1
|
Simmons JD, Dill-McFarland KA, Stein CM, Van PT, Chihota V, Ntshiqa T, Maenetje P, Peterson GJ, Benchek P, Nsereko M, Velen K, Fielding KL, Grant AD, Gottardo R, Mayanja-Kizza H, Wallis RS, Churchyard G, Boom WH, Hawn TR. Monocyte Transcriptional Responses to Mycobacterium tuberculosis Associate with Resistance to Tuberculin Skin Test and Interferon Gamma Release Assay Conversion. mSphere 2022; 7:e0015922. [PMID: 35695527 PMCID: PMC9241521 DOI: 10.1128/msphere.00159-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Heavy exposure to Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB) and among the top infectious killers worldwide, results in infection that is cleared, contained, or progresses to disease. Some heavily exposed tuberculosis contacts show no evidence of infection using the tuberculin skin test (TST) and interferon gamma release assay (IGRA); yet the mechanisms underlying this "resister" (RSTR) phenotype are unclear. To identify transcriptional responses that distinguish RSTR monocytes, we performed transcriptome sequencing (RNA-seq) on monocytes isolated from heavily exposed household contacts in Uganda and gold miners in South Africa after ex vivo M. tuberculosis infection. Gene set enrichment analysis (GSEA) revealed several gene pathways that were consistently enriched in response to M. tuberculosis among RSTR subjects compared to controls with positive TST/IGRA testing (latent TB infection [LTBI]) across Uganda and South Africa. The most significantly enriched gene set in which expression was increased in RSTR relative to LTBI M. tuberculosis-infected monocytes was the tumor necrosis factor alpha (TNF-α) signaling pathway whose core enrichment (leading edge) substantially overlapped across RSTR populations. These leading-edge genes included candidate resistance genes (ABCA1 and DUSP2) with significantly increased expression among Uganda RSTRs (false-discovery rate [FDR], <0.1). The distinct monocyte transcriptional response to M. tuberculosis among RSTR subjects, including increased expression of the TNF signaling pathway, highlights genes and inflammatory pathways that may mediate resistance to TST/IGRA conversion and provides therapeutic targets to enhance host restriction of M. tuberculosis intracellular infection. IMPORTANCE After heavy M. tuberculosis exposure, the events that determine why some individuals resist TST/IGRA conversion are poorly defined. Enrichment of the TNF signaling gene set among RSTR monocytes from multiple distinct cohorts suggests an important role for the monocyte TNF response in determining this alternative immune outcome. These TNF responses to M. tuberculosis among RSTRs may contribute to antimicrobial programs that result in early clearance or the priming of alternative (gamma interferon-independent) cellular responses.
Collapse
Affiliation(s)
- Jason D. Simmons
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kimberly A. Dill-McFarland
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Phu T. Van
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Violet Chihota
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- The Aurum Institute, Parktown, South Africa
| | | | | | - Glenna J. Peterson
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary Nsereko
- Uganda-CWRU Research Collaboration, Kampala, Uganda
| | | | - Katherine L. Fielding
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Alison D. Grant
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Africa Health Research Institute, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Gavin Churchyard
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- The Aurum Institute, Parktown, South Africa
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R. Hawn
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Zhu X, Li J, Ning H, Yuan Z, Zhong Y, Wu S, Zeng JZ. α-Mangostin Induces Apoptosis and Inhibits Metastasis of Breast Cancer Cells via Regulating RXRα-AKT Signaling Pathway. Front Pharmacol 2021; 12:739658. [PMID: 34539418 PMCID: PMC8444262 DOI: 10.3389/fphar.2021.739658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
Mangostin, which has the function of anti-inflammatory, antioxidant, and anticancer, etc, is one of the main active ingredients of the hull of the mangosteen. The main objective of the study was to elucidate its anti-cancer function and possible mechanism. α-Mangostin was separated and structurally confirmed. MTT method was used to check the effect of mangostin on breast cancer cell proliferation. Then the effect of α-Mangostin on the transcriptional activity of RXRα was tested by dual-luciferase reporter gene assay. And Western blot (WB) was used to detect the expression of apoptosis-related proteins or cell cycle-associated proteins after treatment. Also, this study was to observe the effects of α-Mangostin on the invasion of breast cancer cell line MDA-MB-231. α-Mangostin regulates the downstream effectors of the PI3K/AKT signaling pathway by degrading RXRα/tRXRα. α-Mangostin can trigger PARP cleavage and induce apoptosis, which may be related to the induction of upregulated BAX expression and downregulation of BAD and cleaved caspase-3 expression in MDA-MB-231 cells through blockade of AKT signaling. The experiments verify that α-Mangostin have evident inhibition effects of invasion and metastasis of MDA-MB-231 cells. Cyclin D1 was involved in the anticancer effects of α-Mangostin on the cell cycle in MDA-MB-231 cells. α-Mangostin induces apoptosis, suppresses the migration and invasion of breast cancer cells through the PI3K/AKT signaling pathway by targeting RXRα, and cyclin D1 has involved in this process.
Collapse
Affiliation(s)
- Xiuzhi Zhu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jialin Li
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Huiting Ning
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Zhidong Yuan
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
Zhang C, Zhang B, Zhang X, Sun G, Sun X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front Pharmacol 2020; 11:587457. [PMID: 33328994 PMCID: PMC7728612 DOI: 10.3389/fphar.2020.587457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptors are important members of the nuclear receptor family and may regulate cell proliferation, metabolism, differentiation, and apoptosis. NR4As, a subfamily of orphan nuclear receptors, have been reported to play key roles in carbohydrate and lipid metabolism and energy homeostasis. Popularity of obesity has resulted in a series of metabolic diseases such as diabetes and its complications. While imbalance of energy intake and expenditure is the main cause of obesity, the concrete mechanism of obesity has not been fully understood. It has been reported that NR4As have significant regulatory effects on energy homeostasis and diabetes and are expected to become new targets for discovering drugs for metabolic syndrome. A number of studies have demonstrated that abnormalities in metabolism induced by altered levels of NR4As may contribute to numerous diseases, such as chronic inflammation, tumorigenesis, diabetes and its complications, atherosclerosis, and other cardiovascular diseases. However, systematic reviews focusing on the roles of NR4As in mediating energy homeostasis and diabetes remain limited. Therefore, this article reviews the structure and regulation of NR4As and their critical function in energy homeostasis and diabetes, as well as small molecules that may regulate NR4As. Our work is aimed at providing valuable support for the research and development of drugs targeting NR4As for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|
6
|
Sciascia QL, Daş G, Maak S, Kalbe C, Metzler-Zebeli BU, Metges CC. Transcript profile of skeletal muscle lipid metabolism genes affected by diet in a piglet model of low birth weight. PLoS One 2019; 14:e0224484. [PMID: 31661531 PMCID: PMC6818798 DOI: 10.1371/journal.pone.0224484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023] Open
Abstract
Dysregulated skeletal muscle metabolism (DSMM) is associated with increased inter- and intramuscular fat deposition in low birth weight (L) individuals. The mechanisms behind DSMM in L individuals are not completely understood but decreased muscle mass and shifts in lipid and carbohydrate utilisation may contribute. Previously, we observed lower fat oxidation in a porcine model of low birth weight. To elucidate the biological activities underpinning this difference microfluidic arrays were used to assess mRNA associated with lipid metabolism in longissimus dorsi (LD) and semitendinosus (ST) skeletal muscle samples from thirty-six female L and normal birth weight (N) pigs. Plasma samples were collected from a sub-population to measure metabolite concentrations. Following overnight fasting, skeletal muscle and plasma samples were collected and the association with birth weight, diet and age was assessed. Reduced dietary fat was associated with decreased LD intermuscular fat deposition and beta-oxidation associated mRNA, in both birth weight groups. Lipid uptake and intramuscular fat deposition associated mRNA was reduced in only L pigs. Abundance of ST mRNA associated with lipolysis, lipid synthesis and transport increased in both birth weight groups. Lipid uptake associated mRNA reduced in only L pigs. These changes were associated with decreased plasma L glucose and N triacylglycerol. Post-dietary fat reduction, LD mRNA associated with lipid synthesis and inter- and intramuscular fat deposition increased in L, whilst beta-oxidation associated mRNA remains elevated for longer in N. In the ST, mRNA associated with lipolysis and intramuscular fat deposition increased in both birth weight groups, however this increase was more significant in L pigs and associated with reduced beta-oxidation. Analysis of muscle lipid metabolism associated mRNA revealed that profile shifts are a consequence of birth weight. Whilst, many of the adaptions to diet and age appear to be similar in birth weight groups, the magnitude of response and individual changes underpin the previously observed lower fat oxidation in L pigs.
Collapse
Affiliation(s)
- Quentin L. Sciascia
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Gürbüz Daş
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Barbara U. Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Cornelia C. Metges
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| |
Collapse
|
7
|
Fiory F, Mirra P, Nigro C, Pignalosa FC, Zatterale F, Ulianich L, Prevete N, Formisano P, Beguinot F, Miele C. Role of the HIF-1α/Nur77 axis in the regulation of the tyrosine hydroxylase expression by insulin in PC12 cells. J Cell Physiol 2018; 234:11861-11870. [PMID: 30536670 DOI: 10.1002/jcp.27898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022]
Abstract
Tyrosine hydroxylase (TH), catalyzing the conversion of tyrosine into l-DOPA, is the rate-limiting enzyme in dopamine synthesis. Defects in insulin action contribute to alterations of TH expression and/or activity in the brain and insulin increases TH levels in 1-methyl-4-phenylpyridinium (MPP+)-treated neuronal cells. However, the molecular mechanisms underlying the regulation of TH by insulin have not been elucidated yet. Using PC12 cells, we show for the first time that insulin increases TH expression in a biphasic manner, with a transient peak at 2 hr and a delayed response at 16 hr, which persists for up to 24 hr. The use of a dominant negative hypoxia-inducible factor 1-alpha (HIF-1α) and its pharmacological inhibitor chetomin, together with chromatin immunoprecipitation (ChIP) experiments for the specific binding to TH promoter, demonstrate the direct role of HIF-1α in the early phase. Moreover, ChIP experiments and transfection of a dominant negative of the nerve growth factor IB (Nur77) indicate the involvement of Nur77 in the late phase insulin response, which is mediated by HIF-1α. In conclusion, the present study shows that insulin regulates TH expression through HIF-1α and Nur77 in PC12 cells, supporting the critical role of insulin signaling in maintaining an appropriate dopaminergic tone by regulating TH expression in the central nervous system.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Paola Mirra
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Luca Ulianich
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Nella Prevete
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
8
|
Loppi S, Kolosowska N, Kärkkäinen O, Korhonen P, Huuskonen M, Grubman A, Dhungana H, Wojciechowski S, Pomeshchik Y, Giordano M, Kagechika H, White A, Auriola S, Koistinaho J, Landreth G, Hanhineva K, Kanninen K, Malm T. HX600, a synthetic agonist for RXR-Nurr1 heterodimer complex, prevents ischemia-induced neuronal damage. Brain Behav Immun 2018; 73:670-681. [PMID: 30063972 PMCID: PMC8543705 DOI: 10.1016/j.bbi.2018.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 01/16/2023] Open
Abstract
Ischemic stroke is amongst the leading causes of death and disabilities. The available treatments are suitable for only a fraction of patients and thus novel therapies are urgently needed. Blockage of one of the cerebral arteries leads to massive and persisting inflammatory reaction contributing to the nearby neuronal damage. Targeting the detrimental pathways of neuroinflammation has been suggested to be beneficial in conditions of ischemic stroke. Nuclear receptor 4A-family (NR4A) member Nurr1 has been shown to be a potent modulator of harmful inflammatory reactions, yet the role of Nurr1 in cerebral stroke remains unknown. Here we show for the first time that an agonist for the dimeric transcription factor Nurr1/retinoid X receptor (RXR), HX600, reduces microglia expressed proinflammatory mediators and prevents inflammation induced neuronal death in in vitro co-culture model of neurons and microglia. Importantly, HX600 was protective in a mouse model of permanent middle cerebral artery occlusion and alleviated the stroke induced motor deficits. Along with the anti-inflammatory capacity of HX600 in vitro, treatment of ischemic mice with HX600 reduced ischemia induced Iba-1, p38 and TREM2 immunoreactivities, protected endogenous microglia from ischemia induced death and prevented leukocyte infiltration. These anti-inflammatory functions were associated with reduced levels of brain lysophosphatidylcholines (lysoPCs) and acylcarnitines, metabolites related to proinflammatory events. These data demonstrate that HX600 driven Nurr1 activation is beneficial in ischemic stroke and propose that targeting Nurr1 is a novel candidate for conditions involving neuroinflammatory component.
Collapse
Affiliation(s)
- S. Loppi
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - N. Kolosowska
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - O. Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - P. Korhonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M. Huuskonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - A. Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia
| | - H. Dhungana
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - S. Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Y. Pomeshchik
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M. Giordano
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - H. Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - A. White
- Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Qld 4006, Australia
| | - S. Auriola
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - J. Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - G. Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - K. Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - K. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - T. Malm
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland,Corresponding author at: A. I. Virtanen Institute for Molecular Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland. (T. Malm)
| |
Collapse
|
9
|
Vancura P, Wolloscheck T, Baba K, Tosini G, Iuvone PM, Spessert R. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells. PLoS One 2016; 11:e0164665. [PMID: 27727308 PMCID: PMC5058478 DOI: 10.1371/journal.pone.0164665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy-one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice-a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase/genetics
- Acyl-CoA Dehydrogenase/metabolism
- Animals
- Carnitine O-Palmitoyltransferase/genetics
- Carnitine O-Palmitoyltransferase/metabolism
- Circadian Rhythm/physiology
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Disease Models, Animal
- Dopamine/metabolism
- Energy Metabolism
- Fatty Acids/chemistry
- Fatty Acids/metabolism
- Female
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Obese
- Microscopy, Fluorescence
- Oxidation-Reduction
- Photoreceptor Cells/metabolism
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptors, Dopamine D4/deficiency
- Receptors, Dopamine D4/genetics
- Retina/metabolism
Collapse
Affiliation(s)
- Patrick Vancura
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tanja Wolloscheck
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 2016; 7:e2226. [PMID: 27195673 PMCID: PMC4917665 DOI: 10.1038/cddis.2016.132] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
Abstract
Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention.
Collapse
|
11
|
Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014; 72 Pt A:104-16. [PMID: 24874548 PMCID: PMC4246019 DOI: 10.1016/j.nbd.2014.05.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors have generated substantial interest in the past decade as potential therapeutic targets for the treatment of neurodegenerative disorders. Despite years of effort, effective treatments for progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and ALS remain elusive, making non-classical drug targets such as nuclear receptors an attractive alternative. A substantial literature in mouse models of disease and several clinical trials have investigated the role of nuclear receptors in various neurodegenerative disorders, most prominently AD. These studies have met with mixed results, yet the majority of studies in mouse models report positive outcomes. The mechanisms by which nuclear receptor agonists affect disease pathology remain unclear. Deciphering the complex signaling underlying nuclear receptor action in neurodegenerative diseases is essential for understanding this variability in preclinical studies, and for the successful translation of nuclear receptor agonists into clinical therapies.
Collapse
Affiliation(s)
- Rebecca Skerrett
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Tarja Malm
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Lehman AMB, Montford JR, Horita H, Ostriker AC, Weiser-Evans MCM, Nemenoff RA, Furgeson SB. Activation of the retinoid X receptor modulates angiotensin II-induced smooth muscle gene expression and inflammation in vascular smooth muscle cells. Mol Pharmacol 2014; 86:570-9. [PMID: 25169989 PMCID: PMC4201143 DOI: 10.1124/mol.114.092163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/28/2014] [Indexed: 01/04/2023] Open
Abstract
The retinoid X receptor (RXR) partners with numerous nuclear receptors, such as the peroxisome proliferator activated receptor (PPAR) family, liver X receptors (LXRs), and farnesoid X receptor (FXR). Although each heterodimer can be activated by specific ligands, a subset of these receptors, defined as permissive nuclear receptors, can also be activated by RXR agonists known as rexinoids. Many individual RXR heterodimers have beneficial effects in vascular smooth muscle cells (SMCs). Because rexinoids can potently activate multiple RXR pathways, we hypothesized that treating SMCs with rexinoids would more effectively reverse the pathophysiologic effects of angiotensin II than an individual heterodimer agonist. Cultured rat aortic SMCs were pretreated with either an RXR agonist (bexarotene or 9-cis retinoic acid) or vehicle (dimethylsulfoxide) for 24 hours before stimulation with angiotensin II. Compared with dimethylsulfoxide, bexarotene blocked angiotensin II-induced SM contractile gene induction (calponin and smooth muscle-α-actin) and protein synthesis ([(3)H]leucine incorporation). Bexarotene also decreased angiotensin II-mediated inflammation, as measured by decreased expression of monocyte chemoattractant protein-1 (MCP-1). Activation of p38 mitogen-activated protein (MAP) kinase but not extracellular signal-related kinase (ERK) or protein kinase B (Akt) was also blunted by bexarotene. We compared bexarotene to five agonists of nuclear receptors (PPARα, PPARγ, PPARδ, LXR, and FXR). Bexarotene had a greater effect on calponin reduction, MCP-1 inhibition, and p38 MAP kinase inhibition than any individual agonist. PPARγ knockout cells demonstrated blunted responses to bexarotene, indicating that PPARγ is necessary for the effects of bexarotene. These data demonstrate that RXR is a potent modulator of angiotensin II-mediated responses in the vasculature, partially through inhibition of p38.
Collapse
Affiliation(s)
- Allison M B Lehman
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - John R Montford
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Henrick Horita
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Allison C Ostriker
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Mary C M Weiser-Evans
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Raphael A Nemenoff
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| | - Seth B Furgeson
- Division of Renal Diseases and Hypertension (A.L., J.R.M., H.H., A.C.O., M.W.E., R.A.N., S.B.F.), Cardiovascular Pulmonary Research Laboratory, Department of Medicine (M.W.E., R.A.N.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and Department of Medicine, Denver Health Hospital, Denver, Colorado (S.B.F)
| |
Collapse
|
13
|
Inoue M, Tanabe H, Nakashima KI, Ishida Y, Kotani H. Rexinoids isolated from Sophora tonkinensis with a gene expression profile distinct from the synthetic rexinoid bexarotene. JOURNAL OF NATURAL PRODUCTS 2014; 77:1670-1677. [PMID: 24959987 DOI: 10.1021/np5002016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The retinoid X receptor (RXR) plays a critical role in transcriptional regulation via formation of an RXR homodimer or heterodimers with partner nuclear receptors. Despite the numerous beneficial effects, only a limited number of naturally occurring RXR agonists are known. In this report, two prenylated flavanones (1 and 2) isolated from Sophora tonkinensis were identified as new rexinoids that preferentially activated RXRs, relative to the retinoic acid receptor. The activities of 1 and 2 were the most potent among naturally occurring rexinoids, yet 2 orders of magnitude lower than the synthetic rexinoid bexarotene. Compounds 1 and 2 activated particular RXR heterodimers in a manner similar to bexarotene. A microarray assay followed by quantitative real-time polymerase chain reaction analyses on RNAs isolated from C2C12 myotubes treated with 1 or 2 demonstrated that they significantly increased mRNA levels of lipoprotein lipase, angiopoietin-like protein 4, and heme oxygenase-1. In contrast, bexarotene preferentially potentiated transcription of genes involved in lipogenesis and lipid metabolism such as sterol regulatory element-binding protein-1, fatty acid synthase, and apolipoprotein D by a liver X receptor agonist. In this study, we have demonstrated that two newly identified naturally occurring rexinoids, 1 and 2, possess properties different from bexarotene.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Pharmacology of Natural Compounds, Graduate School of Pharmaceutical Sciences, Aichi Gakuin University , 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | | | | |
Collapse
|
14
|
Close AF, Rouillard C, Buteau J. NR4A orphan nuclear receptors in glucose homeostasis: a minireview. DIABETES & METABOLISM 2013; 39:478-84. [PMID: 24075454 DOI: 10.1016/j.diabet.2013.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/23/2023]
Abstract
Type 2 diabetes mellitus is a disorder characterized by insulin resistance and a relative deficit in insulin secretion, both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. An ever-growing body of evidence suggests that members of the NR4A family of nuclear receptors could play a pivotal role in glucose homeostasis. This review aims to present and discuss advances so far in the evaluation of the potential role of NR4A in the regulation of glucose homeostasis and the development of type 2 diabetes.
Collapse
Affiliation(s)
- A F Close
- Department of AFNS, University of Alberta and Alberta Diabetes Institute, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada
| | | | | |
Collapse
|