1
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
2
|
Liu Y, Liu Z, Xing T, Li J, Zhang L, Zhao L, Gao F. Effect of chronic heat stress on the carbonylation of glycolytic enzymes in breast muscle and its correlation with the growth performance of broilers. Poult Sci 2023; 102:103103. [PMID: 37837679 PMCID: PMC10589882 DOI: 10.1016/j.psj.2023.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/16/2023] Open
Abstract
Chronic heat stress has detrimental effects on the growth performance of broilers, and the potential mechanism is under exploration. In this study, the protein carbonyl modification was introduced to glycolytic enzymes to evaluate its relationship with the growth performance of heat-stressed (HS) broilers. A total of 144 male 28-day-old broilers were assigned to 3 treatments: the normal control group (NC, raised at 22°C with free access to feed and water), the HS group (raised at 32°C with free access to feed and water), and the pair-fed group (PF, raised at 22°C with an amount of feed equal to that consumed by the HS group on a previous day). Results showed that heat stress decreased the average daily growth, increased the feed-to-gain ratio (F/G), decreased breast muscle rate, and increased abdominal fat rate compared with the NC and PF groups (P < 0.05). Higher cloacal temperature and serum creatine kinase activity were found in the HS group than those of the NC and PF groups (P < 0.05). Heat stress increased the contents of carbonyl, advanced glycation end-products, malonaldehyde, and the activities of catalase, glutathione peroxidase, and total antioxidant capacity compared with the NC and PF groups (P < 0.05). Heat stress increased the contents of glucose and lactate, declined the glycogen content, and lowered the relative protein expressions of pyruvate kinase muscle type, lactate dehydrogenase A type (LDHA), and citrate synthase compared to those of the NC group (P < 0.05). In contrast to the NC and PF groups, heat stress intensified the carbonylation levels of phosphoglucomutase 1, triosephosphate isomerase 1, β-enolase, and LDHA, which were positively correlated with the F/G (P < 0.05). These findings demonstrate that heat stress depresses growth performance on account of oxidative stress and glycolysis disorders. It further increases the carbonylation of glycolytic enzymes, which potentially correlates with the F/G by disturbing the mode of energy supply of broilers.
Collapse
Affiliation(s)
- Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Jacobs PJ, Hart DW, Merchant HN, Voigt C, Bennett NC. The Evolution and Ecology of Oxidative and Antioxidant Status: A Comparative Approach in African Mole-Rats. Antioxidants (Basel) 2023; 12:1486. [PMID: 37627481 PMCID: PMC10451868 DOI: 10.3390/antiox12081486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The naked mole-rat of the family Bathyergidae has been the showpiece for ageing research as they contradict the traditional understanding of the oxidative stress theory of ageing. Some other bathyergids also possess increased lifespans, but there has been a remarkable lack of comparison between species within the family Bathyergidae. This study set out to investigate how plasma oxidative markers (total oxidant status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI)) differ between five species and three subspecies of bathyergids, differing in their maximum lifespan potential (MLSP), resting metabolic rate, aridity index (AI), and sociality. We also investigated how oxidative markers may differ between captive and wild-caught mole-rats. Our results reveal that increased TOS, TAC, and OSI are associated with increased MLSP. This pattern is more prevalent in the social-living species than the solitary-living species. We also found that oxidative variables decreased with an increasing AI and that wild-caught individuals typically have higher antioxidants. We speculate that the correlation between higher oxidative markers and MLSP is due to the hypoxia-tolerance of the mole-rats investigated. Hormesis (the biphasic response to oxidative stress promoting protection) is a likely mechanism behind the increased oxidative markers observed and promotes longevity in some members of the Bathyergidae family.
Collapse
Affiliation(s)
- Paul. J. Jacobs
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK;
| | - Cornelia Voigt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| |
Collapse
|
4
|
Naked mole-rats resist the accumulation of hypoxia-induced oxidative damage. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111282. [PMID: 35907588 DOI: 10.1016/j.cbpa.2022.111282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Naked mole-rats are among the few mammals with the ability to endure severe hypoxia. These unique rodents use metabolic rate depression along with various molecular mechanisms to successfully overcome the challenges of oxygen-limitation, which they experience in their underground borrows. While studies have reported that naked mole-rats exhibit inherently higher levels of oxidative damage across their lifespan as compared to mice, it has yet to be determined whether naked mole-rats are vulnerable to oxidative damage during periods of low oxygen exposure. To investigate this phenomenon, we examined cellular oxidative damage markers of macromolecules: DNA oxidation determined as 8-oxo-2'deoxyguanosine (8-OHdG8) levels, RNA oxidation as 8-hydroxyguanosine (8-OHG), protein carbonylation, and lipid peroxidation in normoxic (control), acute (4 h at 7% O2), and chronic (24 h at 7% O2) hypoxia-exposed naked mole-rats. Brain appears to be the most resilient organ to hypoxia-induced oxidative damage, with both brain and heart exhibiting enhanced antioxidant capacity during hypoxia. Levels of DNA and RNA oxidation were minimally changed in all tissues and no changes were observed in protein carbonylation. Most tissues experienced lipid peroxidation, with liver displaying a 9.6-fold increase during hypoxia. Concomitantly, levels of DNA damage repair proteins were dynamically regulated in a tissue-specific manner, with white adipose displaying a significant reduction during hypoxia. Our findings show that naked mole-rats largely avoid hypoxia-induced oxidative damage, possibly due to their high tolerance to redox stress, or to reduced oxidative requirements made possible during their hypometabolic response when oxygen supply is limited.
Collapse
|
5
|
Buffenstein R, Amoroso V, Andziak B, Avdieiev S, Azpurua J, Barker AJ, Bennett NC, Brieño‐Enríquez MA, Bronner GN, Coen C, Delaney MA, Dengler‐Crish CM, Edrey YH, Faulkes CG, Frankel D, Friedlander G, Gibney PA, Gorbunova V, Hine C, Holmes MM, Jarvis JUM, Kawamura Y, Kutsukake N, Kenyon C, Khaled WT, Kikusui T, Kissil J, Lagestee S, Larson J, Lauer A, Lavrenchenko LA, Lee A, Levitt JB, Lewin GR, Lewis Hardell KN, Lin TD, Mason MJ, McCloskey D, McMahon M, Miura K, Mogi K, Narayan V, O'Connor TP, Okanoya K, O'Riain MJ, Park TJ, Place NJ, Podshivalova K, Pamenter ME, Pyott SJ, Reznick J, Ruby JG, Salmon AB, Santos‐Sacchi J, Sarko DK, Seluanov A, Shepard A, Smith M, Storey KB, Tian X, Vice EN, Viltard M, Watarai A, Wywial E, Yamakawa M, Zemlemerova ED, Zions M, Smith ESJ. The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology. Biol Rev Camb Philos Soc 2022; 97:115-140. [PMID: 34476892 PMCID: PMC9277573 DOI: 10.1111/brv.12791] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Collapse
Affiliation(s)
| | - Vincent Amoroso
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Blazej Andziak
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | | | - Jorge Azpurua
- Department of AnesthesiologyStony Brook University101 Nicolls RoadStony BrookNY11794U.S.A.
| | - Alison J. Barker
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoria0002South Africa
| | - Miguel A. Brieño‐Enríquez
- Department of Obstetrics, Gynecology & Reproductive MedicineMagee‐Womens Research Institute204 Craft AvenuePittsburghPA15213U.S.A.
| | - Gary N. Bronner
- Department Biological SciencesRondeboschCape Town7701South Africa
| | - Clive Coen
- Reproductive Neurobiology, Division of Women's HealthSchool of Medicine, King's College LondonWestminster Bridge RoadLondonSE1 7EHU.K.
| | - Martha A. Delaney
- Zoological Pathology ProgramUniversity of Illinois3505 Veterinary Medicine Basic Sciences Building, 2001 S Lincoln AvenueUrbanaIL6180U.S.A.
| | - Christine M. Dengler‐Crish
- Department of Pharmaceutical SciencesNortheast Ohio Medical University4209 State Route 44RootstownOH44272U.S.A.
| | - Yael H. Edrey
- Northwest Vista College3535 N. Ellison DriveSan AntonioTX78251U.S.A.
| | - Chris G. Faulkes
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSU.K.
| | - Daniel Frankel
- School of EngineeringNewcastle UniversityMerz CourtNewcastle Upon TyneNE1 7RUU.K.
| | - Gerard Friedlander
- Université Paris DescartesFaculté de Médecine12 Rue de l'École de MédecineParis5006France
| | - Patrick A. Gibney
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Vera Gorbunova
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Christopher Hine
- Cleveland ClinicLerner Research Institute9500 Euclid AvenueClevelandOH44195U.S.A.
| | - Melissa M. Holmes
- Department of PsychologyUniversity of Toronto Mississauga3359 Mississauga Road NorthMississaugaONL5L 1C6Canada
| | | | - Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Cynthia Kenyon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Walid T. Khaled
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Joseph Kissil
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Samantha Lagestee
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - John Larson
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Amanda Lauer
- Department of OtolaryngologyJohns Hopkins School of MedicineBaltimoreMD21205U.S.A.
| | - Leonid A. Lavrenchenko
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Angela Lee
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Jonathan B. Levitt
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Gary R. Lewin
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | | | - TzuHua D. Lin
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Matthew J. Mason
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Dan McCloskey
- College of Staten Island in the City University of New York2800 Victory BlvdStaten IslandNY10314U.S.A.
| | - Mary McMahon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Vikram Narayan
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Kazuo Okanoya
- Department of Life SciencesThe University of Tokyo7‐3‐1 HongoTokyo153‐8902Japan
| | | | - Thomas J. Park
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Ned J. Place
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Katie Podshivalova
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Sonja J. Pyott
- Groningen Department of OtorhinolaryngologyUniversity Medical CenterPostbus 30.001GroningenRB9700The Netherlands
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University Hospital CologneJoseph‐Stelzmann‐Street 26Cologne50931Germany
| | - J. Graham Ruby
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center4939 Charles Katz Dr.San AntonioTX78229U.S.A.
| | - Joseph Santos‐Sacchi
- Department of NeuroscienceYale University School of Medicine200 South Frontage Road, SHM C‐303New HavenCT06510U.S.A.
| | - Diana K. Sarko
- Department of AnatomySchool of Medicine, Southern Illinois University975 S. NormalCarbondaleIL62901U.S.A.
| | - Andrei Seluanov
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Alyssa Shepard
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Megan Smith
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kenneth B. Storey
- Department of BiologyCarleton University1125 Colonel By DriveOttawaONK1S 5B6Canada
| | - Xiao Tian
- Department of Genetics – Blavatnik InstituteHarvard Medical School77 Avenue Louis PasteurBostonMA02115U.S.A.
| | - Emily N. Vice
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Mélanie Viltard
- Fondation pour la recherche en PhysiologieUniversité Catholique de LouvainClos Chapelle‐aux‐Champs 30Woluwe‐saint Lambert1200Belgium
| | - Akiyuki Watarai
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Ewa Wywial
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Masanori Yamakawa
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Elena D. Zemlemerova
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Michael Zions
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Ewan St. John Smith
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| |
Collapse
|
6
|
Jacobs PJ, Hart DW, Bennett NC. Plasma oxidative stress in reproduction of two eusocial African mole-rat species, the naked mole-rat and the Damaraland mole-rat. Front Zool 2021; 18:45. [PMID: 34535150 PMCID: PMC8447654 DOI: 10.1186/s12983-021-00430-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most prominent life-history trade-offs involves the cost of reproduction. Oxidative stress has been proposed to be involved in this trade-off and has been associated with reduced life span. There is currently an unclear relationship between oxidative cost and the reproduction-longevity trade-off. The current study, using a non-lethal and minimally invasive (only a single blood sample and no euthanasia) method, investigated whether an oxidative cost (oxidative stress) to reproduction would be apparent in two long-lived eusocial mole-rats, the naked mole-rat (NMR), Heterocephalus glaber, and the Damaraland mole-rat (DMR), Fukomys damarensis, where breeding colony members live longer than non-breeder conspecifics. We measured the direct redox balance in plasma by measuring the oxidative stress index (OSI) based on the ratio of total oxidant status and total antioxidant activity in breeders and non-breeders of both sexes, in the two species. NMR had significantly higher OSI between breeders and non-breeders of each sex, whereas DMR showed no significant differences except for total antioxidant capacity (TAC). The mode of reproductive suppression and the degree of reproductive investment in NMR may explain to some degree the redox balance difference between breeders and non-breeders. DMR show minimal physiological changes between breeders and non-breeders except for the mode of reproduction, which may explain some variations in TAC and TOS values, but similar OSI between breeders and non-breeders.
Collapse
Affiliation(s)
- Paul Juan Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Daniel William Hart
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0002, South Africa
| | - Nigel Charles Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
7
|
Giraldo YM, Muscedere ML, Traniello JFA. Eusociality and Senescence: Neuroprotection and Physiological Resilience to Aging in Insect and Mammalian Systems. Front Cell Dev Biol 2021; 9:673172. [PMID: 34211973 PMCID: PMC8239293 DOI: 10.3389/fcell.2021.673172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Are eusociality and extraordinary aging polyphenisms evolutionarily coupled? The remarkable disparity in longevity between social insect queens and sterile workers-decades vs. months, respectively-has long been recognized. In mammals, the lifespan of eusocial naked mole rats is extremely long-roughly 10 times greater than that of mice. Is this robustness to senescence associated with social evolution and shared mechanisms of developmental timing, neuroprotection, antioxidant defenses, and neurophysiology? Focusing on brain senescence, we examine correlates and consequences of aging across two divergent eusocial clades and how they differ from solitary taxa. Chronological age and physiological indicators of neural deterioration, including DNA damage or cell death, appear to be decoupled in eusocial insects. In some species, brain cell death does not increase with worker age and DNA damage occurs at similar rates between queens and workers. In comparison, naked mole rats exhibit characteristics of neonatal mice such as protracted development that may offer protection from aging and environmental stressors. Antioxidant defenses appear to be regulated differently across taxa, suggesting independent adaptations to life history and environment. Eusocial insects and naked mole rats appear to have evolved different mechanisms that lead to similar senescence-resistant phenotypes. Careful selection of comparison taxa and further exploration of the role of metabolism in aging can reveal mechanisms that preserve brain functionality and physiological resilience in eusocial species.
Collapse
Affiliation(s)
- Ysabel Milton Giraldo
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Mario L. Muscedere
- Department of Biology, Boston University, Boston, MA, United States
- Undergraduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - James F. A. Traniello
- Department of Biology, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
A biomimetic natural sciences approach to understanding the mechanisms of ageing in burden of lifestyle diseases. Clin Sci (Lond) 2021; 135:1251-1272. [PMID: 34037207 DOI: 10.1042/cs20201452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The worldwide landscape of an ageing population and age-related disease brings with it huge socio-economic and public healthcare concerns across nations. Correspondingly, monumental human and financial resources have been invested in biomedical research, with a mission to decode the mechanisms of ageing and how these contribute to age-related disease. Multiple hallmarks of ageing have been identified that are common across taxa, highlighting their fundamental importance. These include dysregulated mitochondrial metabolism and telomeres biology, epigenetic modifications, cell-matrix interactions, proteostasis, dysregulated nutrient sensing, stem cell exhaustion, inflammageing and immuno-senescence. While our understanding of the molecular basis of ageing is improving, it remains a complex and multifactorial process that remains to be fully understood. A key aspect of the shortfall in our understanding of the ageing process lies in translating data from standard animal models to humans. Consequently, we suggest that a 'biomimetic' and comparative approach, integrating knowledge from species in the wild, as opposed to inbred genetically homogenous laboratory animals, can provide powerful insights into human ageing processes. Here we discuss some particularities and comparative patterns among several species from the animal kingdom, endowed with longevity or short lifespans and unique metabolic profiles that could be potentially exploited to the understanding of ageing and age-related diseases. Based upon lessons from nature, we also highlight several avenues for renewed focus in the pathophysiology of ageing and age-related disease (i.e. diet-microbiome-health axis, oxidative protein damage, adaptive homoeostasis and planetary health). We propose that a biomimetic alliance with collaborative research from different disciplines can improve our understanding of ageing and age-related diseases with long-term sustainable utility.
Collapse
|
9
|
Cafe SL, Nixon B, Ecroyd H, Martin JH, Skerrett-Byrne DA, Bromfield EG. Proteostasis in the Male and Female Germline: A New Outlook on the Maintenance of Reproductive Health. Front Cell Dev Biol 2021; 9:660626. [PMID: 33937261 PMCID: PMC8085359 DOI: 10.3389/fcell.2021.660626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
For fully differentiated, long lived cells the maintenance of protein homeostasis (proteostasis) becomes a crucial determinant of cellular function and viability. Neurons are the most well-known example of this phenomenon where the majority of these cells must survive the entire course of life. However, male and female germ cells are also uniquely dependent on the maintenance of proteostasis to achieve successful fertilization. Oocytes, also long-lived cells, are subjected to prolonged periods of arrest and are largely reliant on the translation of stored mRNAs, accumulated during the growth period, to support meiotic maturation and subsequent embryogenesis. Conversely, sperm cells, while relatively ephemeral, are completely reliant on proteostasis due to the absence of both transcription and translation. Despite these remarkable, cell-specific features there has been little focus on understanding protein homeostasis in reproductive cells and how/whether proteostasis is "reset" during embryogenesis. Here, we seek to capture the momentum of this growing field by highlighting novel findings regarding germline proteostasis and how this knowledge can be used to promote reproductive health. In this review we capture proteostasis in the context of both somatic cell and germline aging and discuss the influence of oxidative stress on protein function. In particular, we highlight the contributions of proteostasis changes to oocyte aging and encourage a focus in this area that may complement the extensive analyses of DNA damage and aneuploidy that have long occupied the oocyte aging field. Moreover, we discuss the influence of common non-enzymatic protein modifications on the stability of proteins in the male germline, how these changes affect sperm function, and how they may be prevented to preserve fertility. Through this review we aim to bring to light a new trajectory for our field and highlight the potential to harness the germ cell's natural proteostasis mechanisms to improve reproductive health. This manuscript will be of interest to those in the fields of proteostasis, aging, male and female gamete reproductive biology, embryogenesis, and life course health.
Collapse
Affiliation(s)
- Shenae L. Cafe
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Heath Ecroyd
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Identification and characterization of carbonylation sites in trastuzumab biosimilars. Int J Biol Macromol 2020; 169:95-102. [PMID: 33338527 DOI: 10.1016/j.ijbiomac.2020.12.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
Detection of metal catalyzed carbonylation in proteins is traditionally based on derivatization followed by detection and quantification via spectroscopy or immunodetection. However, these measure only cumulative carbonylation and do not identify the specific sites of modification within the protein. Recently, fluorescein thiosemicarbazide (FTC) based semi-microplate method was adapted for high throughput monitoring of carbonyl content during mAb process development, using size-exclusion chromatography followed by ultraviolet and fluorescence detection. Here, we have examined carbonylation in originators and 4 biosimilars of an IgG1 therapeutic monoclonal antibody, trastuzumab, a first line of therapy for HER2 positive breast cancer. The hyphenated RP-ESI-MS/MS detection was able to identify the location of each of the carbonylated amino acids for all products. The result is a comprehensive map of a total of 27 unique identified carbonylation sites of trastuzumab found across multiple batches of originator as well as marketed biosimilars. Our results demonstrate that although the different carbonylation sites are spread across different domains throughout the mAb sequence, the complementarity determining regions (CDRs) are free of carbonylation and all identified sites lie within the framework region of the variable domain. Moreover, the constant- heavy domain 3 (CH3) region seems to be particularly resistant to process induced carbonylation.
Collapse
|
11
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
12
|
Shepard A, Kissil JL. The use of non-traditional models in the study of cancer resistance-the case of the naked mole rat. Oncogene 2020; 39:5083-5097. [PMID: 32535616 DOI: 10.1038/s41388-020-1355-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Non-traditional model organisms are typically defined as any model the deviates from the typical laboratory animals, such as mouse, rat, and worm. These models are becoming increasingly important in human disease research, such as cancer, as they often display unusual biological features. Naked mole rats (NMRs) are currently one of the most popular non-traditional model, particularly in the longevity and cancer research fields. NMRs display an exceptionally long lifespan (~30 years), yet have been observed to display a low incidence of cancer, making them excellent candidates for understanding endogenous cancer resistance mechanisms. Over the past decade, many potential resistance mechanisms have been characterized. These include unique biological mechanisms involved in genome stability, protein stability, oxidative metabolism, and other cellular mechanisms such as cell cycle regulation and senescence. This review aims to summarize the many identified cancer resistance mechanisms to understand some of the main hypotheses that have thus far been generated. Many of these proposed mechanisms remain to be fully characterized or confirmed in vivo, giving the field a direction to grow and further understand the complex biology displayed by the NMR.
Collapse
Affiliation(s)
- Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
13
|
Takasugi M, Firsanov D, Tombline G, Ning H, Ablaeva J, Seluanov A, Gorbunova V. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat Commun 2020; 11:2376. [PMID: 32398747 PMCID: PMC7217962 DOI: 10.1038/s41467-020-16050-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Naked mole-rat (NMR), the longest-living rodent, produces very-high-molecular-mass hyaluronan (vHMM-HA), compared to other mammalian species. However, it is unclear if exceptional polymer length of vHMM-HA is important for longevity. Here, we show that vHMM-HA (>6.1 MDa) has superior cytoprotective properties compared to the shorter HMM-HA. It protects not only NMR cells, but also mouse and human cells from stress-induced cell-cycle arrest and cell death in a polymer length-dependent manner. The cytoprotective effect is dependent on the major HA-receptor, CD44. We find that vHMM-HA suppresses CD44 protein-protein interactions, whereas HMM-HA promotes them. As a result, vHMM-HA and HMM-HA induce opposing effects on the expression of CD44-dependent genes, which are associated with the p53 pathway. Concomitantly, vHMM-HA partially attenuates p53 and protects cells from stress in a p53-dependent manner. Our results implicate vHMM-HA in anti-aging mechanisms and suggest the potential applications of vHMM-HA for enhancing cellular stress resistance.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Hanbing Ning
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Zhengzhou, Henan, 450052, People's Republic of China
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
14
|
Abstract
Ageing is considered as a snowballing phenotype of the accumulation of damaged dysfunctional or toxic proteins and silent mutations (polymorphisms) that sensitize relevant proteins to oxidative damage as inborn predispositions to age-related diseases. Ageing is not a disease, but it causes (or shares common cause with) age-related diseases as suggested by similar slopes of age-related increase in the incidence of diseases and death. Studies of robust and more standard species revealed that dysfunctional oxidatively damaged proteins are the root cause of radiation-induced morbidity and mortality. Oxidized proteins accumulate with age and cause reversible ageing-like phenotypes with some irreversible consequences (e.g. mutations). Here, we observe in yeast that aggregation rate of damaged proteins follows the Gompertz law of mortality and review arguments for a causal relationship between oxidative protein damage, ageing and disease. Aerobes evolved proteomes remarkably resistant to oxidative damage, but imperfectly folded proteins become sensitive to oxidation. We show that α-synuclein mutations that predispose to early-onset Parkinson's disease bestow an increased intrinsic sensitivity of α-synuclein to in vitro oxidation. Considering how initially silent protein polymorphism becomes phenotypic while causing age-related diseases and how protein damage leads to genome alterations inspires a vision of predictive diagnostic, prognostic, prevention and treatment of degenerative diseases.
Collapse
Affiliation(s)
- Anita Krisko
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia
| | - Miroslav Radman
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia.,2 Naos Institute for Life Sciences , 13290 Aix-en-Provence , France.,3 Inserm U-1001, Université Paris-Descartes, Faculté de Médecine Paris-Descartes , 74014 Paris , France
| |
Collapse
|
15
|
Evdokimov A, Kutuzov M, Petruseva I, Lukjanchikova N, Kashina E, Kolova E, Zemerova T, Romanenko S, Perelman P, Prokopov D, Seluanov A, Gorbunova V, Graphodatsky A, Trifonov V, Khodyreva S, Lavrik O. Naked mole rat cells display more efficient excision repair than mouse cells. Aging (Albany NY) 2019; 10:1454-1473. [PMID: 29930219 PMCID: PMC6046242 DOI: 10.18632/aging.101482] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022]
Abstract
Naked mole rat (NMR) is the long-lived and tumor-resistant rodent. NMRs possess multiple adaptations that may contribute to longevity and cancer-resistance. However, whether NMRs have more efficient DNA repair have not been directly tested. Here we compared base excision repair (BER) and nucleotide excision repair (NER) systems in extracts from NMR and mouse fibroblasts after UVC irradiation. Transcript levels of the key repair enzymes demonstrated in most cases higher inducibility in the mouse vs the NMR cells. Ratios of repair enzymes activities in the extracts somewhat varied depending on post-irradiation time. NMR cell extracts were 2–3-fold more efficient at removing the bulky lesions, 1.5–3-fold more efficient at removing uracil, and about 1.4-fold more efficient at cleaving the AP-site than the mouse cells, while DNA polymerase activities being as a whole higher in the mouse demonstrate different patterns of product distribution. The level of poly(ADP-ribose) synthesis was 1.4–1.8-fold higher in the NMR cells. Furthermore, NMR cell extracts displayed higher binding of PARP1 to DNA probes containing apurinic/apyrimidinic site or photo-reactive DNA lesions. Cumulatively, our results suggest that the NMR has more efficient excision repair systems than the mouse, which may contribute to longevity and cancer resistance of this species.
Collapse
Affiliation(s)
- Alexei Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Mikhail Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Irina Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | - Elena Kashina
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Ekaterina Kolova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Tatyana Zemerova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | - Polina Perelman
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Svetlana Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Hawkins LJ, Hadj-Moussa H, Nguyen VC, Pamenter ME, Storey KB. Naked mole rats activate neuroprotective proteins during hypoxia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:571-576. [PMID: 31545006 DOI: 10.1002/jez.2321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
Naked mole rats are a long-lived animal model that age much like humans, but that can also withstand oxidative damage, cancer, neurodegenerative diseases, and severe hypoxic conditions, which is of particular interest to this study. The conditions of their underground burrows result in competition for oxygen consumption, yet despite this oxygen deprivation they emerge unscathed. To understand the mechanisms in place to facilitate neuronal preservation during hypoxia, we investigated the protein levels of well-known cell-stress factors. We found that under hypoxic conditions, nearly half of the proteins measured increased expression in brain, while only a few decreased. Under hypoxic conditions there appeared to be a HIF1α-centered response, where HIF1α and its interactors carbonic anhydrase 9, CITED2, p21/CIP1, and NFκB1, among others, were upregulated. Concurrently, a hypoxia-induced decrease of cytochrome c was consistent with decreased mitochondrial function and protection from apoptosis. The picture that emerges is one of neuroprotection, cell-cycle arrest, and the promotion of antiapoptotic functions, all of which are consistent with conserving energy and maintaining neural integrity under low oxygen levels. These results suggest how this species may be poised to face hypoxia and contribute to its remarkable ability to deal with myriad of other damaging factors and sets the stage for future work on the neuroprotective facilitators we identified.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Vu C Nguyen
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, ON, Canada
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
17
|
Guest PC. Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:1-24. [PMID: 31493219 DOI: 10.1007/978-3-030-25650-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The quest for increased human longevity has been a goal of mankind throughout recorded history. Recent molecular studies are now providing potentially useful insights into the aging process which may help to achieve at least some aspects of this quest. This chapter will summarize the main findings of these studies with a focus on long-lived mutant mice and worms, and the longest living natural species including Galapagos giant tortoises, bowhead whales, Greenland sharks, quahog clams and the immortal jellyfish.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
18
|
Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat Rev Nephrol 2018; 14:265-284. [PMID: 29332935 DOI: 10.1038/nrneph.2017.169] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many of the >2 million animal species that inhabit Earth have developed survival mechanisms that aid in the prevention of obesity, kidney disease, starvation, dehydration and vascular ageing; however, some animals remain susceptible to these complications. Domestic and captive wild felids, for example, show susceptibility to chronic kidney disease (CKD), potentially linked to the high protein intake of these animals. By contrast, naked mole rats are a model of longevity and are protected from extreme environmental conditions through mechanisms that provide resistance to oxidative stress. Biomimetic studies suggest that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) offers protection in extreme environmental conditions and promotes longevity in the animal kingdom. Similarly, during months of fasting, immobilization and anuria, hibernating bears are protected from muscle wasting, azotaemia, thrombotic complications, organ damage and osteoporosis - features that are often associated with CKD. Improved understanding of the susceptibility and protective mechanisms of these animals and others could provide insights into novel strategies to prevent and treat several human diseases, such as CKD and ageing-associated complications. An integrated collaboration between nephrologists and experts from other fields, such as veterinarians, zoologists, biologists, anthropologists and ecologists, could introduce a novel approach for improving human health and help nephrologists to find novel treatment strategies for CKD.
Collapse
|
19
|
Dammann P. Slow aging in mammals-Lessons from African mole-rats and bats. Semin Cell Dev Biol 2017; 70:154-163. [PMID: 28698112 DOI: 10.1016/j.semcdb.2017.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
Traditionally, the main mammalian models used in aging research have been mice and rats, i.e. short-lived species that obviously lack effective maintenance mechanisms to keep their soma in a functional state for prolonged periods of time. It is doubtful that life-extending mechanisms identified only in such short-lived species adequately reflect the diversity of longevity pathways that have naturally evolved in mammals, or that they have much relevance for long-lived species such as humans. Therefore, some complementary, long-lived mammalian models have been introduced to aging research in the past 15-20 years, particularly naked mole-rats (and to a lesser extent also other mole-rats) and bats. Here, I summarize and compare the most important results regarding various aspects of aging - oxidative stress, molecular homeostasis and repair, and endocrinology - that have been obtained from studies using these new mammalian models of high longevity. I argue that the inclusion of these models was an important step forward, because it drew researchers' attention to certain oversimplifications of existing aging theories and to several features that appear to be universal components of enhanced longevity in mammals. However, even among mammals with high longevity, considerable variation exists with respect to other candidate mechanisms that also must be taken into account if inadequate generalizations are to be avoided.
Collapse
Affiliation(s)
- Philip Dammann
- Central Animal Laboratory, Faculty of Medicine, University of Duisburg, Essen, Germany.
| |
Collapse
|
20
|
Lagunas-Rangel FA, Chávez-Valencia V. Learning of nature: The curious case of the naked mole rat. Mech Ageing Dev 2017; 164:76-81. [DOI: 10.1016/j.mad.2017.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/24/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
|
21
|
Hepatoprotective effects of curcumin in rats after bile duct ligation via downregulation of Rac1 and NOX1. Nutrition 2017; 36:72-78. [DOI: 10.1016/j.nut.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 06/05/2016] [Indexed: 02/08/2023]
|
22
|
Kabirifar R, Ghoreshi ZAS, Safari F, Karimollah A, Moradi A, Eskandari-Nasab E. Quercetin protects liver injury induced by bile duct ligation via attenuation of Rac1 and NADPH oxidase1 expression in rats. Hepatobiliary Pancreat Dis Int 2017; 16:88-95. [PMID: 28119263 DOI: 10.1016/s1499-3872(16)60164-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bile duct ligation (BDL) and subsequent cholestasis are correlated with oxidative stress, hepatocellular injury and fibrosis. Quercetin is a flavonoid with antifibrotic, and hepatoprotective properties. However, the molecular mechanism underlying quercetin-mediated hepatoprotection is not fully understood. The current study was to evaluate mechanisms of hepatoprotective effect of quercetin in BDL rat model. METHODS We divided male Wistar rats into 4 groups (n=8 for each): sham, sham+quercetin (30 mg/kg per day), BDL, and BDL+quercetin (30 mg/kg per day). Four weeks later, the rats were sacrificed, the blood was collected for liver enzyme measurements and liver for the measurement of Rac1, Rac1-GTP and NOX1 mRNA and protein levels by quantitative PCR and Western blotting, respectively. RESULTS Quercetin significantly alleviated liver injury in BDL rats as evidenced by histology and reduced liver enzymes. Furthermore, the mRNA and protein expression of Rac1, Rac1-GTP and NOX1 were significantly increased in BDL rats compared with those in the sham group (P<0.05); quercetin treatment reversed these variables back toward normal (P<0.05). Another interesting finding was that the antioxidant markers e.g. superoxide dismutase and catalase were elevated in quercetin-treated BDL rats compared to BDL rats (P<0.05). CONCLUSION Quercetin demonstrated hepatoprotective activity against BDL-induced liver injury through increasing antioxidant capacity of the liver tissue, while preventing the production of Rac1, Rac1-GTP and NOX1 proteins.
Collapse
Affiliation(s)
- Razieh Kabirifar
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| | | | | | | | | | | |
Collapse
|
23
|
Constant molecular aging rates vs. the exponential acceleration of mortality. Proc Natl Acad Sci U S A 2016; 113:1121-3. [PMID: 26792520 DOI: 10.1073/pnas.1524017113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
24
|
Stenvinkel P, Kooman JP, Shiels PG. Nutrients and ageing: what can we learn about ageing interactions from animal biology? Curr Opin Clin Nutr Metab Care 2016; 19:19-25. [PMID: 26485336 DOI: 10.1097/mco.0000000000000234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Many prevalent clinical conditions, such as chronic kidney disease, diabetes mellitus, chronic obstructive pulmonary, and cardiovascular disease associate with features of premature ageing, such as muscle wasting, hypogonadism, osteoporosis, and arteriosclerosis. Studies on various animal models have shown that caloric restriction prolongs lifespan. Studies of animals with unusual long or short life for their body size may also contribute to better understanding of ageing processes. The aim of the present article is to review what we can learn about nutritional modulations and ageing interactions from animal biology. RECENT FINDINGS Caloric restriction is a powerful intervention that increases longevity in animals ranging from short-lived species, such as worms and flies, to primates. As long-term studies on caloric restriction are not feasible to conduct in humans, much interest has focused on the impact of caloric restriction mimetics, such as resveratrol, on ageing processes. Recent data from studies on the long-lived naked mole rat have provided important novel information on metabolic alterations and antioxidative defense mechanisms that characterize longevity. SUMMARY Better understanding of the biology of exceptionally long-lived animals will contribute to better understanding of ageing processes and novel interventions to extend lifespan also in humans.
Collapse
Affiliation(s)
- Peter Stenvinkel
- aDivision of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet Stockholm, Sweden bDivision of Nephrology, Department of Internal Medicine, University Hospital Maastricht, the Netherlands cInstitute of Cancer Sciences, Wolfson Wohl Translational Research Center, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
25
|
Speakman JR, Blount JD, Bronikowski AM, Buffenstein R, Isaksson C, Kirkwood TBL, Monaghan P, Ozanne SE, Beaulieu M, Briga M, Carr SK, Christensen LL, Cochemé HM, Cram DL, Dantzer B, Harper JM, Jurk D, King A, Noguera JC, Salin K, Sild E, Simons MJP, Smith S, Stier A, Tobler M, Vitikainen E, Peaker M, Selman C. Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol 2015; 5:5745-57. [PMID: 26811750 PMCID: PMC4717350 DOI: 10.1002/ece3.1790] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.
Collapse
Affiliation(s)
- John R Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK; State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Jonathan D Blount
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | - Anne M Bronikowski
- Department of Ecology, Evolution and Organismal Biology Iowa State University 251 Bessey Hall Ames Iowa 50011
| | - Rochelle Buffenstein
- Physiology, Barshop Institute for Aging and Longevity Research UTHSCSA 15355 Lambda Drive San Antonio Texas 78245
| | - Caroline Isaksson
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Tom B L Kirkwood
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Michaël Beaulieu
- Zoological Institute and Museum University of Greifswald Johann-Sebastian Bach Str. 11/12 Greifswald 17489 Germany
| | - Michael Briga
- Behavioral Biology University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Sarah K Carr
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Louise L Christensen
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK
| | - Helena M Cochemé
- MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus Du Cane Road London W12 0NN UK
| | - Dominic L Cram
- Department of Zoology University of Cambridge Cambridge CB2 3EJ UK
| | - Ben Dantzer
- Department of Psychology University of Michigan Ann Arbor Michigan 48109
| | - Jim M Harper
- Department of Biological Sciences Sam Houston State University 1900 Avenue I LDB 100B Huntsville Texas 77341
| | - Diana Jurk
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Annette King
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Jose C Noguera
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Elin Sild
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Mirre J P Simons
- Department of Animal and Plant Sciences University of Sheffield Alfred Denny Building, Western Bank Sheffield S10 2TN UK
| | - Shona Smith
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Antoine Stier
- Department Ecology, Physiology et Ethology University of Strasbourg - IPHC (UMR7178) 23, rue Becquerel Strasbourg 67087 France
| | - Michael Tobler
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Emma Vitikainen
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | | | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
26
|
Barshishat-Kupper M, McCart EA, Freedy JG, Tipton AJ, Nagy V, Kim SY, Landauer MR, Mueller GP, Day RM. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation. Proteomes 2015; 3:249-265. [PMID: 28248270 PMCID: PMC5217375 DOI: 10.3390/proteomes3030249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127-189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure.
Collapse
Affiliation(s)
- Michal Barshishat-Kupper
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Elizabeth A McCart
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - James G Freedy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Ashlee J Tipton
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Vitaly Nagy
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Sung-Yop Kim
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Michael R Landauer
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Gregory P Mueller
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Regina M Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
27
|
Kooman JP, Kotanko P, Schols AMWJ, Shiels PG, Stenvinkel P. Chronic kidney disease and premature ageing. Nat Rev Nephrol 2014; 10:732-42. [PMID: 25287433 DOI: 10.1038/nrneph.2014.185] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease (CKD) shares many phenotypic similarities with other chronic diseases, including heart failure, chronic obstructive pulmonary disease, HIV infection and rheumatoid arthritis. The most apparent similarity is premature ageing, involving accelerated vascular disease and muscle wasting. We propose that in addition to a sedentary lifestyle and psychosocial and socioeconomic determinants, four major disease-induced mechanisms underlie premature ageing in CKD: an increase in allostatic load, activation of the 'stress resistance response', activation of age-promoting mechanisms and impairment of anti-ageing pathways. The most effective current interventions to modulate premature ageing-treatment of the underlying disease, optimal nutrition, correction of the internal environment and exercise training-reduce systemic inflammation and oxidative stress and induce muscle anabolism. Deeper mechanistic insight into the phenomena of premature ageing as well as early diagnosis of CKD might improve the application and efficacy of these interventions and provide novel leads to combat muscle wasting and vascular impairment in chronic diseases.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Peter Kotanko
- Renal Research Institute, 315 East 62nd Street, 4th floor, NY 10065, New York, USA
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, SE-14157 Stockholm, Sweden
| |
Collapse
|
28
|
Oxidative stress in aging: advances in proteomic approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:573208. [PMID: 24688629 PMCID: PMC3943264 DOI: 10.1155/2014/573208] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022]
Abstract
Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.
Collapse
|
29
|
Stenvinkel P, Johnson RJ. Kidney biomimicry--a rediscovered scientific field that could provide hope to patients with kidney disease. Arch Med Res 2013; 44:584-90. [PMID: 24220764 DOI: 10.1016/j.arcmed.2013.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/15/2013] [Indexed: 12/18/2022]
Abstract
Most studies on kidney disease have relied on classic experimental studies in mice and rats or clinical studies in humans. From such studies much understanding of the physiology and pathophysiology of kidney disease has been obtained. However, breakthroughs in the prevention and treatment of kidney diseases have been relatively few, and new approaches to fight kidney disease are needed. Here we discuss kidney biomimicry as a new approach to understand kidney disease. Examples are given of how various animals have developed ways to prevent or respond to kidney failure, how to protect themselves from hypoxia or oxidative stress and from the scourge of hyperglycemia. We suggest that investigation of evolutionary biology and comparative physiology might provide new insights for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
30
|
Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. Proc Natl Acad Sci U S A 2013; 110:17350-5. [PMID: 24082110 DOI: 10.1073/pnas.1313473110] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The naked mole-rat (Heterocephalus glaber) is a subterranean eusocial rodent with a markedly long lifespan and resistance to tumorigenesis. Multiple data implicate modulation of protein translation in longevity. Here we report that 28S ribosomal RNA (rRNA) of the naked mole-rat is processed into two smaller fragments of unequal size. The two breakpoints are located in the 28S rRNA divergent region 6 and excise a fragment of 263 nt. The excised fragment is unique to the naked mole-rat rRNA and does not show homology to other genomic regions. Because this hidden break site could alter ribosome structure, we investigated whether translation rate and amino acid incorporation fidelity were altered. We report that naked mole-rat fibroblasts have significantly increased translational fidelity despite having comparable translation rates with mouse fibroblasts. Although we cannot directly test whether the unique 28S rRNA structure contributes to the increased fidelity of translation, we speculate that it may change the folding or dynamics of the large ribosomal subunit, altering the rate of GTP hydrolysis and/or interaction of the large subunit with tRNA during accommodation, thus affecting the fidelity of protein synthesis. In summary, our results show that naked mole-rat cells produce fewer aberrant proteins, supporting the hypothesis that the more stable proteome of the naked mole-rat contributes to its longevity.
Collapse
|