1
|
Calvo E, Doger B, Carles J, Peer A, Sarid D, Eigl BJ, Avadhani A, Yao D, Lin V, Wu S, Jaiprasart P, Loffredo J, Tamegnon M, Xu W, Xie H, Hansen AR. A first-in-human study of JNJ-70218902, a bispecific T-cell-redirecting antibody against TMEFF2 in metastatic castration-resistant prostate cancer. Oncologist 2025; 30:oyae313. [PMID: 39832129 PMCID: PMC11745015 DOI: 10.1093/oncolo/oyae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/09/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis, necessitating the investigation of novel treatments and targets. This study evaluated JNJ-70218902 (JNJ-902), a T-cell redirector targeting transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2) and cluster of differentiation 3, in mCRPC. PATIENTS AND METHODS Patients who had measurable/evaluable mCRPC after at least one novel androgen receptor-targeted therapy or chemotherapy were eligible. Participants received subcutaneous JNJ-902 0.3, 1.0, 1.5, 3.0, or 6.0 mg once weekly (QW) or 2.0, 3.0, 4.0, or 6.0 mg biweekly (Q2W). Study objectives included assessment of safety, pharmacokinetics, immunogenicity, and preliminary efficacy. RESULTS Eighty-two participants were enrolled to receive at least one dose of JNJ-902 (QW; n = 38; Q2W; n = 44). Median duration of treatment was 1.91 (0.0-19.4) months across dosing groups. All participants experienced at least one treatment-emergent adverse event (TEAE) and 76 (92.7%) experienced treatment-related TEAEs. Fourteen participants (17.1%) experienced a TEAE that led to study discontinuation, of which 3 (3.7%) were related to JNJ-902. Dose-limiting toxicities were observed in 2 participants (2.4%). Five participants (15.2%) with measurable disease had a confirmed partial response and 10 participants (12.2%) had ≥50% decrease from baseline prostate-specific antigen levels. Clinical activity was not dose related and no clear exposure-response relationship was observed. CONCLUSIONS In this study, dose escalation was limited by emerging dose-limiting toxicities. Although a recommended phase II dose was not determined, findings indicate TMEFF2 to be a potential target in mCRPC that warrants further investigation.
Collapse
Affiliation(s)
- Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, 28050 Madrid, Spain
| | - Bernard Doger
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Joan Carles
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Avivit Peer
- Rambam Health Care Campus, Haifa, 3109601, Israel
| | - David Sarid
- Tel Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel
| | | | | | - David Yao
- Janssen R&D, Raritan, NJ, 08869, United States
| | - Vincent Lin
- Janssen R&D, Raritan, NJ, 08869, United States
| | - Shujian Wu
- Janssen R&D, Raritan, NJ, 08869, United States
| | | | | | | | - Weichun Xu
- Janssen R&D, Raritan, NJ, 08869, United States
| | - Hong Xie
- Janssen R&D, Raritan, NJ, 08869, United States
| | - Aaron R Hansen
- Department of Medical Oncology, Princess Margaret Hospital, Toronto, ON M5G 2M9, Canada
- Department of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Zhang Y, Jia C, Li S, Wang S, He Z, Wu G, Yu M, Lu Y, Yu D. Comparative genome-wide association study on body weight in Chinese native ducks using four models. Poult Sci 2024; 103:103899. [PMID: 38909509 PMCID: PMC11253684 DOI: 10.1016/j.psj.2024.103899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The Jinling White duck represents a newly developed breed characterized by a rapid growth rate and a superior meat quality, offering significant economic value and research potential; however, the genetic basis underlying their body weight traits remains less understood. Here, we performed whole-genome resequencing for 201 diverse Jinling White male ducks and conducted population genomic analyses, suggesting a rich genetic diversity within the Jinling White duck population. Equipped with our genomic resources, we applied genome-wide association analysis for body weight on birth (BWB), body weight on 1 wk (BW1), body weight on 3 wk (BW3), body weight on 5 wk (BW5) and body weight on 7 wk (BW7) using 4 statistical models. Comparative studies indicated that factored spectrally transformed linear mixed models (FaST-LMM) demonstrated the most superior efficiency, yielding more results with the minimal false positives. We discovered that PUS7, FBXO11, FOXN2, MSH6, and SLC4A4 were associated with BWB. RAG2, and TMEFF2 were candidate genes for BW1, and STARD13, Klotho, ZAR1L are likely candidates for BW3 and BW5. PLXNC1, ATP1A1, CD58, FRYL, OCIAD1, and OCIAD2 were linked to BW7. These findings provide a genetic reference for the selection and breeding of Jinling White ducks, while also deepened our understanding of Growth and development phenotypic in ducks.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chao Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shiwei Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Sike Wang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Zongliang He
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing, Jiangsu, 210000, China
| | - Guansuo Wu
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing, Jiangsu, 210000, China
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
3
|
Masood M, Grimm S, El-Bahrawy M, Yagüe E. TMEFF2: A Transmembrane Proteoglycan with Multifaceted Actions in Cancer and Disease. Cancers (Basel) 2020; 12:3862. [PMID: 33371267 PMCID: PMC7766544 DOI: 10.3390/cancers12123862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Transmembrane protein with an EGF-like and two Follistatin-like domains 2 (TMEFF2) is a 374-residue long type-I transmembrane proteoglycan which is proteolytically shed from the cell surface. The protein is involved in a range of functions including metabolism, neuroprotection, apoptosis, embryonic development, onco-suppression and endocrine function. TMEFF2 is methylated in numerous cancers, and an inverse correlation with the stage, response to therapy and survival outcome has been observed. Moreover, TMEFF2 methylation increases with breast, colon and gastric cancer progression. TMEFF2 is methylated early during oncogenesis in breast and colorectal cancer, and the detection of methylated free-circulating TMEFF2 DNA has been suggested as a potential diagnostic tool. The TMEFF2 downregulation signature equals and sometimes outperforms the Gleason and pathological scores in prostate cancer. TMEFF2 is downregulated in glioma and cotricotropinomas, and it impairs the production of adrenocorticotropic hormone in glioma cells. Interestingly, through binding the amyloid β protein, its precursor and derivatives, TMEFF2 provides neuroprotection in Alzheimer's disease. Despite undergoing extensive investigation over the last two decades, the primary literature regarding TMEFF2 is incoherent and offers conflicting information, in particular, the oncogenic vs. onco-suppressive role of TMEFF2 in prostate cancer. For the first time, we have compiled, contextualised and critically analysed the vast body of TMEFF2-related literature and answered the apparent discrepancies regarding its function, tissue expression, intracellular localization and oncogenic vs. onco-suppressive role.
Collapse
Affiliation(s)
- Motasim Masood
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Stefan Grimm
- Department of Medicine, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| |
Collapse
|
4
|
Kong L, Liu G, Deng M, Lian Z, Han Y, Sun B, Guo Y, Liu D, Li Y. Growth retardation-responsive analysis of mRNAs and long noncoding RNAs in the liver tissue of Leiqiong cattle. Sci Rep 2020; 10:14254. [PMID: 32868811 PMCID: PMC7459292 DOI: 10.1038/s41598-020-71206-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
As an important type of non-coding RNA molecule, long non-coding RNAs (lncRNAs) have varied roles in many biological processes, and have been studied extensively over the past few years. However, little is known about lncRNA-mediated regulation during cattle growth and development. Therefore, in the present study, RNA sequencing was used to determine the expression level of mRNAs and lncRNAs in the liver of adult Leiqiong cattle under the condition of growth retardation and normal growth. We totally detected 1,124 and 24 differentially expressed mRNAs and lncRNAs, respectively. The differentially expressed mRNAs were mainly associated with growth factor binding, protein K63-linked ubiquitination and cellular protein metabolic process; additionally, they were significantly enriched in the growth and development related pathways, including PPAR signaling pathway, vitamin B6 metabolism, glyoxylate and dicarboxylate metabolism. Combined analysis showed that the co-located differentially expressed lncRNA Lnc_002583 might positively influence the expression of the corresponding genes IFI44 and IFI44L, exerting co-regulative effects on Leiqiong cattle growth and development. Thus, we made the hypothesis that Lnc_002583, IFI44 and IFI44L might function synergistically to regulate the growth of Leiqiong cattle. This study provides a catalog of Leiqiong cattle liver mRNAs and lncRNAs, and will contribute to a better understanding of the molecular mechanism underlying growth regulataion.
Collapse
Affiliation(s)
- Lingxuan Kong
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yinru Han
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| |
Collapse
|
5
|
TMEFF2 is a novel prognosis signature and target for endometrial carcinoma. Life Sci 2019; 243:116910. [PMID: 31610211 DOI: 10.1016/j.lfs.2019.116910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
AIMS Tomoregulin-2 (TMEFF2) is a single-pass transmembrane protein whose specific functions and mechanisms in endometrial carcinoma (EC) remain unclear. The aim of this study was to investigate the expression, prognostic role, and potential regulatory mechanisms of TMEFF2 in EC. MATERIALS AND METHODS The expression and prognosis of TMEFF2 in EC were analyzed via bioinformatics and verified by immunohistochemistry and survival analysis. Proliferation, invasion, and migration of EC cells in vitro were assessed by cell functional assays, while epithelial-mesenchymal transition (EMT) markers and key signaling pathway proteins were evaluated by western blotting. KEY FINDINGS The expression of TMEFF2 in EC was significantly higher than that in atypical hyperplasia and normal endometrium, the high expression of TMEFF2 was correlated with advanced stage, poor differentiation, and lymph node metastasis, and also predicted a poor prognosis of EC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that TMEFF2 and its related genes were enriched in the central nervous system, cell adhesion, signal transduction, and several critical signaling pathways. We also elucidated TMEFF2 networks of kinase, microRNA, and transcription factor targets. In vitro, the proliferation, invasion, and migration abilities of EC cells decreased after TMEFF2 downregulation. Downregulation of TMEFF2 reduced the activation of MAPK and PI3K signaling pathways, and inhibited EMT. SIGNIFICANCE TMEFF2 plays an important role in the initiation, development, and malignant behavior of EC and can be a potential target for early diagnosis and treatment in EC.
Collapse
|
6
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
7
|
Liu T, Hu Y, Guo S, Tan L, Zhan Y, Yang L, Liu W, Wang N, Li Y, Zhang Y, Liu C, Yang Y, Adelstein RS, Wang A. Identification and characterization of MYH9 locus for high efficient gene knock-in and stable expression in mouse embryonic stem cells. PLoS One 2018; 13:e0192641. [PMID: 29438440 PMCID: PMC5811019 DOI: 10.1371/journal.pone.0192641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/26/2018] [Indexed: 01/22/2023] Open
Abstract
Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications. Here, we report that a high and repeatable homologous recombination (HR) frequency (>95%) is achieved when an approximate 6kb DNA sequence flanking the MYH9 gene exon 2 site is used to create the homology arms for the knockout/knock-in of diverse nonmuscle myosin II (NM II) isoforms in mouse ES cells. The easily obtained ES clones greatly facilitated the generation of multiple NM II genetic replacement mouse models, as characterized previously. Further investigation demonstrated that though the targeted integration site for exogenous genes is shifted to MYH9 intron 2 (about 500bp downstream exon 2), the high HR efficiency and the endogenous MYH9 gene integrity are not only preserved, but the expected expression of the inserted gene(s) is observed in a pre-designed set of experiments conducted in mouse ES cells. Importantly, we confirmed that the expression and normal function of the endogenous MYH9 gene is not affected by the insertion of the exogenous gene in these cases. Therefore, these findings suggest that like the commonly used ROSA26 site, the MYH9 gene locus may be considered a new safe harbor for high-efficiency targeted transgenesis and for biomedical applications.
Collapse
Affiliation(s)
- Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingfan Zhang
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Chengyu Liu
- Transgenic Core, NHLBI/ NIH, Bethesda, MD, United States of America
| | - Yi Yang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
8
|
Huang H, Teng P, Mei R, Yang A, Zhang Z, Zhao X, Qiu M. Tmeff2 is expressed in differentiating oligodendrocytes but dispensable for their differentiation in vivo. Sci Rep 2017; 7:337. [PMID: 28336932 PMCID: PMC5428413 DOI: 10.1038/s41598-017-00407-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Myelin elaborated by oligodendrocytes (OLs) in the central nervous system (CNS) is required for saltatory conduction of action potentials along neuronal axons. We found that TMEFF2, a transmembrane protein with EGF-like and two follistatin-like domains, is selectively expressed in differentiating/myelinating OLs. Previous studies showed that TMEFF2 is capable of binding to PDGFA, which plays important roles in the proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs). However, molecular and genetic analysis revealed that Tmeff2 is a weak binder of PDGFA, and not required for OL differentiation and myelin gene expression in vivo. Together, our data suggested that Tmeff2 is specifically upregulated in OLs, but dispensable for OL differentiation and maturation.
Collapse
Affiliation(s)
- Hao Huang
- The College of Life Sciences, Zhejiang University, Hangzhou, 310036, China.,Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.,Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Peng Teng
- The College of Life Sciences, Zhejiang University, Hangzhou, 310036, China.,Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ruyi Mei
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Aifen Yang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zunyi Zhang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaofeng Zhao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Mengsheng Qiu
- The College of Life Sciences, Zhejiang University, Hangzhou, 310036, China. .,Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China. .,Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
9
|
Herbst A, Vdovin N, Gacesa S, Ofner A, Philipp A, Nagel D, Holdt LM, Op den Winkel M, Heinemann V, Stieber P, Graeven U, Reinacher-Schick A, Arnold D, Ricard I, Mansmann U, Hegewisch-Becker S, Kolligs FT. Methylated free-circulating HPP1 DNA is an early response marker in patients with metastatic colorectal cancer. Int J Cancer 2017; 140:2134-2144. [PMID: 28124380 DOI: 10.1002/ijc.30625] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Detection of methylated free-circulating DNA (mfcDNA) for hyperplastic polyposis 1 (HPP1) in blood is correlated with a poor prognosis for patients with metastatic colorectal cancers (mCRC). Here, we analyzed the plasma levels of HPP1 mfcDNA in mCRC patients treated with a combination therapy containing a fluoropyrimidine, oxaliplatin and bevacizumab to test whether HPP1 mfcDNA is a suitable prognostic and response biomarker. From 467 patients of the prospective clinical study AIO-KRK-0207, mfcDNA was isolated from plasma samples at different time points and bisulfite-treated mfcDNA was quantified using methylation specific PCR. About 337 of 467 patients had detectable levels for HPP1 mfcDNA before start of treatment. The detection was significantly correlated with poorer overall survival (OS) (HR = 1.86; 95%CI 1.37-2.53). About 2-3 weeks after the first administration of combination chemotherapy, HPP1 mfcDNA was reduced to non-detectable levels in 167 of 337 patients. These patients showed a better OS compared with patients with continued detection of HPP1 mfcDNA (HR HPP1(sample 1: pos/ sample 2: neg) vs. HPP1(neg/neg) = 1.41; 95%CI 1.00-2.01, HPP1(neg,pos/pos) vs. HPP1(neg/neg) = 2.60; 95%CI 1.86-3.64). Receiver operating characteristic analysis demonstrated that HPP1 mfcDNA discriminates well between patients who do (not) respond to therapy according to the radiological staging after 12 or 24 weeks (AUC = 0.77 or 0.71, respectively). Detection of HPP1 mfcDNA can be used as a prognostic marker and an early marker for response (as early as 3-4 weeks after start of treatment compared with radiological staging after 12 or 24 weeks) to identify patients who will likely benefit from a combination chemotherapy with bevacizumab.
Collapse
Affiliation(s)
- Andreas Herbst
- Department of Medicine II, University of Munich, Munich, Germany.,Institute of Laboratory Medicine, University of Munich, Munich, Germany
| | - Nikolay Vdovin
- Department of Medicine II, University of Munich, Munich, Germany
| | - Sanja Gacesa
- Institute for Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany
| | - Andrea Ofner
- Department of Medicine II, University of Munich, Munich, Germany
| | | | - Dorothea Nagel
- Institute of Laboratory Medicine, University of Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, University of Munich, Munich, Germany
| | | | - Volker Heinemann
- Department of Medicine III and The Comprehensive Cancer Center, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Stieber
- Institute of Laboratory Medicine, University of Munich, Munich, Germany
| | - Ullrich Graeven
- Medizinische Klinik I, Kliniken Maria-Hilf GmbH, Mönchengladbach, Germany
| | - Anke Reinacher-Schick
- Department of Hematology and Oncology, Ruhr-University of Bochum, St. Josef Hospital, Bochum, Germany
| | - Dirk Arnold
- Instituto CUF de Oncologia (I.C.O.), Lisbon, Portugal
| | - Ingrid Ricard
- Institute for Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany
| | - Ulrich Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Frank T Kolligs
- Department of Medicine II, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,HELIOS Klinikum Berlin-Buch, Berlin, Germany
| |
Collapse
|
10
|
Hong HS, Maezawa I, Petrlova J, Zhao XY, C Voss J, Jin LW. Tomoregulin (TMEFF2) Binds Alzheimer's Disease Amyloid-β (Aβ) Oligomer and AβPP and Protects Neurons from Aβ-Induced Toxicity. J Alzheimers Dis 2016; 48:731-43. [PMID: 26402097 DOI: 10.3233/jad-150318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid-β (Aβ) protein causes neurotoxicity and its abnormal aggregation into amyloid is a pathological hallmark of Alzheimer's disease (AD). Cellular proteins able to interact with Aβ or its precursor, AβPP (amyloid-β protein precursor), may regulate Aβ production and neurotoxicity. We identified a brain-enriched type I transmembrane protein, tomoregulin (TR), that directly binds Aβ and Aβ oligomers (AβO). TR co-immunoprecipitated with Aβ and AβO in cultured cells and co-localized with amyloid plaques and intraneuronal Aβ in the 5xFAD AD mouse model. TR was also enriched in astrocytic processes reactive to amyloid plaques. Surface plasmon resonance spectroscopy studies showed that the extracellular domain of TR binds to AβO with a high affinity (KD = 76.8 nM). Electron paramagnetic resonance spectroscopy also demonstrated a physical interaction between spin-labeled Aβ and the TR extracellular domain in solution. Furthermore, TR also interacted with AβPP and enhanced its cleavage by α-secretase. Both cellular expression of TR and application of recombinant TR extracellular domain protected N2a neurons from AβO-induced neuronal death. These data provide first evidence that neuronal and astrocytic expression of TR is intimately related to Aβ metabolism and toxicity, and could be neuroprotective through its direct interaction with Aβ and AβPP.
Collapse
Affiliation(s)
- Hyun-Seok Hong
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA.,Alzheimer's Disease Center, University of California Davis Medical Center, Sacramento, CA, USA.,M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Jitka Petrlova
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Xiao-Yan Zhao
- Biologics Research-USIC, Bayer Healthcare Pharmaceuticals, San Francisco, CA, USA
| | - John C Voss
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA.,Alzheimer's Disease Center, University of California Davis Medical Center, Sacramento, CA, USA.,M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
11
|
Corbin JM, Overcash RF, Wren JD, Coburn A, Tipton GJ, Ezzell JA, McNaughton KK, Fung KM, Kosanke SD, Ruiz-Echevarria MJ. Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in prostate regeneration and cancer. Prostate 2016; 76:97-113. [PMID: 26417683 PMCID: PMC4722803 DOI: 10.1002/pros.23103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression.
Collapse
Affiliation(s)
- JM. Corbin
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
| | - RF. Overcash
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - JD. Wren
- Arthritis and Clinical Immunology Research Program. Oklahoma Medical Research Foundation. Oklahoma City, OK, USA
| | - A. Coburn
- Department of Comparative Medicine. East Carolina University. Greenville, NC, USA
| | - GJ. Tipton
- Bowles Center for Alcohol Studies. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - JA. Ezzell
- Department of Cell Biology and Physiology. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - KK. McNaughton
- Department of Cell Biology and Physiology. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - KM Fung
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
- Department of Pathology, Oklahoma City Veterans Affairs Medical Center. Oklahoma City, OK, USA
| | - SD. Kosanke
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
| | - MJ Ruiz-Echevarria
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
- Stephenson Cancer Center. Oklahoma City, OK, USA
- Correspondence to: MJ. Ruiz-Echevarria, Associate Professor of Pathology, University of Oklahoma Health Sciences Center, Stanton L. Young Biomedical Research Center, 975 N.E. 10th Street, Room 1368A, Oklahoma City, Oklahoma 73104. Phone: (405) 271.1871; Fax: (405) 271.2141.
| |
Collapse
|
12
|
Philipp AB, Nagel D, Stieber P, Lamerz R, Thalhammer I, Herbst A, Kolligs FT. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer. BMC Cancer 2014; 14:245. [PMID: 24708595 PMCID: PMC4021086 DOI: 10.1186/1471-2407-14-245] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/03/2014] [Indexed: 12/15/2022] Open
Abstract
Background Hypermethylation of DNA is an epigenetic alteration commonly found in colorectal cancer (CRC) and can also be detected in blood samples of cancer patients. Methylation of the genes helicase-like transcription factor (HLTF) and hyperplastic polyposis 1 (HPP1) have been proposed as prognostic, and neurogenin 1 (NEUROG1) as diagnostic biomarker. However the underlying mechanisms leading to the release of these genes are unclear. This study aimed at examining the possible correlation of the presence of methylated genes NEUROG1, HLTF and HPP1 in serum with tissue breakdown as a possible mechanism using serum lactate dehydrogenase (LDH) as a surrogate marker. Additionally the prognostic impact of these markers was examined. Methods Pretherapeutic serum samples from 259 patients from all cancer stages were analyzed. Presence of hypermethylation of the genes HLTF, HPP1, and NEUROG1 was examined using methylation-specific quantitative PCR (MethyLight). LDH was determined using an UV kinetic test. Results Hypermethylation of HLTF and HPP1 was detected significantly more often in patients with elevated LDH levels (32% vs. 12% [p = 0.0005], and 68% vs. 11% [p < 0.0001], respectively). Also, higher LDH values correlated with a higher percentage of a fully methylated reference in a linear fashion (Spearman correlation coefficient 0.18 for HLTF [p = 0.004]; 0.49 [p < .0001] for HPP1). No correlation between methylation of NEUROG1 and LDH was found in this study. Concerning the clinical characteristics, high levels of LDH as well as methylation of HLTF and HPP1 were significantly associated with larger and more advanced stages of CRC. Accordingly, these three markers were correlated with significantly shorter survival in the overall population. Moreover, all three identified patients with a worse prognosis in the subgroup of stage IV patients. Conclusions We were able to provide evidence that methylation of HLTF and especially HPP1 detected in serum is strongly correlated with cell death in CRC using LDH as surrogate marker. Additionally, we found that prognostic information is given by both HLTF and HPP1 as well as LDH. In sum, determining the methylation of HLTF and HPP1 in serum might be useful in order to identify patients with more aggressive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank T Kolligs
- Department of Medicine II, Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377 Munich, Germany.
| |
Collapse
|
13
|
Abstract
Tumor cells frequently exhibit widespread epigenetic aberrations that significantly alter the repertoire of expressed proteins. In particular, it has been known for nearly 25 years that tumors frequently reactivate genes whose expression is typically restricted to germ cells. These gene products are classified as cancer/testis antigens (CTAs) owing to their biased expression pattern and their immunogenicity in cancer patients. While these genes have been pursued as targets for anticancer vaccines, whether these reactivated testis proteins have roles in supporting tumorigenic features is less studied. Recent evidence now indicates that these proteins can be directly employed by the tumor cell regulatory environment to support cell-autonomous behaviors. Here, we review the history of the CTA field and present recent findings indicating that CTAs can play functional roles in supporting tumorigenesis.
Collapse
|
14
|
Overcash RF, Chappell VA, Green T, Geyer CB, Asch AS, Ruiz-Echevarría MJ. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2. PLoS One 2013; 8:e55257. [PMID: 23405127 PMCID: PMC3566213 DOI: 10.1371/journal.pone.0055257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/27/2012] [Indexed: 01/21/2023] Open
Abstract
The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2), is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s) involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT) to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs) in the 5′-untranslated region (5′-UTR) of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR), we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER) stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5′-UTR of TMEFF2.
Collapse
Affiliation(s)
- Ryan F. Overcash
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Vesna A. Chappell
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Thomas Green
- Department of Internal Medicine, Division of Hematology/Oncology. Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Adam S. Asch
- Department of Internal Medicine, Division of Hematology/Oncology. Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maria J. Ruiz-Echevarría
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- Department of Internal Medicine, Division of Hematology/Oncology. Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|