1
|
Ma H, Lu Y, Chen W, Gao Z, Wu D, Chong Y, Wu J, Xi D, Deng W, Hong J. Multiple omics analysis reveals the regulation of SIRT4 on lipid deposition and metabolism during the differentiation of bovine preadipocytes. Genomics 2025; 117:111006. [PMID: 39875030 DOI: 10.1016/j.ygeno.2025.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
The differentiation and lipid metabolism of preadipocytes are crucial processes in IMF deposition. Studies have demonstrated that SIRT4 plays essential roles in energy metabolism and redox homeostasis, with its expression being coordinately regulated by multiple transcription factors associated with energy and lipid metabolism. In this study, the findings of multiple omics analysis reveal that SIRT4 significantly up-regulates the expression of genes involved in adipogenesis and enhances the differentiation and lipid deposition of bovine preadipocytes. Furthermore, SIRT4 profoundly influences the expression pattern of metabolites by increasing the abundance of substances involved in lipid synthesis while decreasing those that promote lipid oxidative decomposition. Additionally, SIRT4 broadly up-regulates the expression levels of various lipid classes, including glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. These findings not only provide a theoretical basis for molecular breeding and genetic improvement in beef cattle, but also offer potential therapeutic approaches for energy homeostasis disorders and obesity.
Collapse
Affiliation(s)
- Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Jayathirtha M, Jayaweera T, Whitham D, Petre BA, Neagu AN, Darie CC. Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. Int J Mol Sci 2023; 24:14714. [PMID: 37834160 PMCID: PMC10572688 DOI: 10.3390/ijms241914714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 20A, 700505 Iasi, Romania;
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| |
Collapse
|
3
|
Cao Y, Yu Y, Zhang L, Liu Y, Zheng K, Wang S, Jin H, Liu L, Cao Y. Transcript variants of long-chain acyl-CoA synthase 1 have distinct roles in sheep lipid metabolism. Front Genet 2022; 13:1021103. [PMID: 36482895 PMCID: PMC9723241 DOI: 10.3389/fgene.2022.1021103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 07/30/2023] Open
Abstract
Mutton has recently been identified to be a consumer favorite, and intermuscular fat is the key factor in determining meat tenderness. Long-chain acyl-CoA synthetase 1 (ACSL1) is a vital subtype of the ACSL family that is involved in the synthesis of lipids from acyl-CoA and the oxidation of fatty acids. The amplification of the ACSL1 gene using rapid amplification of cDNA ends revealed that the alternative polyadenylation (APA) results in two transcripts of the ACSL1 gene. Exon 18 had premature termination, resulting in a shorter CDS region. In this study, the existence of two transcripts of varying lengths translated normally and designated ACSL1-a and ACSL1-b was confirmed. Overexpression of ACSL1-a can promote the synthesis of an intracellular diglyceride, while ACSL1-b can promote triglyceride synthesis. The transfection of ACSL1 shRNA knocks down both the transcripts, the triglyceride content was significantly reduced after differentiation and induction; and lipidome sequencing results exhibited a significant decrease in 14-22 carbon triglyceride metabolites. The results of the present study indicated that the ACSL1 gene played a crucial role in the synthesis of triglycerides. Furthermore, the two transcripts involved in various interactions in the triglyceride synthesis process may be the topic of interest for future research and provide a more theoretical basis for sheep breeding.
Collapse
Affiliation(s)
- Yang Cao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yu Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sutian Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Lixiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yang Cao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| |
Collapse
|
4
|
Dubois E, Galindo AN, Dayon L, Cominetti O. Assessing normalization methods in mass spectrometry-based proteome profiling of clinical samples. Biosystems 2022; 215-216:104661. [PMID: 35247480 DOI: 10.1016/j.biosystems.2022.104661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Large-scale proteomic studies have to deal with unwanted variability, especially when samples originate from different centers and multiple analytical batches are needed. Such variability is typically added throughout all the steps of a clinical research study, from human biological sample collection and storage, sample preparation, spectral data acquisition, to peptide and protein quantification. In order to remove such diverse and unwanted variability, normalization of the protein data is performed. There have been already several published reviews comparing normalization methods in the -omics field, but reports focusing on proteomic data generated with mass spectrometry (MS) are much fewer. Additionally, most of these reports have only dealt with small datasets. RESULTS As a case study, here we focused on the normalization of a large MS-based proteomic dataset obtained from an overweight and obese pan-European cohort, where different normalization methods were evaluated, namely: center standardize, quantile protein, quantile sample, global standardization, ComBat, median centering, mean centering, single standard and removal of unwanted variation (RUV); some of these are generic normalization methods while others have been specifically created to deal with genomic or metabolomic data. We checked how relationships between proteins and clinical variables (e.g., gender, levels of triglycerides or cholesterol) were improved after normalizing the data with the different methods. CONCLUSIONS Some normalization methods were better adapted for this particular large-scale shotgun proteomic dataset of human plasma samples labeled with isobaric tags and analyzed with liquid chromatography-tandem MS. In particular, quantile sample normalization, RUV, mean and median centering showed very good performance, while quantile protein normalization provided worse results than those obtained with unnormalized data.
Collapse
Affiliation(s)
- Etienne Dubois
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland; Chemistry and Chemical Engineering Section, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Ornella Cominetti
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Song Q, Wang Z, Zhang H, Li X, Zhang Y, Xu Q, Chang G, Zhang H, Chen G. Single nucleotide polymorphism scanning and expression analysis of ACSL1 from different duck breeds. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating studies have indicated that the long-chain fatty acyl-CoA1 (ACSL1) gene is related to fat deposition and meat quality in mammals. However, few studies have investigated the relationship between ACSL1 and lipid deposition in ducks. To examine this, we assessed the physicochemical property, homologous alignment, and phylogenetic analyses of the ACSL1 amino acid sequence using bioinformatics tools. The analysis indicated that the ACSL1 amino acid sequence varies in animals, and the duck ACSL1 protein is most closely related to that of chicken. Two single nucleotide polymorphism (SNP) sites were identified at 1749 and 1905 bp of the coding region of ACSL1 by sequencing. Quantitative real-time PCR and western blotting were used to measure mRNA and protein levels in abdominal fat, breast muscle, and liver tissue of Pekin duck (BD) and Cherry Valley duck (CD). mRNA and protein expression were significantly higher in BD than in CD in abdominal fat and liver tissue (P < 0.05). In breast muscle, the mRNA level of ACSL1 was also significantly higher in BD than in CD (P < 0.05), and protein expression in BD tended to be higher than that of CD. These results suggest that ACSL1 may contribute to lipid deposition and meat quality in ducks.
Collapse
Affiliation(s)
- Qianqian Song
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Hongliang Zhang
- Bureau of Agriculture and Rural of the Lhasa, Lhasa 850000, People’s Republic of China
| | - Xiangxiang Li
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, People’s Republic of China
| |
Collapse
|
6
|
Yi X, Wu P, Liu J, Gong Y, Xu X, Li W. Identification of the potential key genes for adipogenesis from human mesenchymal stem cells by RNA-Seq. J Cell Physiol 2019; 234:20217-20227. [PMID: 30989650 DOI: 10.1002/jcp.28621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/22/2019] [Indexed: 01/23/2023]
Abstract
Adipogenesis, a physiological process initiated with the committed preadipocytes expressing adipocyte-specific genes and terminated in mature, differentiated and functional adipocytes, mainly involved with energy homeostasis. Abnormal distribution-changes and dysfunctions in adipogenesis may lead to complex physiopathological disorders. However, it remains unclear for the key players working for the whole complex differentiating process of adipogenesis. Here, it investigated transcriptional profiling of adipogenesis from human mesenchymal stem cells (hMSCs) by RNA-Seq transcriptome technique. Oil Red O staining assays were performed to assess adipogenic potential. Quantitative real-time PCR (qRT-PCR) and lentivirus transfection assays by small interference RNA (siRNA) were conducted to confirm the function of the candidate genes. A total of 1,078 differentially expressed genes shared at 7, 14, 21, and 28 days during adipogenesis from hMSCs, and 706 genes were significantly differentially expressed. It identified 20 potential key genes responsible for adipogenesis with four genes downregulating. The candidate gene, coagulation factor II thrombin receptor (F2R), encoding coagulation factor II thrombin receptor involving with a 7-transmembrane receptor involved in the regulation of thrombotic response, also known as proteinase-activated receptor-1, contributed to adipogenesis, especially at Day 14, by Oil Red O staining, qRT-PCR, and western blot after siRNA. A unique discovery shed new light to understand the key players of the whole processes of adipogenesis from hMSCs. The gene F2R might be used as an adipogenic marker to provide a potential target for understanding the metabolic syndromes like obesity, type-2 diabetes, steatosis, atherosclerosis, and osteoporosis.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| |
Collapse
|
7
|
Gondret F, Guével B, Père MC, Quesnel H, Billon Y, Com E, Canario L, Louveau I, Liaubet L. Proteomic analysis of adipose tissue during the last weeks of gestation in pure and crossbred Large White or Meishan fetuses gestated by sows of either breed. J Anim Sci Biotechnol 2018; 9:28. [PMID: 29619215 PMCID: PMC5881184 DOI: 10.1186/s40104-018-0244-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/09/2018] [Indexed: 11/23/2022] Open
Abstract
Background The degree of adipose tissue development at birth may influence neonatal survival and subsequent health outcomes. Despite their lower birth weights, piglets from Meishan sows (a fat breed with excellent maternal ability) have a higher survival rate than piglets from Large White sows (a lean breed). To identify the main pathways involved in subcutaneous adipose tissue maturation during the last month of gestation, we compared the proteome and the expression levels of some genes at d 90 and d 110 of gestation in purebred and crossbred Large White or Meishan fetuses gestated by sows of either breed. Results A total of 52 proteins in fetal subcutaneous adipose tissue were identified as differentially expressed over the course of gestation. Many proteins involved in energy metabolism were more abundant, whereas some proteins participating in cytoskeleton organization were reduced in abundance on d 110 compared with d 90. Irrespective of age, 24 proteins differed in abundance between fetal genotypes, and an interaction effect between fetal age and genotype was observed for 13 proteins. The abundance levels of proteins known to be responsive to nutrient levels such as aldolase and fatty acid binding proteins, as well as the expression levels of FASN, a key lipogenic enzyme, and MLXIPL, a pivotal transcriptional mediator of glucose-related stimulation of lipogenic genes, were elevated in the adipose tissue of pure and crossbred fetuses from Meishan sows. These data suggested that the adipose tissue of these fetuses had superior metabolic functionality, whatever their paternal genes. Conversely, proteins participating in redox homeostasis and apoptotic cell clearance had a lower abundance in Meishan than in Large White fetuses. Time-course differences in adipose tissue protein abundance were revealed between fetal genotypes for a few secreted proteins participating in responses to organic substances, such as alpha-2-HS-glycoprotein, transferrin and albumin. Conclusions These results underline the importance of not only fetal age but also maternal intrauterine environment in the regulation of several proteins in subcutaneous adipose tissue. These proteins may be used to estimate the maturity grade of piglet neonates. Electronic supplementary material The online version of this article (10.1186/s40104-018-0244-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Gondret
- 1PEGASE, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France
| | - B Guével
- 2Protim, Inserm U1085, Irset, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - M C Père
- 1PEGASE, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France
| | - H Quesnel
- 1PEGASE, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France
| | - Y Billon
- GenESI, INRA, Le Magneraud, 17700, Saint-Pierre-d'Amilly, France
| | - E Com
- 2Protim, Inserm U1085, Irset, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - L Canario
- 4GenPhyse, INRA, INPT, INPT-ENV, Université de Toulouse, 31320 Castanet-Tolosan, France
| | - I Louveau
- 1PEGASE, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France
| | - L Liaubet
- 4GenPhyse, INRA, INPT, INPT-ENV, Université de Toulouse, 31320 Castanet-Tolosan, France
| |
Collapse
|
8
|
Anti-lipidaemic and anti-inflammatory effect of açai ( Euterpe oleracea Martius) polyphenols on 3T3-L1 adipocytes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
Berger E, Héraud S, Mojallal A, Lequeux C, Weiss-Gayet M, Damour O, Géloën A. Pathways commonly dysregulated in mouse and human obese adipose tissue: FAT/CD36 modulates differentiation and lipogenesis. Adipocyte 2015; 4:161-80. [PMID: 26257990 DOI: 10.4161/21623945.2014.987578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/06/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity is linked to adipose tissue hypertrophy (increased adipocyte cell size) and hyperplasia (increased cell number). Comparative analyses of gene datasets allowed us to identify 1426 genes which may represent common adipose phenotype in humans and mice. Among them we identified several adipocyte-specific genes dysregulated in obese adipose tissue, involved in either fatty acid storage (acyl CoA synthase ACSL1, hormone-sensitive lipase LIPE, aquaporin 7 AQP7, perilipin PLIN) or cell adhesion (fibronectin FN1, collagens COL1A1, COL1A3, metalloprotein MMP9, or both (scavenger receptor FAT/CD36). Using real-time analysis of cell surface occupancy on xCELLigence system we developed a new method to study lipid uptake and differentiation of mouse 3T3L1 fibroblasts and human adipose stem cells. Both processes are regulated by insulin and fatty acids such as oleic acid. We showed that fatty acid addition to culture media increased the differentiation rate and was required for full differentiation into unilocular adipocytes. Significant activation of lipogenesis, i.e. lipid accumulation, by either insulin or oleic acid was monitored in times ranging from 1 to 24 h, depending on differentiation state, whereas significant effects on adipogenesis, i.e., surperimposed lipid accumulation and gene transcriptional regulations were measured after 3 to 4 d. Combination of selected times for analysis of lipid contents, cell counts, size fractionations, and gene transcriptional regulations showed that FAT/CD36 specific inhibitor AP5258 significantly increased cell survival of oleic acid-treated mouse and human adipocytes, and partially restored the transcriptional response to oleic acid in the presence of insulin through JNK pathway. Taken together, these data open new perspectives to study the molecular mechanisms commonly dysregulated in mouse and human obesity at the level of lipogenesis linked to hypertrophy and adipogenesis linked to hyperplasia.
Collapse
Key Words
- (h)ASCs, (human)adipose stem cells
- (h)dA, (human) adipocytes differentiated in vitro
- ACSL1, Acyl-CoA synthetase long chain family member 1
- AQP7, aquaporin 7
- BSA, bovine serum albumin, lipid-free
- CEBPA, CCAAT/enhancer binding protein (C/EBP) α
- CIDEA &
- CIDEC, cell death-inducing DFFA-like effectors a and c
- COL1A1 &
- COL1A3, Collagens 1 α
- DMEM, Dulbecco's Modified Eagle's Medium
- ECM, extracellular matrix
- FABP1 and 4, fatty acid binding proteins 1 and 4
- FAT/CD36, fatty acid translocase
- FCS, foetal calf serum
- FN1, fibronectin
- GO, Gene Ontology
- HSPG, heparan sulfate proteoglycans
- IBMX, isobutylmethylxanthine
- IL6, interleukin 6
- JNK, Jun-NH2 kinase
- LIPE, hormone-sensitive lipase
- MMP9, matrix metallopeptidase 9
- PBS, phosphate buffered saline
- PLIN, perilipin
- PPARG, peroxisome-proliferator receptor gamma
- RT-qPCR, real-time quantitative polymerase chain reaction
- RTCA, Real-time Cell Analyzer
- TA, adipose tissue
- TNFA, tumor necrosis factor α
- adipogenesis
- bFGF, basic fibroblast growth factor
- bio-informatics
- fatty acid
- lipogenesis
- obesity
- real-time cell analysis
- subunits 1 and 3
Collapse
|
10
|
Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol 2015; 16:8. [PMID: 25651499 PMCID: PMC4301800 DOI: 10.1186/s13059-014-0569-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0569-x) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Lappas M. Effect of pre-existing maternal obesity, gestational diabetes and adipokines on the expression of genes involved in lipid metabolism in adipose tissue. Metabolism 2014; 63:250-62. [PMID: 24262292 DOI: 10.1016/j.metabol.2013.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine the effect of maternal obesity, gestational diabetes mellitus (GDM) and adipokines on the expression of genes involved in fatty acid uptake, transport, synthesis and metabolism. MATERIALS/METHODS Human subcutaneous and omental adipose tissues were obtained from lean, overweight and obese normal glucose tolerant (NGT) women and women with GDM. Quantitative RT-PCR (qRT-PCR) was performed to determine the level of expression. Adipose tissue explants were performed to determine the effect of the adipokines TNFα, IL-1β and leptin on adipose tissue gene expression. RESULTS Pre-existing maternal obesity and GDM are associated with decreased expression in genes involved in fatty acid uptake and intracellular transport (LPL, FATP2, FATP6, FABPpm and ASCL1), triacylglyceride (TAG) biosynthesis (MGAT1,7 MGAT2 and DGAT1), lipogenesis (FASN) and lipolysis (PNPLA2, HSL and MGLL). Decreased gene expression was also observed for the transcription factors involved in lipid metabolism (LXRα, PPARα, PPARδ, PPARγ, RXRα and SREBP1c). On the other hand, the gene expression of the adipokines TNFα, IL-1β and or leptin was increased in adipose tissue from obese and GDM women. Functional in vitro studies revealed that these adipokines decreased the gene expression of LPL, FATP2, FATP6, ASCL1, PNPLA2, PPARδ, PPARγ and RXRα. CONCLUSIONS Pregnancies complicated by pre-existing maternal obesity and GDM are associated with abnormal adipose tissue lipid metabolism, which may play a role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
12
|
Manteiga S, Choi K, Jayaraman A, Lee K. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:425-47. [PMID: 23408581 DOI: 10.1002/wsbm.1213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease.
Collapse
Affiliation(s)
- Sara Manteiga
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | | | | |
Collapse
|