1
|
Maier A, Teunissen AJP, Nauta SA, Lutgens E, Fayad ZA, van Leent MMT. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol 2024; 21:632-651. [PMID: 38575752 PMCID: PMC11324396 DOI: 10.1038/s41569-024-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Kondakov A, Berdalin A, Beregov M, Lelyuk V. Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. J Imaging 2022; 8:261. [PMID: 36286355 PMCID: PMC9605050 DOI: 10.3390/jimaging8100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a chronic widespread cardiovascular disease and a major predisposing factor for cardiovascular events, among which there are myocardial infarction and ischemic stroke. Atherosclerotic plaque formation is a process that involves different mechanisms, of which inflammation is the most common. Plenty of radiopharmaceuticals were developed to elucidate the process of plaque formation at different stages, some of which were highly specific for atherosclerotic plaque. This review summarizes the current nuclear medicine imaging landscape of preclinical and small-scale clinical studies of these specific RPs, which are not as widespread as labeled FDG, sodium fluoride, and choline. These include oxidation-specific epitope imaging, macrophage, and other cell receptors visualization, neoangiogenesis, and macrophage death imaging. It is shown that specific radiopharmaceuticals have strength in pathophysiologically sound imaging of the atherosclerotic plaques at different stages, but this also may induce problems with the signal registration for low-volume plaques in the vascular wall.
Collapse
Affiliation(s)
- Anton Kondakov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
- Radiology and Radiotherapy Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander Berdalin
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Mikhail Beregov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Vladimir Lelyuk
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| |
Collapse
|
3
|
Positron Emission Tomography in Atherosclerosis Research. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:825-839. [PMID: 35238004 DOI: 10.1007/978-1-0716-1924-7_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Positron emission tomography (PET) is a quantitative imaging technique that uses molecules labeled with positron-emitting radionuclides to visualize and measure biochemical processes in the tissues of living subjects. In recent years, different PET tracers have been evaluated for their ability to characterize the atherosclerotic process in order to study the activity of the disease. Here, we describe detailed PET methods for preclinical studies of atherosclerosis and summarize the key methodological aspects of PET imaging in clinical studies of atherosclerosis.
Collapse
|
4
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Imaging Inflammation with Positron Emission Tomography. Biomedicines 2021; 9:biomedicines9020212. [PMID: 33669804 PMCID: PMC7922638 DOI: 10.3390/biomedicines9020212] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The impact of inflammation on the outcome of many medical conditions such as cardiovascular diseases, neurological disorders, infections, cancer, and autoimmune diseases has been widely acknowledged. However, in contrast to neurological, oncologic, and cardiovascular disorders, imaging plays a minor role in research and management of inflammation. Imaging can provide insights into individual and temporospatial biology and grade of inflammation which can be of diagnostic, therapeutic, and prognostic value. There is therefore an urgent need to evaluate and understand current approaches and potential applications for imaging of inflammation. This review discusses radiotracers for positron emission tomography (PET) that have been used to image inflammation in cardiovascular diseases and other inflammatory conditions with a special emphasis on radiotracers that have already been successfully applied in clinical settings.
Collapse
|
6
|
Ćorović A, Wall C, Mason JC, Rudd JHF, Tarkin JM. Novel Positron Emission Tomography Tracers for Imaging Vascular Inflammation. Curr Cardiol Rep 2020; 22:119. [PMID: 32772188 PMCID: PMC7415747 DOI: 10.1007/s11886-020-01372-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose of Review To provide a focused update on recent advances in positron emission tomography (PET) imaging in vascular inflammatory diseases and consider future directions in the field. Recent Findings While PET imaging with 18F-fluorodeoxyglucose (FDG) can provide a useful marker of disease activity in several vascular inflammatory diseases, including atherosclerosis and large-vessel vasculitis, this tracer lacks inflammatory cell specificity and is not a practical solution for imaging the coronary vasculature because of avid background myocardial signal. To overcome these limitations, research is ongoing to identify novel PET tracers that can more accurately track individual components of vascular immune responses. Use of these novel PET tracers could lead to a better understanding of underlying disease mechanisms and help inform the identification and stratification of patients for newly emerging immune-modulatory therapies. Summary Future research is needed to realise the true clinical translational value of PET imaging in vascular inflammatory diseases.
Collapse
Affiliation(s)
- Andrej Ćorović
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Wall
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Justin C Mason
- Cardiovascular Division, National Heart & Lung Institute, Imperial College London, London, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK. .,Cardiovascular Division, National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
7
|
Abstract
This review discusses nuclear imaging of inflammation using molecular probes beyond fluoro-d-glucose, is structured by cellular targets, and focuses on those tracers that have been successfully applied clinically.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Augsburg, Stenglinstr. 2, Würzburg 86156, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Augsburg, Stenglinstr. 2, Würzburg 86156, Germany.
| |
Collapse
|
8
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
9
|
Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis. Exp Ther Med 2019; 18:517-522. [PMID: 31281442 PMCID: PMC6580100 DOI: 10.3892/etm.2019.7634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
This study investigated the correlation between the levels of interleukin (IL)-17 and IL-18 and atherosclerotic plaques. A total of 60 Apo E gene (Apo E-/-) mice were fed with high-fat diet in the model group and 20 wild male C57BL/6 mice were fed with the basic diet in the control group. The serum levels of IL-17 and IL-18 were determined by enzyme-linked immunosorbent assay. Carotid artery ultrasonography was performed and divided into stable plaque, unstable plaque and non-plaque groups. The severity of plaque was estimated by semi-quantitative method and divided into grades I, II and III. The expression levels of low-density lipoprotein cholesterol, plasma total cholesterol and blood glucose level in the model group induced by high-fat diet were significantly higher than those in the control group (P<0.05). The level in the model group was significantly higher than in the control group at the 16th week (P<0.05). The expression of IL-17 and IL-18 in the model group was significantly higher than that in the control group (t=6.903, 11.02, P<0.05). The concentration of IL-17 and IL-18 in the non-plaque group was significantly lower than that in the stable plaque and unstable plaque groups (P<0.05). The concentration of IL-17 and IL-18 in the stable plaque group was significantly lower than that in the unstable plaque group (P<0.05). Based on the correlation of IL-17 and IL-18 expressions in the model group, the expression of IL-18 increased with the expression of IL-17, indicating that the expression of IL-17 was positively correlated with that of IL-18 (r=0.7195, P<0.001). In conclusion, serum IL-17 and IL-18 played an important role in the formation and development of atherosclerotic plaque, and were related to the stability and severity of plaque. The expression of IL-17 and IL-18 was positively correlated.
Collapse
|
10
|
Meester EJ, Krenning BJ, de Swart J, Segbers M, Barrett HE, Bernsen MR, Van der Heiden K, de Jong M. Perspectives on Small Animal Radionuclide Imaging; Considerations and Advances in Atherosclerosis. Front Med (Lausanne) 2019; 6:39. [PMID: 30915335 PMCID: PMC6421263 DOI: 10.3389/fmed.2019.00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
This review addresses nuclear SPECT and PET imaging in small animals in relation to the atherosclerotic disease process, one of our research topics of interest. Imaging of atherosclerosis in small animal models is challenging, as it operates at the limits of current imaging possibilities regarding sensitivity, and spatial resolution. Several topics are discussed, including technical considerations that apply to image acquisition, reconstruction, and analysis. Moreover, molecules developed for or applied in these small animal nuclear imaging studies are listed, including target-directed molecules, useful for imaging organs or tissues that have elevated expression of the target compared to other tissues, and molecules that serve as substrates for metabolic processes. Differences between animal models and human pathophysiology that should be taken into account during translation from animal to patient as well as differences in tracer behavior in animal vs. man are also described. Finally, we give a future outlook on small animal radionuclide imaging in atherosclerosis, followed by recommendations. The challenges and solutions described might be applicable to other research fields of health and disease as well.
Collapse
Affiliation(s)
- Eric J Meester
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - B J Krenning
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - J de Swart
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - M Segbers
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - H E Barrett
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - M R Bernsen
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - K Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Lee HJ, Ehlerding EB, Cai W. Antibody-Based Tracers for PET/SPECT Imaging of Chronic Inflammatory Diseases. Chembiochem 2019; 20:422-436. [PMID: 30240550 PMCID: PMC6377337 DOI: 10.1002/cbic.201800429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Emily B. Ehlerding
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Weibo Cai
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Department of Radiology and Carbone Cancer Center, University of Wisconsin – Madison, Madison WI 53705, USA
| |
Collapse
|
12
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
13
|
Sasaki T, Kobayashi K, Kita S, Kojima K, Hirano H, Shen L, Takenaka F, Kumon H, Matsuura E. In vivo distribution of single chain variable fragment (scFv) against atherothrombotic oxidized LDL/β2-glycoprotein I complexes into atherosclerotic plaques of WHHL rabbits: Implication for clinical PET imaging. Autoimmun Rev 2017; 16:159-167. [DOI: 10.1016/j.autrev.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
|
14
|
Immunoglobulin G (IgG)-Based Imaging Probe Accumulates in M1 Macrophage-Infiltrated Atherosclerotic Plaques Independent of IgG Target Molecule Expression. Mol Imaging Biol 2016; 19:531-539. [PMID: 27981470 DOI: 10.1007/s11307-016-1036-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Vulnerable plaques are key factors for ischemic diseases. Thus, their precise detection is necessary for the diagnosis of such diseases. Immunoglobulin G (IgG)-based imaging probes have been developed for imaging biomolecules related to plaque formation for the diagnosis of atherosclerosis. However, IgG accumulates nonspecifically in atherosclerotic regions, and its accumulation mechanisms have not yet been clarified in detail. Therefore, we explored IgG accumulation mechanisms in atherosclerotic lesions and examined images of radiolabeled IgG for the diagnosis of atherosclerosis. PROCEDURES Mouse IgG without specificity to biomolecules was labeled with technetium-99m via 6-hydrazinonicotinate to yield [99mTc]IgG. ApoE-/- or C57BL/6J mice were injected intravenously with [99mTc]IgG, and their aortas were excised 24 h after injection. After radioactivity measurement, serial aortic sections were autoradiographically and histopathologically examined. RAW264.7 macrophages were polarized into M1 or M2 and then treated with [99mTc]IgG. The radioactivities in the cells were measured after 1 h of incubation. [99mTc]IgG uptake in M1 macrophages was also evaluated after the pretreatment with an anti-Fcγ receptor (FcγR) antibody. The expression levels of FcγRs in the cells were measured by western blot analysis. RESULTS [99mTc]IgG accumulation levels in the aortas were significantly higher in apoE-/- mice than in C57BL/6J mice (5.1 ± 1.4 vs 2.8 ± 0.5 %ID/g, p < 0.05). Autoradiographic images showed that the accumulation areas highly correlated with the macrophage-infiltrated areas. M1 macrophages showed significantly higher levels of [99mTc]IgG than M2 or M0 (nonpolarized) macrophages [2.2 ± 0.3 (M1) vs 0.5 ± 0.1 (M2), 0.4 ± 0.1 (M0) %dose/mg protein, p < 0.01] and higher expression levels of FcγRI and FcγRII. [99mTc]IgG accumulation in M1 macrophages was suppressed by pretreatment with the anti-FcγR antibody [2.2 ± 0.3 (nonpretreatment) vs 1.2 ± 0.2 (pretreatment) %ID/mg protein, p < 0.01]. CONCLUSIONS IgG accumulated in pro-inflammatory M1 macrophages via FcγRs in atherosclerotic lesions. Thus, the target biomolecule-independent imaging of active inflammation should be taken into account in the diagnosis of atherosclerosis using IgG-based probes.
Collapse
|
15
|
Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci Rep 2016; 6:35089. [PMID: 27731409 PMCID: PMC5059718 DOI: 10.1038/srep35089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022] Open
Abstract
Given the important role of inflammation and the potential association of the leukocyte trafficking-associated adhesion molecule vascular adhesion protein 1 (VAP-1) with atherosclerosis, this study examined whether functional VAP-1 is expressed in atherosclerotic lesions and, if so, whether it could be targeted by positron emission tomography (PET). First, immunohistochemistry revealed that VAP-1 localized to endothelial cells of intra-plaque neovessels in human carotid endarterectomy samples from patients with recent ischemic symptoms. In low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR-/-ApoB100/100), VAP-1 was expressed on endothelial cells lining inflamed atherosclerotic lesions; normal vessel walls in aortas of C57BL/6N control mice were VAP-1-negative. Second, we discovered that the focal uptake of VAP-1 targeting sialic acid-binding immunoglobulin-like lectin 9 based PET tracer [68Ga]DOTA-Siglec-9 in atherosclerotic plaques was associated with the density of activated macrophages (r = 0.58, P = 0.022). As a final point, we found that the inhibition of VAP-1 activity with small molecule LJP1586 decreased the density of macrophages in inflamed atherosclerotic plaques in mice. Our results suggest for the first time VAP-1 as a potential imaging target for inflamed atherosclerotic plaques, and corroborate VAP-1 inhibition as a therapeutic approach in the treatment of atherosclerosis.
Collapse
|
16
|
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. Int J Mol Sci 2016; 17:ijms17091511. [PMID: 27618031 PMCID: PMC5037788 DOI: 10.3390/ijms17091511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies.
Collapse
|
17
|
Kazuma SM, Sultan D, Zhao Y, Detering L, You M, Luehmann HP, Abdalla DSP, Liu Y. Recent Advances of Radionuclide-Based Molecular Imaging of Atherosclerosis. Curr Pharm Des 2016; 21:5267-76. [PMID: 26369676 DOI: 10.2174/1381612821666150915104529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a systemic disease characterized by the development of multifocal plaque lesions within vessel walls and extending into the vascular lumen. The disease takes decades to develop symptomatic lesions, affording opportunities for accurate detection of plaque progression, analysis of risk factors responsible for clinical events, and planning personalized treatment. Of the available molecular imaging modalities, radionuclidebased imaging strategies have been favored due to their sensitivity, quantitative detection and pathways for translational research. This review summarizes recent advances of radiolabeled small molecules, peptides, antibodies and nanoparticles for atherosclerotic plaque imaging during disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States.
| |
Collapse
|
18
|
Lee SJ, Paeng JC. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques. Korean J Radiol 2015; 16:955-66. [PMID: 26357491 PMCID: PMC4559792 DOI: 10.3348/kjr.2015.16.5.955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell accumulation, endothelial activation, proteolysis, neoangiogenesis, hypoxia, apoptosis, and calcification. Many preclinical and clinical studies have been conducted with various imaging probes and some of them have exhibited promising results. Despite some limitations in imaging technology, molecular imaging is expected to be used both in the research and clinical fields as imaging instruments become more advanced.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea. ; Department of Nuclear Medicine, National Cancer Center, Goyang 10408, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
19
|
Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT. Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chem Soc Rev 2015; 44:8174-99. [PMID: 26239875 DOI: 10.1039/c5cs00499c] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While the blood vessel is seldom the target tissue, almost all nanomedicine will interact with blood vessels and blood at some point of time along its life cycle in the human body regardless of their intended destination. Despite its importance, many bionanotechnologists do not feature endothelial cells (ECs), the blood vessel cells, or consider blood effects in their studies. Including blood vessel cells in the study can greatly increase our understanding of the behavior of any given nanomedicine at the tissue of interest or to understand side effects that may occur in vivo. In this review, we will first describe the diversity of EC types found in the human body and their unique behaviors and possibly how these important differences can implicate nanomedicine behavior. Subsequently, we will discuss about the protein corona derived from blood with foci on the physiochemical aspects of nanoparticles (NPs) that dictate the protein corona characteristics. We would also discuss about how NPs characteristics can affect uptake by the endothelium. Subsequently, mechanisms of how NPs could cross the endothelium to access the tissue of interest. Throughout the paper, we will share some novel nanomedicine related ideas and insights that were derived from the understanding of the NPs' interaction with the ECs. This review will inspire more exciting nanotechnologies that had accounted for the complexities of the real human body.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | | | | | | | | |
Collapse
|
20
|
Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014; 76:2-20. [PMID: 25086372 DOI: 10.1016/j.addr.2014.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients.
Collapse
|
21
|
Tekabe Y, Kollaros M, Zerihoun A, Zhang G, Backer MV, Backer JM, Johnson LL. Imaging VEGF receptor expression to identify accelerated atherosclerosis. EJNMMI Res 2014; 4:41. [PMID: 26055940 PMCID: PMC4884015 DOI: 10.1186/s13550-014-0041-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/08/2014] [Indexed: 01/23/2023] Open
Abstract
Background The biology of the vulnerable plaque includes increased inflammation and rapid growth of vasa vasorum, processes that are associated with enhanced vascular endothelial growth factor (VEGF)/ imaging receptors for VEGF (VEGFR) signaling and are accelerated in diabetes. This study was designed to test the hypothesis that VEGFRs in atherosclerotic plaques with a SPECT tracer scVEGF-PEG-DOTA/99mTc (scV/Tc) can identify accelerated atherosclerosis in diabetes. Methods Male apolipoprotein E null (ApoE−/−) mice (6 weeks of age) were made diabetic (n = 10) or left as non-diabetic (n = 13). At 26 to 28 weeks of age, 5 non-diabetic mice were injected with functionally inactivated scV/Tc (in-scV/Tc) that does not bind to VEGF receptors, while 8 non-diabetic and 10 diabetic mice were injected with scV/Tc. After blood pool clearance, at 3 to 4 h post-injection, mice were injected with CT contrast agent and underwent SPECT/CT imaging. From the scans, regions of interest (ROI) were drawn on serial transverse sections comprising the proximal aorta and the percentage of injected dose (%ID) in ROIs was calculated. At the completion of imaging, mice were euthanized, proximal aorta explanted for gamma well counting to determine the percentage of injected dose per gram (%ID/g) uptake and immunohistochemical characterization. Results The uptake of scV/Tc in the proximal aorta, calculated from SPECT/CT co-registered scans as %ID, was significantly higher in the diabetic mice (0.036 ± 0.017%ID) compared to non-diabetic mice (0.017 ± 0.005%ID; P < 0.01), as was uptake measured as %ID/g in harvested aorta, 1.81 ± 0.50%ID/g in the diabetic group vs. 0.98 ± 0.25%ID/g in the non-diabetic group (P < 0.01). The nonspecific uptake of in-scV/Tc in proximal aorta was significantly lower than the uptake of functionally active scV/Tc. Immunostaining of the atherosclerotic lesions showed higher expression of VEGFR-1 and VEGFR-2 in the diabetic mice. Conclusion These initial results suggest that imaging VEGFR with scV/Tc shows promise as a non-invasive approach to identify accelerated atherosclerosis. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0041-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yared Tekabe
- Department of Medicine, Columbia University Medical Center, 622 West 168th St, PH 10 center rm 203, New York, NY, 10032, USA,
| | | | | | | | | | | | | |
Collapse
|
22
|
Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med 2014; 20:271-81. [PMID: 24594264 DOI: 10.1016/j.molmed.2013.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall that arises from an imbalanced lipid metabolism and a maladaptive inflammatory response. Despite intensive research on mechanisms underlying atherosclerotic lesion formation and progression during the past decade, translation of this knowledge into the clinic is scarce. Although developments have primarily been made in the area of antitumor therapy, recent advances have shown the potential of nanomedicine-based treatment strategies for atherosclerosis. Here we describe the features of currently available nanomedical formulations that have been optimized for atherosclerosis treatment, and we further describe how they can be instructed to target inflammatory processes in the arterial wall. Despite their limitations, nanomedical applications might hold promise for personalized medicine, and further efforts are needed to improve atherosclerosis-specific targeting.
Collapse
|