are exposed to different ultrasound fields. Measurement of LIPUS shows pressure variations in near field (nearby transducer); uniform profile was found beyond it (far field). Moreover, we have reported that the therapeutic effect of LIPUS is dependent on the axial distance of ultrasound beam in rat fracture model. However, the mechanisms of how different axial distances of LIPUS influence the mechanotransduction of bone cells are not understood. To understand the cellular mechanisms underlying far field LIPUS on enhanced fracture healing in rat model, the present study investigated the effect of ultrasound axial distances on (1) osteocyte, the mechanosensor, and (2) mechanotransduction between osteocyte and pre-osteoblast (bone-forming cell) through paracrine signaling. We hypothesized that far field LIPUS could enhance the osteogenic activities of osteoblasts via paracrine factors secreted from osteocytes. The objective of this study was to investigate the effect of axial distances of LIPUS on osteocytes and osteocyte-osteoblast mechanotransduction. In this study, LIPUS (plane; 2.2 cm in diameter, 1.5MHz sine wave, ISATA=30 mW/cm(2)) was applied to osteocytes (mechanosensor) at three axial distances: 0mm (near field), 60mm (mid-near field) and 130 mm (far field). The conditioned medium of osteocytes (OCM) collected from these three groups were used to culture pre-osteoblasts (effector cell). In this study, (1) the direct effect of ultrasound fields on the mechanosensitivity of osteocytes; and (2) the osteogenic effect of different OCM treatments on pre-osteoblasts were assessed. The immunostaining results indicated the ultrasound beam at far field resulted in more β-catenin nuclear translocation in osteocytes than all other groups. This indicated that osteocytes could detect the acoustic differences of LIPUS at various axial distances. Furthermore, we found that the soluble factors secreted by far field LIPUS exposed osteocytes could further promote pre-osteoblasts cell migration, maturation (transition of cell proliferation into osteogenic differentiation), and matrix calcification. In summary, our results of this present study indicated that axial distance beyond near field could transmit ultrasound energy to osteocyte more efficiently. The LIPUS exposed osteocytes conveyed mechanical signals to pre-osteoblasts and regulated their osteogenic cellular activities via paracrine factors secretion. The soluble factors secreted by far field exposed osteocytes led to promotion in migration and maturation in pre-osteoblasts. This finding demonstrated the positive effects of far field LIPUS on stimulating osteocytes and promoting mechanotransduction between osteocytes and osteoblasts.
Collapse
Affiliation(s)
- Chak-Hei Fung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Neill M Pounder
- Orthopaedic Trauma and Clinical Therapies, Smith and Nephew, Inc., Durham, NC 27703, United States
| | - Andrew Harrison
- Orthopaedic Trauma and Clinical Therapies, Smith and Nephew, Inc., Durham, NC 27703, United States
| | - Kwok-Sui Leung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
39
|
Wang Y, Peng W, Liu X, Zhu M, Sun T, Peng Q, Zeng Y, Feng B, Zhi W, Weng J, Wang J. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater 2014; 10:2518-2528. [PMID: 24394634 DOI: 10.1016/j.actbio.2013.12.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/05/2013] [Accepted: 12/26/2013] [Indexed: 12/15/2022]
Abstract
The level of formation of new bone and vascularization in bone tissue engineering scaffold implants is considered as a critical factor for clinical application. In this study, an approach using an RGD-grafted oxidized sodium alginate/N-succinyl chitosan (RGD-OSA/NSC) hydrogel as a scaffold and low-intensity pulsed ultrasound (LIPUS) as mechanical stimulation was proposed to achieve a high level of formation of new bone and vascularization. An in vitro study of endothelial and osteogenic differentiations of human-bone-marrow-derived mesenchymal stem cells (hMSCs) was conducted to evaluate it. The results showed that RGD-OSA/NSC composite hydrogels presented good biological properties in attachment, proliferation and differentiation of cells. The MTT cell viability assay showed that the total number of cells increased more significantly in the LIPUS-stimulated groups with RGD than that in the control ones; similar results were obtained for alkaline phosphatase activity/staining and mineralized nodule formation assay of osteogenic induction and immunohistochemical test of endothelial induction. The positive synergistic effect of LIPUS and RGD on the enhancement of proliferation and differentiation of hMSCs was observed. These findings suggest that the hybrid use of RGD modification and LIPUS might provide one approach to achieve a high level of formation of new bone and vascularization in bone tissue engineering scaffold implants.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xia Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Minghua Zhu
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Tao Sun
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Qiang Peng
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Yi Zeng
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Bo Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
40
|
Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells. Int J Mol Sci 2013; 14:22721-40. [PMID: 24252911 PMCID: PMC3856087 DOI: 10.3390/ijms141122721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/04/2013] [Accepted: 08/06/2013] [Indexed: 12/12/2022] Open
Abstract
Although low-intensity pulsed ultrasound (LIPUS) has been shown to enhance bone fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to better understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells exposed to LIPUS using high-density oligonucleotide microarrays and computational gene expression analysis tools. Although treatment of the cells with a single 20-min LIPUS (1.5 MHz, 30 mW/cm(2)) did not affect the cell growth or alkaline phosphatase activity, the treatment significantly increased the mRNA level of Bglap. Microarray analysis demonstrated that 38 genes were upregulated and 37 genes were downregulated by 1.5-fold or more in the cells at 24-h post-treatment. Ingenuity pathway analysis demonstrated that the gene network U (up) contained many upregulated genes that were mainly associated with bone morphology in the category of biological functions of skeletal and muscular system development and function. Moreover, the biological function of the gene network D (down), which contained downregulated genes, was associated with gene expression, the cell cycle and connective tissue development and function. These results should help to further clarify the molecular basis of the mechanisms of the LIPUS response in osteoblast cells.
Collapse
|
41
|
Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, Tsui YY, El-Bialy T. Short-term effect of low-intensity pulsed ultrasound on an ex-vivo 3-d tooth culture. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1066-1074. [PMID: 23499341 DOI: 10.1016/j.ultrasmedbio.2012.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
We investigated the short-term effect of LIPUS on human dentin-pulp complex in vitro. We collected sixty-three premolars from patients who needed the extraction. The premolars were sectioned transversely into 600-μm-thick slices, and then divided into five groups according to LIPUS application time (control, 5, 10, 15 and 20 min). LIPUS transducer produced an incident intensity of 30 mW/cm(2). After 24 h, tissue was harvested for histomorphometrical analysis and RT-PCR (Genes of interest: Collagen I, DMP1, DSPP, TGF β1, RANKL and OPG). Histomorphometric analysis showed no significant difference among the five groups in the odontoblast count and predentin thickness. RT-PCR demonstrated no expression of TGF β1, low amounts of DSPP, a twofold increase in collagen I expression in the 5- and 10-minute LIPUS groups and a threefold increase in DMP1 expression in the 10-minute LIPUS group. LIPUS application was stimulatory to the dentin-pulp complex in vitro and increased the expression of collagen I and DMP1.
Collapse
Affiliation(s)
- Saleh Al-Daghreer
- University of Alberta, Department of Dentistry, Faculty of Medicine & Dentistry, Orthodontic Graduate Program, Edmonton, AB, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|