1
|
Kim GH, Lee YJ, Kwon JH. Relationship Between Harvesting Efficiency and Filament Morphology in Arthrospira platensis Gomont. Microorganisms 2025; 13:367. [PMID: 40005734 PMCID: PMC11857947 DOI: 10.3390/microorganisms13020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Arthrospira platensis, a filamentous cyanobacterium, exhibits morphological variability influenced by biotic and abiotic factors. We investigated the effect of sodium ion concentration on filament length, growth, and harvest efficiency. Increasing the sodium concentration from 0.2 M to 0.4 M (using NaHCO3 or Na2CO3) led to a significant increase in filament length, from 0.3393 to 0.7084 mm, and longer filaments had increased auto-flotation efficiency (from 87% to 94%) within 3 h. The linear filaments, obtained via spontaneous morphological conversion, also had increased photosynthetic activity and growth rates compared to coiled filaments, and we speculate this was due to decreased self-shading and increased light penetration. However, linear filaments also had poor auto-flotation efficiency (10% after 24 h) and decreased buoyancy, and this likely limits their survival in natural ecosystems. These findings provide insights into optimizing the cultivation of A. platensis for biomass harvesting.
Collapse
Affiliation(s)
- Ga-Hyeon Kim
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (G.-H.K.); (Y.J.L.)
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeong Jun Lee
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (G.-H.K.); (Y.J.L.)
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Hee Kwon
- Department of Food Science & Technology, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (G.-H.K.); (Y.J.L.)
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Mondal S, Pandey D, Singh SP. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14536. [PMID: 39323055 DOI: 10.1111/ppl.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.
Collapse
Affiliation(s)
- Soumila Mondal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepa Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shailendra P Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Gichuki S, Tabatabai B, Sitther V. Biocrude Production Using a Novel Cyanobacterium: Pilot-Scale Cultivation and Lipid Extraction via Hydrothermal Liquefaction. SUSTAINABILITY 2023; 15:4878. [PMID: 37182195 PMCID: PMC10181831 DOI: 10.3390/su15064878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The use of renewable energy to reduce fossil fuel consumption is a key strategy to mitigate pollution and climate change, resulting in the growing demand for new sources. Fast-growing proprietary cyanobacterial strains of Fremyella diplosiphon with an average life cycle of 7-10 days, and a proven capacity to generate lipids for biofuel production are currently being studied. In this study, we investigated the growth and photosynthetic pigmentation of a cyanobacterial strain (SF33) in both greenhouse and outdoor bioreactors, and produced biocrude via hydrothermal liquefaction. The cultivation of F. diplosiphon did not significantly differ under suboptimal conditions (p < 0.05), including in outdoor bioreactors with growth differences of less than 0.04 (p = 0.035) among various batches. An analysis of the biocrude's components revealed the presence of fatty acid biodiesel precursors such as palmitic acid and behenic acid, and alkanes such as hexadecane and heptadecane, used as biofuel additives. In addition, the quantification of value-added photosynthetic pigments revealed chlorophyll a and phycocyanin concentrations of 0.0011 ± 5.83 × 10-5 μg/μL and 7.051 ± 0.067 μg/μg chlorophyll a. Our results suggest the potential of F. diplosiphon as a robust species that can grow at varying temperatures ranging from 13 °C to 32 °C, while producing compounds for applications ranging from biofuel to nutritional supplements. The outcomes of this study pave the way for production-level scale-up and processing of F. diplosiphon-derived biofuels and marketable bioproducts. Fuel produced using this technology will be eco-friendly and cost-effective, and will make full use of the geographical location of regions with access to brackish waters.
Collapse
Affiliation(s)
- Samson Gichuki
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| | - Behnam Tabatabai
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
- HaloCyTech LLC, 4709 Harford Road, Baltimore, MD 21214, USA
| | - Viji Sitther
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
- Correspondence:
| |
Collapse
|
4
|
Srivastava R, Kanda T, Yadav S, Singh N, Yadav S, Prajapati R, Kesari V, Atri N. Salinity pretreatment synergies heat shock toxicity in cyanobacterium Anabaena PCC7120. Front Microbiol 2023; 14:1061927. [PMID: 36876104 PMCID: PMC9983364 DOI: 10.3389/fmicb.2023.1061927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
This study was undertaken to bridge the knowledge gap pertaining to cyanobacteria's response to pretreatment. The result elucidates the synergistic effect of pretreatment toxicity in cyanobacterium Anabaena PCC7120 on morphological and biochemical attributes. Chemical (salt) and physical (heat) stress-pretreated cells exhibited significant and reproducible changes in terms of growth pattern, morphology, pigments, lipid peroxidation, and antioxidant activity. Salinity pretreatment showed more than a five-fold decrease in the phycocyanin content but a six-fold and five-fold increase in carotenoid, lipid peroxidation (MDA content), and antioxidant activity (SOD and CAT) at 1 h and on 3rd day of treatment, respectively, giving the impression of stress-induced free radicals that are scavenged by antioxidants when compared to heat shock pretreatment. Furthermore, quantitative analysis of transcript (qRT-PCR) for FeSOD and MnSOD displayed a 3.6- and 1.8-fold increase in salt-pretreated (S-H) samples. The upregulation of transcript corresponding to salt pretreatment suggests a toxic role of salinity in synergizing heat shock. However, heat pretreatment suggests a protective role in mitigating salt toxicity. It could be inferred that pretreatment enhances the deleterious effect. However, it further showed that salinity (chemical stress) augments the damaging effect of heat shock (physical stress) more profoundly than physical stress on chemical stress possibly by modulating redox balance via activation of antioxidant responses. Our study reveals that upon pretreatment of heat, the negative effect of salt can be mitigated in filamentous cyanobacteria, thus providing a foundation for improved cyanobacterial tolerance to salt stress.
Collapse
Affiliation(s)
- Rupanshee Srivastava
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Tripti Kanda
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Sadhana Yadav
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Nidhi Singh
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Shivam Yadav
- Department of Botany, Thakur Prasad Singh (T.P.S.) College, Patna, Bihar, India
| | - Rajesh Prajapati
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Vigya Kesari
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Neelam Atri
- Department of Botany, Mahila Mahavidyalaya (M.M.V.), Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Nguyen STT, Vardeh DP, Nelson TM, Pearson LA, Kinsela AS, Neilan BA. Bacterial community structure and metabolic potential in microbialite-forming mats from South Australian saline lakes. GEOBIOLOGY 2022; 20:546-559. [PMID: 35312212 PMCID: PMC9311741 DOI: 10.1111/gbi.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Microbialites are sedimentary rocks created in association with benthic microorganisms. While they harbour complex microbial communities, Cyanobacteria perform critical roles in sediment stabilisation and accretion. Microbialites have been described from permanent and ephemeral saline lakes in South Australia; however, the microbial communities that generate and inhabit these biogeological structures have not been studied in detail. To address this knowledge gap, we investigated the composition, diversity and metabolic potential of bacterial communities from different microbialite-forming mats and surrounding sediments in five South Australian saline coastal lakes using 16S rRNA gene sequencing and predictive metagenome analyses. While Proteobacteria and Bacteroidetes were the dominant phyla recovered from the mats and sediments, Cyanobacteria were significantly more abundant in the mat samples. Interestingly, at lower taxonomic levels, the mat communities were vastly different across the five lakes. Comparative analysis of putative mat and sediment metagenomes via PICRUSt2 revealed important metabolic pathways driving the process of carbonate precipitation, including cyanobacterial oxygenic photosynthesis, ureolysis and nitrogen fixation. These pathways were highly conserved across the five examined lakes, although they appeared to be performed by distinct groups of bacterial taxa found in each lake. Stress response, quorum sensing and circadian clock were other important pathways predicted by the in silico metagenome analysis. The enrichment of CRISPR/Cas and phage shock associated genes in these cyanobacteria-rich communities suggests that they may be under selective pressure from viral infection. Together, these results highlight that a very stable ecosystem function is maintained by distinctly different communities in microbialite-forming mats in the five South Australian lakes and reinforce the concept that 'who' is in the community is not as critical as their net metabolic capacity.
Collapse
Affiliation(s)
- Suong T. T. Nguyen
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - David P. Vardeh
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Tiffanie M. Nelson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Leanne A. Pearson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Andrew S. Kinsela
- School of Civil and Environmental EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - Brett A. Neilan
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
6
|
Salty Twins: Salt-Tolerance of Terrestrial Cyanocohniella Strains (Cyanobacteria) and Description of C. rudolphia sp. nov. Point towards a Marine Origin of the Genus and Terrestrial Long Distance Dispersal Patterns. Microorganisms 2022; 10:microorganisms10050968. [PMID: 35630411 PMCID: PMC9144741 DOI: 10.3390/microorganisms10050968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
The ability to adapt to wide ranges of environmental conditions coupled with their long evolution has allowed cyanobacteria to colonize almost every habitat on Earth. Modern taxonomy tries to track not only this diversification process but also to assign individual cyanobacteria to specific niches. It was our aim to work out a potential niche concept for the genus Cyanocohniella in terms of salt tolerance. We used a strain based on the description of C. rudolphia sp. nov. isolated from a potash tailing pile (Germany) and for comparison C. crotaloides that was isolated from sandy beaches (The Netherlands). The taxonomic position of C. rudolphia sp. nov. was evaluated by phylogenetic analysis and morphological descriptions of its life cycle. Salt tolerance of C. rudolphia sp. nov. and C. crotaloides was monitored with cultivation assays in liquid medium and on sand under salt concentrations ranging from 0% to 12% (1500 mM) NaCl. Optimum growth conditions were detected for both strains at 4% (500 mM) NaCl based on morpho-anatomical and physiological criteria such as photosynthetic yield by chlorophyll a fluorescence measurements. Taking into consideration that all known strains of this genus colonize salty habitats supports our assumption that the genus might have a marine origin but also expands colonization to salty terrestrial habitats. This aspect is further discussed, including the ecological and biotechnological relevance of the data presented.
Collapse
|
7
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
8
|
Coronado-Parra T, Roldán M, Aboal M. Confocal Microscopy in Ecophysiological Studies of Algae: A Door to Understanding Autofluorescence in Red Algae. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:218-226. [PMID: 35177134 DOI: 10.1017/s1431927621013660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alga in the genus Chroothece have been reported mostly from aquatic or subaerial continental environments, where they grow in extreme conditions. The strain Chroothece mobilis MAESE 20.29 was exposed to different light intensities, red and green monochromatic light, ultraviolet (UV) radiation, high nitrogen concentrations, and high salinity to assess the effect of those environmental parameters on its growth. Confocal laser scanning microscopy (CLSM) was used as an “in vivo” noninvasive single-cell method for the study. The strain seemed to prefer fairly high light intensities and showed a significant increase in allophycocyanin (APC) and chlorophyll a [photosystem I (PSI) and photosystem II (PSII)] fluorescence with 330 and 789 μM/cm2/s intensities. Green monochromatic light promoted a significant increase in the fluorescence of APC and chlorophyll a (PSI and PSII). UV-A significantly decreased phycocyanin and increased APC, while UV-A + B showed a greater decreasing effect on c-Phycocyanin but did not significantly change concentrations of APC. The increase in nitrogen concentration in the culture medium significantly and negatively affected all pigments, and no effect was observed with an increase in salinity. Our data show that CLSM represents a very powerful tool for ecological research of microalgae in small volumes and may contribute to the knowledge of phycobiliproteins in vivo behavior and the parameters for the large-scale production of these pigments.
Collapse
Affiliation(s)
- Teresa Coronado-Parra
- Servicio de Microscopía del Área Científica y Técnica de Investigación (ACTI) de la Universidad de Murcia, Murcia30100, Spain
| | - Mónica Roldán
- Unidad de Microscopía Confocal e Imagen Celular, Servicio de Medicina Genética y Molecular, Instituto Pediátrico de Enfermedades Raras (IPER), Hospital Sant Joan de Déu, e Instituto de Investigación Sant Joan de Déu, Esplugues de Llobregat08950, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, Esplugues de Llobregat08950, Spain
| | - Marina Aboal
- Laboratorio de Algología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, MurciaE-30100, Spain
| |
Collapse
|
9
|
Bermejo R, Macías M, Sánchez-García F, Love R, Varela-Álvarez E, Hernández I. Influence of irradiance, dissolved nutrients and salinity on the colour and nutritional characteristics of Gracilariopsis longissima (Rhodophyta). ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Wang X, Zhu X, Chen X, Lv B, Wang X, Wang D. Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45957-45964. [PMID: 33067791 DOI: 10.1007/s11356-020-10979-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Significant levels of polycyclic aromatic hydrocarbons (PAHs) were detected in lakes. The competition between algae would be disturbed by PAHs resulted in variations of algal growth. For controlling the cyanobacterial blooms, it is important to understand this disturbed competition between Microcystis aeruginosa and other algae. A 6-day cultivation experiment was designed to investigate the responses of M. aeruginosa to PAHs in presence of green algae. A popular green alga Chlorella pyrenoidosa was used as a representative of green algae, and phenanthrene and pyrene were selected as representatives of PAHs. The results showed that M. aeruginosa outcompeted C. pyrenoidosa under PAH contamination, and PAHs and M. aeruginosa significantly inhibited the survival of C. pyrenoidosa. PAHs disturbed the growth of algae by influencing photosynthetic pigments and phycobiliproteins, and the different alteration of Fv/Fm ratios implied that shifted algal community composition would be induced by PAHs. The Fv/Fm of the two algal mixture and individual C. pyrenoidosa was significantly negatively correlated with phenanthrene levels. However, there were no significant correlations between the Fv/Fm of M. aeruginosa and the exposure levels of phenanthrene or pyrene. Remarkably, the Fv/Fm significantly increased in M. aeruginosa at 0.15 mg L-1 pyrene, suggesting that PSII resistance to pyrene was enhanced in M. aeruginosa. Our results pointed out an increasing frequency and intensity of cyanobacterial blooms could be induced by PAHs in contaminated waters.
Collapse
Affiliation(s)
- Xiucui Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Environmental Science and Engineering, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Xuezhu Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xuemei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Baitao Lv
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xue Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Danqin Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
11
|
Gharaie Fathabad S, Arumanayagam AS, Tabatabai B, Chen H, Lu J, Sitther V. Augmenting Fremyella diplosiphon Cellular Lipid Content and Unsaturated Fatty Acid Methyl Esters Via Sterol Desaturase Gene Overexpression. Appl Biochem Biotechnol 2019; 189:1127-1140. [PMID: 31168708 PMCID: PMC6884679 DOI: 10.1007/s12010-019-03055-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/22/2019] [Indexed: 01/31/2023]
Abstract
Cyanobacteria have immense prospective as a platform for renewable energy; however, a major barrier in achieving optimal productivity is the low lipid yield. Fremyella diplosiphon, a model cyanobacterium, is an ideal biofuel agent due to its desirable fatty acid methyl esters (FAMEs). To enhance lipid content, we overexpressed the sterol desaturase (SD) gene in F. diplosiphon B481 wild type by genetic transformation. This effort resulted in a transformant (B481-SD) with a 64-fold increase in the SD gene at the mRNA transcript level, with no loss in growth and pigmentation. The transformant was persistently grown for over 32 generations indicating long-term stability and vitality. We observed 27.3% and 23% increases in total lipid content and unsaturated FAMEs respectively in B481-SD transesterified lipids with methyl octadecadienoate as the most abundant unsaturated component. In addition, we detected an 81% increase in FAME composition in the transformant compared with the wild type. Theoretical physical and chemical properties confirmed a FAME profile with very high cetane number (65.972-67.494) and oxidative stability (50.493-18.66 h) in the engineered strain. Results of the study offer a promising approach to augment F. diplosiphon total lipid content and unsaturated FAMEs, thus paving the way to enhance biofuel capacity of the organism.
Collapse
Affiliation(s)
- Somayeh Gharaie Fathabad
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | | | - Behnam Tabatabai
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Jie Lu
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
- Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Viji Sitther
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA.
| |
Collapse
|
12
|
Li X, Li X, Han B, Zhao Y, Li T, Zhao P, Yu X. Improvement in lipid production in Monoraphidium sp. QLY-1 by combining fulvic acid treatment and salinity stress. BIORESOURCE TECHNOLOGY 2019; 294:122179. [PMID: 31610494 DOI: 10.1016/j.biortech.2019.122179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 05/10/2023]
Abstract
The effects of the combined treatment of fulvic acid (FA) and salinity stress on lipid production in Monoraphidium sp. QLY-1 at multiple levels was investigated in this study. The results indicated that the highest lipid content (59.53%) in QLY-1 was achieved by combining FA treatment and salinity stress. Compared with the control group and FA addition alone, the group treated with both FA and salinity stress had increased contents of reactive oxygen species (ROS), antioxidases, and nitric oxide (NO). Additionally, the addition of FA enhanced the expression levels of mitogen-activated protein kinases (MAPKs) and key genes related to lipid biosynthesis in QLY-1 under salinity stress. Collectively, biochemical analyses indicated that ROS, NO, MAPK, expression of lipid biosynthesis-related genes and antioxidant systems were involved in the lipid biosynthesis pathways of QLY-1 under the combined treatment of FA and salinity stress.
Collapse
Affiliation(s)
- Ximing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xingyu Li
- The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
13
|
Tabatabai B, Chen H, Lu J, Giwa-Otusajo J, McKenna AM, Shrivastava AK, Sitther V. Fremyella diplosiphon as a biodiesel agent: Identification of fatty acid methyl esters via microwave-assisted direct in situ transesterification. BIOENERGY RESEARCH 2018; 11:528-537. [PMID: 30416644 PMCID: PMC6223314 DOI: 10.1007/s12155-018-9919-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing concerns on environmental and economic issues linked to fossil fuel use has driven great interest in cyanobacteria as third generation biofuel agents. In this study, the biodiesel potential of a model photosynthetic cyanobacterium, Fremyella diplosiphon, was identified by fatty acid methyl esters (FAME) via direct transesterification. Total lipids in wild type (Fd33) and halotolerant (HSF33-1 and HSF33-2) strains determined by gravimetric analysis yielded 19% cellular dry weight (CDW) for HSF33-1 and 20% CDW for HSF33-2, which were comparable to Fd33 (18% CDW). Gas chromatography-mass spectrometry detected a high ratio of saturated to unsaturated FAMEs (2.48-2.61) in transesterified lipids, with methyl palmitate being the most abundant (C16:0). While theoretical biodiesel properties revealed high cetane number and oxidative stability, high cloud and pour point values indicated that fuel blending could be a viable approach. Significantly high FAME abundance in total transesterified lipids of HSF33-1 (40.2%) and HSF33-2 (69.9%) relative to Fd33 (25.4%) was identified using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry, indicating that robust salt stress response corresponds to higher levels of extractable FAME. Alkanes, a key component in conventional fuels, were present in F. diplosiphon transesterified lipids across all strains confirming that natural synthesis of these hydrocarbons is not inhibited during biodiesel production. While analysis of photosynthetic pigments and phycobiliproteins did not reveal significant differences, FAME abundance varied significantly in wild type and halotolerant strains indicating that photosynthetic pathways are not the sole factors that determine fatty acid production. We characterize the potential of F. diplosiphon for biofuel production with FAME yields in halotolerant strains higher than the wild type with no loss in photosynthetic pigmentation.
Collapse
Affiliation(s)
- Behnam Tabatabai
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jie Lu
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jamiu Giwa-Otusajo
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Amy M. McKenna
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Alok K. Shrivastava
- Department of Botany, Mahatma Gandhi Central University, P.O. Box No. 1, Motihari, Bihar 845401, India
| | - Viji Sitther
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| |
Collapse
|
14
|
Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL, Waters CM, Montgomery BL. Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Front Microbiol 2018; 9:1121. [PMID: 29896182 PMCID: PMC5986932 DOI: 10.3389/fmicb.2018.01121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Second messengers are intracellular molecules regulated by external stimuli known as first messengers that are used for rapid organismal responses to dynamic environmental changes. Cyclic di-AMP (c-di-AMP) is a relatively newly discovered second messenger implicated in cell wall homeostasis in many pathogenic bacteria. C-di-AMP is synthesized from ATP by diadenylyl cyclases (DAC) and degraded by specific c-di-AMP phosphodiesterases (PDE). C-di-AMP DACs and PDEs are present in all sequenced cyanobacteria, suggesting roles for c-di-AMP in the physiology and/or development of these organisms. Despite conservation of these genes across numerous cyanobacteria, the functional roles of c-di-AMP in cyanobacteria have not been well-investigated. In a unique feature of cyanobacteria, phylogenetic analysis indicated that the broadly conserved DAC, related to CdaA/DacA, is always co-associated in an operon with genes critical for controlling cell wall synthesis. To investigate phenotypes regulated by c-di-AMP in cyanobacteria, we overexpressed native DAC (sll0505) and c-di-AMP PDE (slr0104) genes in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) to increase and decrease intracellular c-di-AMP levels, respectively. DAC- and PDE-overexpression strains, showed abnormal aggregation phenotypes, suggesting functional roles for regulating c-di-AMP homeostasis in vivo. As c-di-AMP may be implicated in osmotic responses in cyanobacteria, we tested whether sorbitol and NaCl stresses impacted expression of sll0505 and slr0104 or intracellular c-di-AMP levels in Synechocystis. Additionally, to determine the range of cyanobacteria in which c-di-AMP may function, we assessed c-di-AMP levels in two unicellular cyanobacteria, i.e., Synechocystis and Synechococcus elongatus PCC 7942, and two filamentous cyanobacteria, i.e., Fremyella diplosiphon and Anabaena sp. PCC 7120. C-di-AMP levels responded differently to abiotic stress signals in distinct cyanobacteria strains, whereas salt stress uniformly impacted another second messenger cyclic di-GMP in cyanobacteria. Together, these results suggest regulation of c-di-AMP homeostasis in cyanobacteria and implicate a role for the second messenger in maintaining cellular fitness in response to abiotic stress.
Collapse
Affiliation(s)
- Marco Agostoni
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Alshaé R Logan-Jackson
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Emily R Heinz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Eric L Bruger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Christopher M Waters
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, Mishra S. Abiotic stresses as tools for metabolites in microalgae. BIORESOURCE TECHNOLOGY 2017; 244:1216-1226. [PMID: 28552566 DOI: 10.1016/j.biortech.2017.05.058] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/28/2023]
Abstract
Microalgae, due to various environmental stresses, constantly tune their cellular mechanisms to cope with them. The accumulation of the stress metabolites is closely related to the changes occurring in their metabolic pathways. The biosynthesis of metabolites can be triggered by a number of abiotic stresses like temperature, salinity, UV- radiation and nutrient deprivation. Although, microalgae have been considered as an alternative sustainable source for nutraceutical products like pigments and omega-3 polyunsaturated fatty acids (PUFAs) to cater the requirement of emerging human population but inadequate biomass generation makes the process economically impractical. The stress metabolism for carotenoid regulation in green algae is a 2-step metabolism. There are a few major stresses which can influence the formation of phycobiliprotein in cyanobacteria. This review would primarily focus on the cellular level changes under stress conditions and their corresponding effects on lipids (including omega-3 PUFAs), pigments and polymers.
Collapse
Affiliation(s)
- Chetan Paliwal
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Madhusree Mitra
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Khushbu Bhayani
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - S V Vamsi Bharadwaj
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Tonmoy Ghosh
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sonam Dubey
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sandhya Mishra
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, AcSIR-CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
16
|
Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium. Enzyme Microb Technol 2017; 103:12-17. [DOI: 10.1016/j.enzmictec.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
|
17
|
Tabatabai B, Arumanayagam AS, Enitan O, Mani A, Natarajan SS, Sitther V. Identification of a Halotolerant Mutant via In Vitro Mutagenesis in the Cyanobacterium Fremyella diplosiphon. Curr Microbiol 2016; 74:77-83. [DOI: 10.1007/s00284-016-1156-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022]
|
18
|
Busch AWU, Montgomery BL. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2015; 6:1393. [PMID: 26696996 PMCID: PMC4677103 DOI: 10.3389/fmicb.2015.01393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
The tryptophan-rich sensory protein (TSPO) is a membrane protein, which is a member of the 18 kDa translocator protein/peripheral-type benzodiazepine receptor (MBR) family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO) showed altered responses compared to the wild type (WT) strain under stress conditions, including salt treatment, osmotic stress, and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS) and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the WT. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the WT strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo.
Collapse
Affiliation(s)
- Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
19
|
Brutemark A, Vandelannoote A, Engström-Öst J, Suikkanen S. A less saline Baltic Sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy. PLoS One 2015; 10:e0128904. [PMID: 26042598 PMCID: PMC4456099 DOI: 10.1371/journal.pone.0128904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/03/2015] [Indexed: 11/19/2022] Open
Abstract
Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.
Collapse
Affiliation(s)
- Andreas Brutemark
- ARONIA Coastal Zone Research Team, Novia University of Applied Sciences & Åbo Akademi University, Ekenäs, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | | | - Jonna Engström-Öst
- ARONIA Coastal Zone Research Team, Novia University of Applied Sciences & Åbo Akademi University, Ekenäs, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute SYKE, Helsinki, Finland
| |
Collapse
|
20
|
Johnson EM, Kumar K, Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. BIORESOURCE TECHNOLOGY 2014; 166:541-7. [PMID: 24951941 DOI: 10.1016/j.biortech.2014.05.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/23/2014] [Accepted: 05/25/2014] [Indexed: 05/23/2023]
Abstract
The present study investigated the effects of several physicochemical parameters on the improvement of phycobiliproteins (especially phycocyanin) synthesis in a newly isolated species of Nostoc sp. Standard BG11₀ medium was modified to enhance the biomass productivity in different photobioreactors. The initial pH of 8, light intensity of 40 μmol m(-2)s(-1), temperature of 35 °C, diurnal cycle of 16:8 h (light:dark regime), 75.48 μM Na₂CO₃ and 17.65 mM NaNO₃ were found most suitable for the phycobiliproteins synthesis. Cyanobacteria exhibited chromatic adaptation, causing overexpression of phycocyanin in red and phycoerythrin in green light. The maximum phycobiliproteins yield of 0.13 gg(-1) dry cell weight was obtained in green light. Phycocyanin was further purified using thin layer chromatography (TLC), anion exchange chromatography and SDS-PAGE (denaturing gel) electrophoresis.
Collapse
Affiliation(s)
- Eldin M Johnson
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Kanhaiya Kumar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debabrata Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
21
|
Montgomery BL. The Regulation of Light Sensing and Light-Harvesting Impacts the Use of Cyanobacteria as Biotechnology Platforms. Front Bioeng Biotechnol 2014; 2:22. [PMID: 25023122 PMCID: PMC4090899 DOI: 10.3389/fbioe.2014.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
Light is harvested in cyanobacteria by chlorophyll-containing photosystems embedded in the thylakoid membranes and phycobilisomes (PBSs), photosystem-associated light-harvesting antennae. Light absorbed by the PBSs and photosystems can be converted to chemical energy through photosynthesis. Photosynthetically fixed carbon pools, which are constrained by photosynthetic light capture versus the dissipation of excess light absorbed, determine the available organismal energy budget. The molecular bases of the environmental regulation of photosynthesis, photoprotection, and photomorphogenesis are still being elucidated in cyanobacteria. Thus, the potential impacts of these phenomena on the efficacy of developing cyanobacteria as robust biotechnological platforms require additional attention. Current advances and persisting needs for developing cyanobacterial production platforms that are related to light sensing and harvesting include the development of tools to balance the utilization of absorbed photons for conversion to chemical energy and biomass versus light dissipation in photoprotective mechanisms. Such tools can be used to direct energy to more effectively support the production of desired bioproducts from sunlight.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Plant Research Laboratory, Department of Energy, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Model organisms retain an "ecological memory" of complex ecologically relevant environmental variation. Appl Environ Microbiol 2014; 80:1821-31. [PMID: 24413600 DOI: 10.1128/aem.03280-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although tractable model organisms are essential to characterize the molecular mechanisms of evolution and adaptation, the ecological relevance of their behavior is not always clear because certain traits are easily lost during long-term laboratory culturing. Here, we demonstrate that despite their long tenure in the laboratory, model organisms retain "ecological memory" of complex environmental changes. We have discovered that Halobacterium salinarum NRC-1, a halophilic archaeon that dominates microbial communities in a dynamically changing hypersaline environment, simultaneously optimizes fitness to total salinity, NaCl concentration, and the [K]/[Mg] ratio. Despite being maintained under controlled conditions over the last 50 years, peaks in the three-dimensional fitness landscape occur in salinity and ionic compositions that are not replicated in laboratory culturing but are routinely observed in the natural hypersaline environment of this organism. Intriguingly, adaptation to variations in ion composition was associated with differential regulation of anaerobic metabolism genes, suggesting an intertwined relationship between responses to oxygen and salinity. Our results suggest that the ecological memory of complex environmental variations is imprinted in the networks for coordinating multiple cellular processes. These coordination networks are also essential for dealing with changes in other physicochemically linked factors present during routine laboratory culturing and, hence, retained in model organisms.
Collapse
|
23
|
Singh SP, Montgomery BL. Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape. PLANT SIGNALING & BEHAVIOR 2013; 8:e24713. [PMID: 23656879 PMCID: PMC3907396 DOI: 10.4161/psb.24713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Salt impairs cellular morphology and photosynthetic pigment accumulation in the cyanobacterium Fremyella diplosiphon. Recent findings indicated that the impact of salt on cellular morphology was attributable to salt-associated effects on osmotic regulation, as the impact on morphology was reversible when cells were treated with an osmoticum in the presence of salt. The impact of salt on photosynthetic pigment accumulation was associated with ionic effects of salt on the cells, as pigment levels remained low when salt-treated cells were incubated together with an osmoticum or an antioxidant, the latter to mitigate the impact of a salt-associated accumulation of reactive oxygen species. Here, we provide evidence that the transcripts for genes encoding the phycobiliproteins are not reduced in the presence of salt. These results suggest that the negative impact of salt-mediated changes on pigment accumulation occurs post-transcriptionally. A greater understanding of the mechanisms which impact growth of strains such as F. diplosiphon, which harbor pigments that allow low-light and shade-tolerated growth, may facilitate the development or adaptation of such strains as useful for remediation of salt-impacted soils or biofuel production.
Collapse
Affiliation(s)
- Shailendra P. Singh
- Department of Energy; Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | - Beronda L. Montgomery
- Department of Energy; Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| |
Collapse
|