1
|
Lee MC, Ho CS, Hsu YJ, Kan NW, Fei CY, Yang HJ, Huang CC. The Impact of DAZZEON αSleep ® Far-Infrared Blanket on Sleep, Blood Pressure, Vascular Health, Muscle Function, Inflammation, and Fatigue. Clocks Sleep 2024; 6:499-516. [PMID: 39311228 PMCID: PMC11417803 DOI: 10.3390/clockssleep6030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
The application of far-infrared blankets has shown certain benefits in health promotion and therapy, such as improving blood circulation and alleviating muscle pain. However, the effects of such blankets on increasing deep sleep, reducing blood pressure, enhancing memory, dilating microvessels for blood flow, reducing chronic inflammation, and decreasing fatigue remain to be studied. We aim to investigate the effects of the DAZZEON αSleep® far-infrared blanket on these indicators. This study adopted a double-blind design, recruiting 24 male participants aged over 45 years, divided into two groups of 12 each: (A) a placebo group and (B) a DAZZEON αSleep® group. The participants used the blanket every night for two weeks, with sleep records taken using a wearable device and blood pressure, blood oxygen levels, arterial stiffness, and surface temperature measured before and after the intervention. Blood samples were collected for an analysis of inflammation and sleep-related blood indicators (serotonin and melatonin), and exercise tests were conducted to assess fatigue improvement. Compared with before the intervention, the blanket significantly increased changes in grip strength and reaction time. Additionally, it significantly increased blood serotonin, melatonin, and nitric oxide concentrations (p < 0.05), thus significantly increasing deep sleep and REM sleep durations (p < 0.05) and improving subjective sleep quality (p < 0.05). This study confirmed that using the DAZZEON αSleep® far-infrared blanket for 14 consecutive days helps to improve blood circulation, reduce vascular age and arterial stiffness, increase serotonin and melatonin levels, and improve sleep quality, as well as enhances muscle strength and reaction time.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei City 110301, Taiwan;
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
| | - Nai-Wen Kan
- Center for General Education, Taipei Medical University, Taipei City 110301, Taiwan;
| | - Chen-Yin Fei
- Dazzeon Biotech Co., Ltd., New Taipei City 248022, Taiwan;
| | - Hung-Jen Yang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
- Department of General Medicine, Min-Sheng General Hospital, Taoyuan City 330063, Taiwan
- Tajen University, Pingtung County 907101, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (C.-S.H.); (Y.-J.H.)
- Tajen University, Pingtung County 907101, Taiwan
| |
Collapse
|
2
|
Park JH, Oh SY, Jung SC, Song TJ, Jo I. Far-infrared irradiation increases the uptake of LDL cholesterol by downregulating PCSK9 through the activation of TRPV4 calcium channels in HepG2 cells. Biochem Biophys Res Commun 2024; 723:150187. [PMID: 38850809 DOI: 10.1016/j.bbrc.2024.150187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
This study investigated the effects of far-infrared (FIR) irradiation on low-density lipoprotein cholesterol (LDL-C) uptake by human hepatocellular carcinoma G2 (HepG2) cells via the regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). FIR irradiation for 30 min significantly decreased PCSK9 expression (p < 0.01) in HepG2 cells. FIR irradiation substantially increased the low-density lipoprotein receptor (p < 0.0001) and LDL-C uptake (p < 0.01). Activation of transient receptor potential vanilloid (TRPV) channels mimicked the effects of FIR irradiation, significantly decreasing the protein expression of PCSK9 (p < 0.05). Conversely, inhibition of TRP channels using ruthenium red reversed the reduction in PCSK9 protein expression following FIR irradiation (p < 0.01). The specific activation of TRPV4 using 4α-PDD mimicked the effect of FIR irradiation (p < 0.01), whereas PCSK9 reduction by FIR irradiation was significantly reversed by the inhibition of TRPV4 using RN1734 (p < 0.05). These findings implied that FIR irradiation emitted from a ceramic lamp specifically increased TRPV4 activity. These findings provide insights into a novel therapeutic approach using FIR irradiation for LDL-C regulation and its implications for cardiovascular health.
Collapse
Affiliation(s)
- Jin-Hee Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Se-Young Oh
- Department of Convergence Medicine & Ewha Research Institute for Regenerative Medicine (ERIRM), Ewha Womans University Mokdong Hospital, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Sung-Chul Jung
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Seoul, 07804, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, 260, Airport-daero, Gangseo-gu, Seoul, 07804, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
3
|
Qin B, Fu SJ, Xu XF, Yang JJ, Wang Y, Wang LN, Huang BX, Zhong J, Wu WY, Lu HA, Law BYK, Wang N, Wong IN, Wong VKW. Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine? Pharmacol Res 2024; 208:107349. [PMID: 39151679 DOI: 10.1016/j.phrs.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.
Collapse
Affiliation(s)
- Bo Qin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shi-Jie Fu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiong-Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Jiu-Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Breast, Thyroid and Vascular Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Lin-Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Bai-Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wan-Yu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Heng-Ao Lu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Nick Wang
- New Age Technology (Asia) Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Hong Kong
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macao.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
4
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
5
|
Wen J, Pan J, Ma J, Ge X, Xu Z, Wang X, Lv Z. Advances in far-infrared research: therapeutic mechanisms of disease and application in cancer detection. Lasers Med Sci 2024; 39:41. [PMID: 38240851 DOI: 10.1007/s10103-024-03994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Far infrared (FIR) irradiation is commonly used as a convenient, non-contact, non-invasive treatment for diseases such as myocardial ischemia, diabetes, and chronic kidney disease. In this review, we focus on reviewing the potential therapeutic mechanisms of FIR and its cutting-edge applications in cancer detection. Firstly, we searched the relevant literature in the last decade for systematic screening and briefly summarized the biophysical properties of FIR. We then focused on the possible mechanisms of FIR in wound healing, cardiovascular diseases, and other chronic diseases. In addition, we review recent applications of FIR in cancer detection, where Fourier transform infrared spectroscopy and infrared thermography provide additional diagnostic methods for the medical diagnosis of cancer. Finally, we conclude and look into the future development of FIR for disease treatment and cancer detection. As a high-frequency non-ionizing wave, FIR has the advantages of safety, convenience, and low cost. We hope that this review can provide biological information reference and relevant data support for those who are interested in FIR and related high-frequency non-ionizing waves, to promote the further application of FIR in the biomedical field.
Collapse
Affiliation(s)
- Jianming Wen
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
- The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, China
| | - Junrun Pan
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, China
| | - Jijie Ma
- The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, China
| | - Xinyang Ge
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| | - Zisheng Xu
- Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua, China
| | - Xiaolin Wang
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China.
- Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China.
| | - Zhong Lv
- Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China.
| |
Collapse
|
6
|
van Kraaij SJW, Hamblin MR, Pickering G, Giannokopoulos B, Kechemir H, Heinz M, Igracki-Turudic I, Yavuz Y, Rissmann R, Gal P. A Phase 1 randomized, open-label clinical trial to evaluate the effect of a far-infrared emitting patch on local skin perfusion, microcirculation and oxygenation. Exp Dermatol 2024; 33:e14962. [PMID: 37950549 DOI: 10.1111/exd.14962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Far-infrared radiation (FIR) has been investigated for reduction of pain and improvement of dermal blood flow. The FIRTECH patch is a medical device designed to re-emit FIR radiated by the body. This phase 1 study was conducted to evaluate the local effects of the FIRTECH patch on local skin perfusion, microcirculation and oxygenation. This prospective, randomized, open-label, parallel designed study admitted 20 healthy participants to a medical research facility for treatment for 31 h on three anatomical locations. During treatment, imaging assessments consisting of laser speckle contrast imaging, near-infrared spectroscopy, side-stream dark-field microscopy, multispectral imaging and thermography were conducted regularly on patch-treated skin and contralateral non-treated skin. The primary endpoint was baseline perfusion increase during treatment on the upper back. Secondary endpoints included change in baseline perfusion, oxygen consumption and temperature of treated versus untreated areas. The primary endpoint was not statistically significantly different between treated and non-treated areas. The secondary endpoints baseline perfusion on the forearm (least square means [LSMs] difference 2.63 PU, 95% CI: 0.97, 4.28), oxygen consumption (LSMs difference: 0.42 arbitrary units [AUs], 95% CI: 0.04, 0.81) and skin temperature (LSMs difference 0.35°C, 95% CI: 0.16, 0.6) were statistically significantly higher in treated areas. Adverse events observed during the study were mild and transient. The vascular response to the FIRTECH patch was short-lived suggesting a non-thermal vasodilatory effect of the patch. The FIRTECH patch was well tolerated, with mild and transient adverse events observed during the study. These results support the therapeutic potential of FIR in future investigations.
Collapse
Affiliation(s)
- Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Gisele Pickering
- Clinical Investigation Center CIC Inserm 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | - Moritz Heinz
- Research & Development, Sanofi, Chilly-Mazarin, France
| | | | - Yalçin Yavuz
- Centre for Human Drug Research, Leiden, the Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Pim Gal
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
7
|
He P, Low RJY, Burns SF, Lipik V, Tok AIY. Enhanced far infrared emissivity, UV protection and near-infrared shielding of polypropylene composites via incorporation of natural mineral for functional fabric development. Sci Rep 2023; 13:22329. [PMID: 38102206 PMCID: PMC10724279 DOI: 10.1038/s41598-023-49897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
Far infrared radiation in the range of 4-20 µm has been showed to have biological and health benefits to the human body. Therefore, incorporating far-infrared emissivity additives into polymers and/or fabrics hold promise for the development of functional textiles. In this study, we incorporated nine types of natural minerals into polypropylene (PP) film and examined their properties to identify potential candidates for functional textiles and apparels. The addition of 2% mineral powders into PP film increased the far-infrared emissivity (5-14 µm) by 7.65%-14.48%. The improvement in far-infrared emissivity within the range of 5-14 µm, which overlaps with the peak range of human skin radiation at 8-14 µm, results in increased absorption efficiency, and have the potential to enhance thermal and biological effects. Moreover, the incorporation of mineral powders in PP films exhibited favorable ultraviolet (UV) protection and near-infrared (NIR) shielding properties. Two films, specifically those containing red ochre and hematite, demonstrated excellent UV protection with a UPF rating of 50+ and blocked 99.92% and 98.73% of UV radiation, respectively. Additionally, they showed 95.2% and 93.2% NIR shielding properties, compared to 54.1% NIR shielding properties of PP blank films. The UV protection and NIR shielding properties offered additional advantages for the utilization of polymer composite with additives in the development of sportswear and other outdoor garments. The incorporation of minerals could absorb near-IR radiation and re-emit them at longer wavelength in the mid-IR region. Furthermore, the incorporation of minerals significantly improved the heat retention of PP films under same heat radiation treatment. Notably, films with red ochre and hematite exhibited a dramatic temperature increase, reaching 2.5 and 3.2 times the temperature increase of PP films under same heat radiation treatment, respectively (46.8 °C and 59.9 °C higher than the temperature increase of 20.9 °C in the PP film). Films with additives also demonstrated lower thermal effusivity than PP blank films, indicating superior heat insulation properties. Therefore, polypropylene films with mineral additives, particularly those containing red ochre and hematite, showed remarkable heat capacity, UV-protection, NIR-shielding properties and enhanced far infrared emissivity, making them promising candidates for the development of functional textiles.
Collapse
Affiliation(s)
- Pengfei He
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rayland Jun Yan Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Stephen Francis Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Vitali Lipik
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
8
|
Ko CM, Then CK, Kuo YM, Lin YK, Shen SC. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int J Mol Sci 2023; 24:15828. [PMID: 37958813 PMCID: PMC10649088 DOI: 10.3390/ijms242115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 μm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 μg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.
Collapse
Affiliation(s)
- Chin-Meng Ko
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Chee-Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ming Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
- Department of Dermatology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master and Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Kyselovic J, Masarik J, Kechemir H, Koscova E, Turudic II, Hamblin MR. Physical properties and biological effects of ceramic materials emitting infrared radiation for pain, muscular activity, and musculoskeletal conditions. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:3-15. [PMID: 35510621 PMCID: PMC10084378 DOI: 10.1111/phpp.12799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Up to 33% of the general population worldwide suffer musculoskeletal conditions, with low back pain being the single leading cause of disability globally. Multimodal therapeutic options are available to relieve the pain associated with muscular disorders, including physical, complementary, and pharmacological therapies. However, existing interventions are not disease modifying and have several limitations. METHOD Literature review. RESULTS In this context, the use of nonthermal infrared light delivered via patches, fabrics, and garments containing infrared-emitting bioceramic minerals have been investigated. Positive effects on muscular cells, muscular recovery, and reduced inflammation and pain have been reported both in preclinical and clinical studies. There are several hypotheses on how infrared may contribute to musculoskeletal pain relief, however, the full mechanism of action remains unclear. This article provides an overview of the physical characteristics of infrared radiation and its biological effects, focusing on those that could potentially explain the mechanism of action responsible for the relief of musculoskeletal pain. CONCLUSIONS Based on the current evidence, the following pathways have been considered: upregulation of endothelial nitric oxide synthase, increase in nitric oxide bioavailability, anti-inflammatory effects, and reduction in oxidative stress.
Collapse
Affiliation(s)
- Jan Kyselovic
- Clinical Research Unit, 5th Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovak Republic
| | - Jozef Masarik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Hayet Kechemir
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Paris, France
| | - Eva Koscova
- Consumer Healthcare Medical Affairs Department, Bratislava, Slovakia
| | - Iva Igracki Turudic
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Frankfurt, Germany
| | - Michael Richard Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
10
|
Silva M, Gáspari A, Barbieri J, Caruso D, Nogueira J, Andrade A, Moraes A. A pilot study on the effects of far-infrared-emitting fabric on neuromuscular performance of knee extensor and male fertility. Lasers Med Sci 2022; 37:3713-3722. [PMID: 36274079 PMCID: PMC9589584 DOI: 10.1007/s10103-022-03657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the time course of the effects of far-infrared emitting fabric (FIR) on neuromuscular performance of knee extensor over 120 h and to investigate whether the use of FIR affects semen. This is a crossover, randomized, double-blind, and placebo-controlled trial split into neuromuscular and fertility assessments. Four (28.8 ± 4.7 years old) and six (29 ± 3.9 years old) healthy, resistance-trained males completed all neuromuscular and fertility assessments, respectively. In neuromuscular assessments, for five consecutive days, the participants underwent neuromuscular tests in an isokinetic dynamometer (maximal isometric voluntary contraction (MVC) and fatigue test) every 24 h in both conditions (FIR and Placebo). In fertility assessments, participants performed three semen collections: Baseline, FIR, and Placebo. FIR and Placebo collections were performed after five consecutive days of use of the pants. Conventional parameters and sperm DNA fragmentation were evaluated. In the FIR condition, the participants showed significant differences in total work at 96 h (p < 0.001; Cohen’s d = 3.73), 120 h (p = 0.01; Cohen’s d = 2.65), and pre-MVC at 120 h (p = 0.02; Cohen’s d = 2.15) when compared to Placebo. FIR did not significantly (p > 0.05) affect the conventional semen parameters or sperm DNA fragmentation compared to Baseline or Placebo. FIR improved the knee extensor neuromuscular performance of healthy resistance-trained individuals, with 112.4 ± 7.8 h accumulated, and did not affect their seminal parameters (conventional or sperm DNA fragmentation), with 113.1 ± 10.2 h accumulated.
Collapse
Affiliation(s)
- Manoel Silva
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil.
| | - Arthur Gáspari
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | - João Barbieri
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | - Danilo Caruso
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | | | | | - Antônio Moraes
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| |
Collapse
|
11
|
Mu W, Hu N, Zhang LH, Jiang W, Yan T, Zhang T, Liu A, Zhang YQ, Zhao J, Shi L, Liu LN. Lonicerae japonicae flos ameliorates radiotherapy-induced mesenteric artery endothelial dysfunction through GTPCH1/BH 4/eNOS pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154146. [PMID: 35594639 DOI: 10.1016/j.phymed.2022.154146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As a traditional Chinese medicine, Lonicerae japonicae flos (LJF) and its main component chlorogenic acid (CGA) have anti-oxidant, anti-bacterial and anti-tumor effects. However, there is no research on the potential of LJF for vascular protection in radiotherapy. PURPOSE To elucidate the potential and possible mechanisms of the LJF extract and CGA in alleviating endothelial dysfunction caused by abdominal radiotherapy. METHODS LJF was extracted with water and the CGA content was analyzed by HPLC. Male Sprague-Dawley rats received abdominal radiotherapy for 21 days. Seven days after irradiation, Laser Doppler and ex vivo vascular tension experiments were performed. Nitric oxide (NO), superoxide anion levels and tetrahydrobiopterin (BH4) content were detected. Western blot, flow cytometry and molecular docking were used. RESULTS In the radiotherapy group, the mesenteric arterial blood perfusion, NO, and superoxide anion levels were significantly reduced; rats treated with the LJF extract or CGA showed a certain extent of recovery of these indicators. Vascular tension experiments showed that CGA and the LJF extract improved the vasodilation of mesenteric arteries. Cell experiments demonstrated that CGA increased the NO content and reduce superoxide anion production and cell apoptosis. The expression levels of GTPCH1/BH4/eNOS signaling pathway were significantly increased due to the use of the LJF extract or CGA in vivo and in vitro. CONCLUSIONS Our study demonstrated for the first time that LJF and its main component, CGA could prevent abdominal radiotherapy-induced vascular endothelial dysfunction via GTPCH1/BH4/eNOS pathway. LJF could be a potential therapeutic herbal agent.
Collapse
Affiliation(s)
- Wei Mu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Na Hu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lan-Hui Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Tao Yan
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - An Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yong-Qiang Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Jun Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| | - Lin-Na Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
12
|
Far-Infrared Therapy Decreases Orthotopic Allograft Transplantation Vasculopathy. Biomedicines 2022; 10:biomedicines10051089. [PMID: 35625826 PMCID: PMC9139124 DOI: 10.3390/biomedicines10051089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Orthotopic allograft transplantation (OAT) is a major strategy for solid heart and kidney failure. However, the recipient’s immunity-induced chronic rejection induces OAT vasculopathy that results in donor organ failure. With the exception of immunosuppressive agents, there are currently no specific means to inhibit the occurrence of OAT vasculopathy. On the other hand, far-infrared (FIR) therapy uses low-power electromagnetic waves given by FIR, with a wavelength of 3–25 μm, to improve human physiological functions. Previous studies have shown that FIR therapy can effectively inhibit inflammation. It has also been widely used in adjuvant therapy for various clinical diseases, especially cardiovascular diseases, in recent years. Thus, we used this study to explore the feasibility of FIR in preventing OAT vasculopathy. In this study, the model of transplantation of an aorta graft from PVG/Seac rat to ACI/NKyo rat, and in vitro model of human endothelial progenitor cells (EPCs) was used. In this report, we presented that FIR therapy decreased the serious of vasculopathy in OAT-recipient ACI/NKyo rats via inhibiting proliferation of smooth muscle cells, accumulation of collagen, and infiltration of fibroblast in the vessel wall; humoral and cell-mediated immune responses were decreased in the spleen. The production of inflammatory proteins/cytokines also decreased in the plasma. Additionally, FIR therapy presented higher mobilization and circulating EPC levels associated with vessel repair in OAT-recipient ACI/NKyo rats. In vitro studies demonstrated that the underlying mechanisms of FIR therapy inhibiting OAT vasculopathy may be associated with the inhibition of the Smad2-Slug axis endothelial mesenchymal transition (EndoMT). Thus, FIR therapy may be the strategy to prevent chronic rejection-induced vasculopathy.
Collapse
|
13
|
Silva M, Gáspari A, Barbieri J, Barroso R, Figueiredo G, Motta L, Moraes A. Far-infrared-emitting fabric improves neuromuscular performance of knee extensor. Lasers Med Sci 2022; 37:2527-2536. [PMID: 35146580 DOI: 10.1007/s10103-022-03523-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to verify if exposure to the far-IR emitted by fabric (FIR) is able to improve the neuromuscular performance of the knee extensors of resistance-trained males regardless of changes of the temperature. It is a crossover, randomized, double-blind, and placebo-controlled trial. Fourteen resistance-trained males (age: 24.3 ± 4 years; body mass: 82.8 ± 11.3 kg; height: 176.3 ± 4.2 cm) were randomly assigned to one of initial conditions: FIR (n = 7) or placebo (n = 7). After 4 days, the participants were submitted to neuromuscular tests in an isokinetic dynamometer (maximal isometric voluntary contraction (MVC) and fatigue test). After a week of washout, participants performed the other condition. We measured peak torque (Nm), total work (J), fatigue index (%), root mean square (mV), median frequency (Hz), and temperature (°C) of thigh. The FIR was worn for 82 ± 19 h before the experimental session, totaling 317 ± 74 kJ of energy irradiation. There was a significant increase (p < 0.05) for pre-MVC (318.5 ± 68.7 Nm) and post-MVC (284.1 ± 58.2 Nm), and a trend (p = 0.055) for significant increase for total work (4,122.2 ± 699.8 J) on FIR condition regardless of none change on temperature and electromyographic (EMG) signals. FIR improved the neuromuscular performance of knee extensors in resistance-trained males regardless of changes on temperature and EMG. The present results suggest that the FIR could optimize the neuromuscular performance with 82 ± 19 h of wear.
Collapse
Affiliation(s)
- Manoel Silva
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil.
| | - Arthur Gáspari
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - João Barbieri
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Renato Barroso
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Gabriel Figueiredo
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Leonardo Motta
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Antônio Moraes
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| |
Collapse
|
14
|
Juho YC, Tang SH, Lin YH, Lin CX, Liang T, Cherng JH, Meng E. Germanium-Titanium-π Polymer Composites as Functional Textiles for Clinical Strategy to Evaluate Blood Circulation Improvement and Sexual Satisfaction. Polymers (Basel) 2021; 13:polym13234154. [PMID: 34883657 PMCID: PMC8659801 DOI: 10.3390/polym13234154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/22/2023] Open
Abstract
By continuously enhancing the blood flow, far-infrared (FIR) textile is anticipated to be a potential non-pharmacological therapy in patients with peripheral vascular disorders, for instance, patients with end-stage renal disease (ESRD) undergoing hemodialysis (HD) and experiencing vasculogenic erectile dysfunction (VED). Hence, we manufactured a novel polymer composite, namely, germanium-titanium-π (Ge-Ti-π) textile and aimed to evaluate its characteristics and quality. We also investigated the immediate and long-term effects of the textile on patients with ESRD undergoing HD and experiencing VED. The Ge-Ti-π textile was found to have 0.93 FIR emissivity, 3.05 g/d strength, and 18.98% elongation. The results also showed a 51.6% bacteria reduction and negative fungal growth. On application in patients receiving HD, the Ge-Ti-π textile significantly reduced the limb numbness/pain (p < 0.001) and pain score on the visual analog scale (p < 0.001). Moreover, the Doppler ultrasound assessment data indicated a significant enhancement of blood flow in the right hand after 1 week of Ge-Ti-π textile treatment (p < 0.041). In VED patients, the Ge-Ti-π underpants treatment significantly improved the quality of sexual function and increased the average penile blood flow velocity after 3 months of the treatment. Our study suggests that the Ge-Ti-π textile could be beneficial for patients with blood circulation disorders.
Collapse
Affiliation(s)
- Yu-Cing Juho
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.J.); (S.-H.T.)
| | - Shou-Hung Tang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.J.); (S.-H.T.)
| | - Yi-Hsin Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chen-Xi Lin
- School of Nursing, National Defense Medical Center, Taipei 114, Taiwan;
| | - Tenson Liang
- Quality of Pain and Sleep Association, Taipei 105, Taiwan;
| | - Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-H.C.); (E.M.); Tel.: +886-2-8792-3100 (ext. 18681) (J.-H.C.); +886-2-8792-7169 (E.M.)
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.J.); (S.-H.T.)
- Correspondence: (J.-H.C.); (E.M.); Tel.: +886-2-8792-3100 (ext. 18681) (J.-H.C.); +886-2-8792-7169 (E.M.)
| |
Collapse
|
15
|
Bontemps B, Gruet M, Vercruyssen F, Louis J. Utilisation of far infrared-emitting garments for optimising performance and recovery in sport: Real potential or new fad? A systematic review. PLoS One 2021; 16:e0251282. [PMID: 33956901 PMCID: PMC8101933 DOI: 10.1371/journal.pone.0251282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Thanks to the specific materials they embed, far infrared (FIR)-emitting garments can interact with the body's physiological functions. Such effects have been sought in medicine and physiotherapy for a long time for the treatment/relief of a variety of pathologies and disabling conditions. Recently, FIR-emitting garments have been introduced in the sporting domain under the influence of manufacturers seeing here a new opportunity to support physical performance in athletes, though this is not clearly established. To fill this gap, in this systematic review, we summarize the scientific evidence on the use of FIR-emitting garments in sport and provide directions for future research by shedding light on current scientific limitations. METHOD Five scientific databases (PubMed, Cochrane, ScienceDirect, Scopus and SPORTDiscus) were searched by two independent reviewers. Studies investigating the effects of FIR-emitting garments on at least one physiological outcome related to exercise performance and/or recovery in humans were selected. The methodological quality of retained studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. RESULTS AND DISCUSSION Eleven studies met the inclusion criteria and were included in the systematic review. Studies investigating similar outcomes related to exercise performance or recovery were scarce and results inconclusive, which prevents from drawing firm conclusion about the utilisation of FIR-emitting garments in athletes. However, these early results show that FIR-emitting garments may be of interest for exercise performance and recovery, mainly through their effects on the body's thermoregulation and haemodynamic function. The summary provided in this review can be used to inform the design of future studies. (PROSPERO registration number: CRD42021238029).
Collapse
Affiliation(s)
- Bastien Bontemps
- Université de Toulon, Laboratoire IAPS, Toulon, France
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mathieu Gruet
- Université de Toulon, Laboratoire IAPS, Toulon, France
| | | | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
16
|
Cho DH, Lee HJ, Lee JY, Park JH, Jo I. Far-infrared irradiation inhibits breast cancer cell proliferation independently of DNA damage through increased nuclear Ca 2+/calmodulin binding modulated-activation of checkpoint kinase 2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 219:112188. [PMID: 33901880 DOI: 10.1016/j.jphotobiol.2021.112188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Far-infrared (FIR) irradiation is reported to inhibit cell proliferation in various types of cancer cells; the underlying mechanism, however, remains unclear. We explored the molecular mechanisms using MDA-MB-231 human breast cancer cells. FIR irradiation significantly inhibited cell proliferation and colony formation compared to hyperthermal stimulus, with no alteration in cell viability. No increase in DNA fragmentation or phosphorylation of DNA damage kinases including ataxia-telangiectasia mutated kinase, ataxia telangiectasia and Rad3-related kinase, and DNA-dependent protein kinase indicated no DNA damage. FIR irradiation increased the phosphorylation of checkpoint kinase 2 (Chk2) at Thr68 (p-Chk2-Thr68) but not that of checkpoint kinase 1 at Ser345. Increased nuclear p-Chk2-Thr68 and Ca2+/CaM accumulations were found in FIR-irradiated cells, as observed in confocal microscopic analyses and cell fractionation assays. In silico analysis predicted that Chk2 possesses a Ca2+/calmodulin (CaM) binding motif ahead of its kinase domain. Indeed, Chk2 physically interacted with CaM in the presence of Ca2+, with their binding markedly pronounced in FIR-irradiated cells. Pre-treatment with a Ca2+ chelator significantly reversed FIR irradiation-increased p-Chk2-Thr68 expression. In addition, a CaM antagonist or small interfering RNA-mediated knockdown of the CaM gene expression significantly attenuated FIR irradiation-increased p-Chk2-Thr68 expression. Finally, pre-treatment with a potent Chk2 inhibitor significantly reversed both FIR irradiation-stimulated p-Chk2-Thr68 expression and irradiation-repressed cell proliferation. In conclusion, our results demonstrate that FIR irradiation inhibited breast cancer cell proliferation, independently of DNA damage, by activating the Ca2+/CaM/Chk2 signaling pathway in the nucleus. These results demonstrate a novel Chk2 activation mechanism that functions irrespective of DNA damage.
Collapse
Affiliation(s)
- Du-Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea
| | - Jee Young Lee
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, South Korea.
| |
Collapse
|
17
|
Kim HY, Oh SY, Choi YM, Park JH, Kim HS, Jo I. Transient receptor potential vanilloid 2 mediates the inhibitory effect of far-infrared irradiation on adipogenic differentiation of tonsil-derived mesenchymal stem cells. Stem Cell Res 2021; 53:102291. [PMID: 33780730 DOI: 10.1016/j.scr.2021.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS Far-infrared (FIR) irradiation inhibits adipogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs) by activating Ca2+-dependent protein phosphatase 2B (PP2B), but it stimulates osteogenic differentiation in a PP2B-independent pathway. We investigated the potential involvement of transient receptor potential vanilloid (TRPV) channels, a well-known Ca2+-permeable channel, in the effects of FIR irradiation on adipogenic or osteogenic differentiation of TMSCs. METHODS TMSCs, in the absence or presence of activators or inhibitors, were exposed to FIR irradiation followed by adipogenic or osteogenic differentiation, which was assessed using Oil red O or Alizarin red S staining, respectively. RT-PCR, qRT-PCR, and Western blotting were used to determine gene and protein expression of calcium channels and adipocyte-specific markers. RESULTS Treatment with the calcium ionophore ionomycin simulated the inhibitory effect of FIR irradiation on adipogenic differentiation but had no effect on osteogenic differentiation, indicating the involvement of intracellular Ca2+ in adipogenic differentiation. Inhibition of pan-TRP channels using ruthenium red reversed the FIR irradiation-induced inhibition of adipogenic differentiation. Among the TRP channels tested, inhibition of the TRPV2 channel by tranilast or siRNA against TRPV2 attenuated the inhibitory effect of FIR irradiation on adipogenic differentiation, accompanied by a decrease in intracellular Ca2+ levels. By contrast, activation of the TRPV2 channel by probenecid simulated FIR irradiation-induced inhibition of adipogenic differentiation. Expectedly, the stimulatory effect of FIR irradiation on osteogenic differentiation was independent of the TRPV2 channel. CONCLUSION Our data demonstrate that the TRPV2 channel is a sensor/receptor for the inhibited adipogenic differentiation of TMSCs associated with FIR irradiation.
Collapse
Affiliation(s)
- Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Young Min Choi
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
| |
Collapse
|
18
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
19
|
Nunes RFH, Cidral-Filho FJ, Flores LJF, Nakamura FY, Rodriguez HFM, Bobinski F, De Sousa A, Petronilho F, Danielski LG, Martins MM, Martins DF, Guglielmo LGA. Effects of Far-Infrared Emitting Ceramic Materials on Recovery During 2-Week Preseason of Elite Futsal Players. J Strength Cond Res 2020; 34:235-248. [PMID: 30113919 DOI: 10.1519/jsc.0000000000002733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nunes, RFH, Cidral-Filho, FJ, Flores, LJF, Nakamura, FY, Rodriguez, HFM, Bobinski, F, De Sousa, A, Petronilho, F, Danielski, LG, Martins, MM, Martins, DF, and Guglielmo, LGA. Effects of far-infrared emitting ceramic materials on recovery during 2-week preseason of elite futsal players. J Strength Cond Res 34(1): 235-248, 2020-We investigated the effects of far-infrared emitting ceramic materials (cFIR) during overnight sleep on neuromuscular, biochemical and perceptual markers in futsal players. Twenty athletes performed a 2-week preseason training program and during sleep wore bioceramic (BIO; n = 10) or placebo pants (PL; n = 10). Performance (countermovement jump [CMJ]; squat jump [SJ]; sprints 5, 10, and 15-m) and biochemical markers (tumor necrosis factor alpha-TNF-α, interleukin 10-IL-10, thiobarbituric acid-reactive species [TBARS], carbonyl, superoxide dismutase [SOD], catalase [CAT]) were obtained at baseline and after the 1st and 2nd week of training. Delayed-onset muscle soreness (DOMS) and training strain were monitored throughout. Changes in ΔCMJ and ΔSJ were possibly (60/36/4 [week-1]) and likely (76/22/2 [week-2]) higher in BIO. Both groups were faster in 5-m sprint in week 2 compared with baseline (p = 0.015), furthermore, BIO was likely faster in 10-m sprint (3/25/72 [week 1]). Significant group × time interaction in %ΔTNF-α were observed (p = 0.024 [week-1]; p = 0.021 [week-2]) with values possibly (53/44/3 [week 1]) and likely (80/19/1 [week 2]) higher in BIO. The %ΔIL-10 decreased across weeks compared with baseline (p = 0.019 [week-1]; p = 0.026 [week-2]), showing values likely higher in BIO (81/16/3 [week-1]; 80/17/3 [week-2]). Significant weekly increases in %ΔTBARS (p = 0.001 [week-1]; p = 0.011 [week-2]) and %ΔCarbonyl (p = 0.002 [week-1]; p < 0.001 [week-2]) were observed compared with baseline, showing likely (91/5/4 [week-1]) and possibly (68/30/2 [week-2]) higher changes in BIO. Significant weekly decreases in %ΔSOD were observed compared with baseline (p = 0.046 [week 1]; p = 0.011 [week-2]), and between week 2 and week 1 (p = 0.021), in addition to significant decreases in %ΔCAT compared with baseline (p = 0.070 [week 1]; p = 0.012 [week 2]). Training strain (p = 0.021; very -likely [0/2/98]; week 1) and DOMS was lower in BIO (likely; 7 sessions) with differences over time (p = 0.001). The results suggest that the daily use of cFIR clothing could facilitate recovery, especially on perceptual markers during the early phases of an intensive training period.
Collapse
Affiliation(s)
- Renan F H Nunes
- Departament of Physical Education, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Francisco J Cidral-Filho
- Laboratory of Experimental Neurosciences and Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Lucinar J F Flores
- Department of Physical Education, State University of Western Parana, Marechal Cândido Rondon, Paraná, Brazil
| | - Fabio Y Nakamura
- The College of Healthcare Sciences, James Cook University, Douglas, Queensland, Australia.,Department of Medicine and Aging Sciences, "G. d'annunzio", University of Chieti-Pescara, Pescara, Italy
| | | | - Franciane Bobinski
- Laboratory of Experimental Neurosciences and Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Amanda De Sousa
- Laboratory of Experimental Neurosciences and Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Lucineia G Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Maryane M Martins
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neurosciences and Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Luiz G A Guglielmo
- Departament of Physical Education, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
20
|
Sharma N, Shin EJ, Kim NH, Cho EH, Nguyen BT, Jeong JH, Jang CG, Nah SY, Kim HC. Far-infrared Ray-mediated Antioxidant Potentials are Important for Attenuating Psychotoxic Disorders. Curr Neuropharmacol 2020; 17:990-1002. [PMID: 30819085 PMCID: PMC7052827 DOI: 10.2174/1570159x17666190228114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Far-infrared ray (FIR) is an electromagnetic wave that produces various health benefits against pathophysiological conditions, such as diabetes mellitus, renocardiovascular disorders, stress, and depression etc. However, the therapeutic ap-plication on the FIR-mediated protective potentials remains to be further extended. To achieve better understanding on FIR-mediated therapeutic potentials, we summarized additional findings in the present study that exposure to FIR ameliorates stressful condition, memory impairments, drug dependence, and mitochondrial dysfunction in the central nervous system. In this review, we underlined that FIR requires modulations of janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3), nuclear factor E2-related factor 2 (Nrf-2), muscarinic M1 acetylcholine receptor (M1 mAChR), dopamine D1 receptor, protein kinase C δ gene, and glutathione peroxidase-1 gene for exerting the protective potentials in response to neuropsychotoxic conditions
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Choon Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon 16419, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
21
|
Effects of Far-Infrared Emitting Ceramic Material Clothing on Recovery after Maximal Eccentric Exercise. J Hum Kinet 2019; 70:135-144. [PMID: 31915483 PMCID: PMC6942487 DOI: 10.2478/hukin-2019-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine whether Far-Infrared Emitting Ceramic Materials worn as Bioceramic pants would improve neuromuscular performance, biochemical and perceptual markers in healthy individuals after maximal eccentric exercise. Twenty-two moderately active men were randomized into Bioceramic (n = 11) or Placebo (n = 11) groups. To induce muscle damage, three sets of 30 maximal isokinetic eccentric contractions of the quadriceps were performed at 60°·s-1. Participants wore the bioceramic or placebo pants for 2 hours immediately following the protocol, and then again for 2 hours prior to each subsequent testing session at 24, 48 and 72 hours post. Plasma creatine kinase and lactate dehydrogenase activity, delayed-onset muscle soreness, perceived recovery status, and maximal voluntary contraction were measured pre-exercise and 2, 24, 48, and 72 hours post-exercise. Eccentric exercise induced muscle damage as evident in significant increases in delayed-onset muscle soreness at 24 - 72 hours (p < 0.05) and creatine kinase between Pre to 2, 24, 48 and 72 hours (p < 0.05). Despite the increased delayed-onset muscle soreness and creatine kinase values, no effect of Bioceramic was evident (p > 0.05). Furthermore, decreases in maximal voluntary contraction between Pre and immediately, 2, 24, 48 and 72 hours post (p < 0.05) were reported. However, the standardized difference was moderate lower for lactate dehydrogenase at 24 h (ES = 0.50), but higher at 48 h (ES = -0.58) in the Bioceramic compared to the Placebo group. Despite inducing muscle damage, the daily use of Far-Infrared Emitting Ceramic Materials clothing over 72 hours did not facilitate recovery after maximal eccentric exercise.
Collapse
|
22
|
Far-Infrared-Emitting Sericite Board Upregulates Endothelial Nitric Oxide Synthase Activity through Increasing Biosynthesis of Tetrahydrobiopterin in Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1813282. [PMID: 31781259 PMCID: PMC6875339 DOI: 10.1155/2019/1813282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
Far-infrared ray (FIR) therapy has been reported to exert beneficial effects on cardiovascular function by elevating endothelial nitric oxide synthesis (eNOS) activity and nitric oxide (NO) production. Tetrahydrobiopterin (BH4) is a key determinant of eNOS-dependent NO synthesis in vascular endothelial cells. However, whether BH4 synthesis is associated with the effects of FIR on eNOS/NO production has not yet been investigated. In this study, we investigated the effects of FIR on BH4-dependent eNOS/NO production and vascular function. We used FIR-emitting sericite boards as an experimental material and placed human umbilical vein endothelial cells (HUVECs) and Sprague–Dawley rats on the boards with or without FIR irradiation and then evaluated vascular relaxation by detecting NO generation, BH4 synthesis, and Akt/eNOS activation. Our results showed that FIR radiation significantly enhanced Akt/eNOS phosphorylation and NO production in human endothelial cells and aorta tissues. FIR can also induce BH4 storage by elevating levels of enzymes (e.g., guanosine triphosphate cyclohydrolase-1, 6-pyruvoyl tetrahydrobiopterin synthase, sepiapterin reductase, and dihydrofolate reductase), which ultimately results in NO production. These results indicate that FIR upregulated eNOS-dependent NO generation via BH4 synthesis and Akt phosphorylation, which contributes to the regulation of vascular function. This might develop potential clinical application of FIR to treat vascular diseases by augmenting the BH4/NO pathway.
Collapse
|
23
|
Sharma N, Shin EJ, Kim NH, Cho EH, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochem Int 2019; 122:144-148. [DOI: 10.1016/j.neuint.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
24
|
Shemilt R, Bagabir H, Lang C, Khan F. Potential mechanisms for the effects of far-infrared on the cardiovascular system - a review. VASA 2018; 48:303-312. [PMID: 30421656 DOI: 10.1024/0301-1526/a000752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Far-infrared (FIR) is a form of thermal radiation, which may have beneficial effects on cardiovascular health. Clinical studies suggest that FIR irradiation may have therapeutic effects in heart failure, myocardial ischaemia and may improve flow and survival of arteriovenous fistula. Animal studies have suggested a wide range of potential mechanisms involving endothelial nitric oxide synthase and nitric oxide bioavailability, oxidative stress, heat shock proteins and endothelial precursor cells. However, the exact cellular and molecular mechanism of FIR on the cardiovascular system remains elusive. The purpose of this review is to discuss the current literature, focusing on mechanistic studies involving the cardiovascular system, and with a view to highlighting areas for future investigation.
Collapse
Affiliation(s)
- Richard Shemilt
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| | - Hala Bagabir
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| | - Chim Lang
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| | - Faisel Khan
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| |
Collapse
|
25
|
Li K, Zhang Z, Liu NF, Sadigh P, Evans VJ, Zhou H, Gao W, Zhang YX. Far-Infrared Radiation Thermotherapy Improves Tissue Fibrosis in Chronic Extremity Lymphedema. Lymphat Res Biol 2018; 16:248-257. [PMID: 28961078 DOI: 10.1089/lrb.2016.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ke Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ning Fei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Parviz Sadigh
- Department of Plastic Reconstructive Surgery, The Royal London Hospital, London, United Kingdom
| | - Verity Joyce Evans
- Department of Plastic Reconstructive Surgery, The Royal London Hospital, London, United Kingdom
| | - Huihong Zhou
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Weiqing Gao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Xin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Jang CG, Cho EH, Nah SY, Kim NH, Nabeshima T, Kim HC. Exposure to far-infrared rays attenuates methamphetamine-induced recognition memory impairment via modulation of the muscarinic M1 receptor, Nrf2, and PKC. Neurochem Int 2018; 116:63-76. [PMID: 29572053 DOI: 10.1016/j.neuint.2018.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
We demonstrated that activation of protein kinase Cδ (PKCδ) and inactivation of the glutathione peroxidase-1 (GPx-1)-dependent systems are critical for methamphetamine (MA)-induced recognition memory impairment. We also demonstrated that exposure to far-infrared rays (FIR) causes induction of the glutathione (GSH)-dependent system, including induction of the GPx-1 gene. Here, we investigated whether exposure to FIR rays affects MA-induced recognition memory impairment and whether it modulates PKC, cholinergic receptors, and the GSH-dependent system. Because the PKC activator bryostatin-1 mainly induces PKCα, PKCε, and PKCδ, we assessed expression of these proteins after MA treatment. MA treatment selectively increased PKCδ expression and its phosphorylation. Exposure to FIR rays significantly attenuated MA-induced increases in PKCδ phosphorylation. Importantly, bryostatin-1 potentiated MA-induced phosphorylation of PKCδ. MA treatment significantly decreased M1, M3, and M4 muscarinic acetylcholine receptors (mAChRs) and β2 nicotinic acetylcholine receptor expression. Of these, the decrease was most pronounced in M1 mAChR. Exposure to FIR significantly attenuated MA-induced decreases in the M1 mAChR and phospho-ERK1/2, while it facilitated Nrf2-dependent GSH induction. Dicyclomine, an M1 mAChR antagonist, and l-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of GSH synthesis, counteracted against the protective potentials mediated by FIR. More importantly, the memory-enhancing potential of FIR rays was significantly counteracted by bryostatin-1, dicyclomine, and BSO. Our results suggest that exposure to FIR rays attenuates MA-induced impairment in recognition memory via up-regulation of M1 mAChR, Nrf2-dependent GSH induction, and ERK1/2 phosphorylation by inhibiting PKCδ phosphorylation by bryostatin-1.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, KonKuk University, Seoul 05029, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Aino University, Ibaragi, 567-0012, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
27
|
Xu S, Liu B, Yin M, Koroleva M, Mastrangelo M, Ture S, Morrell CN, Zhang DX, Fisher EA, Jin ZG. A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget 2018; 7:37622-37635. [PMID: 27191895 PMCID: PMC5122337 DOI: 10.18632/oncotarget.9376] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/29/2016] [Indexed: 11/25/2022] Open
Abstract
TRPV4 ion channel mediates vascular mechanosensitivity and vasodilation. Here, we sought to explore whether non-mechanical activation of TRPV4 could limit vascular inflammation and atherosclerosis. We found that GSK1016790A, a potent and specific small-molecule agonist of TRPV4, induces the phosphorylation and activation of eNOS partially through the AMPK pathway. Moreover, GSK1016790A inhibited TNF-α-induced monocyte adhesion to human endothelial cells. Mice given GSK1016790A showed increased phosphorylation of eNOS and AMPK in the aorta and decreased leukocyte adhesion to TNF-α-inflamed endothelium. Importantly, oral administration of GSK1016790A reduced atherosclerotic plaque formation in ApoE deficient mice fed a Western-type diet. Together, the present study suggests that pharmacological activation of TRPV4 may serve as a potential therapeutic approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Bin Liu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Meimei Yin
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael Mastrangelo
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sara Ture
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Craig N Morrell
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, and The Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
28
|
Innocenti M, Mancini M, Faccio M, Carulli C, Buselli P, Messina S, Quattrone G, Spaggiari P. The Use of a High-Tech Knee Pad for Reduction of the Postoperative Effusion after Total Knee Arthroplasty. JOINTS 2017; 5:7-11. [PMID: 29114623 PMCID: PMC5672854 DOI: 10.1055/s-0037-1601406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purpose
After total knee arthroplasty (TKA), pain and swelling, especially in older and less cooperative patients, can limit the retrieval of a good range of motion and muscle tone and consequently the achievement of an optimal function outcome. A high-tech knee pad made of metal fibers emitting infrared energy was used in a group of patients undergoing TKA to assess its efficacy in the postoperative period with respect to a group with a placebo.
Methods
Twelve patients used knee pads after surgery for 3 weeks and were evaluated using visual analog scale (VAS), Knee Society Rating Score, Cincinnati Knee Rating Score, and painkillers at specific timings.
Results
At 3 weeks, all scores improved in a significant manner in the treated group compared with the placebo group. At 2 months after surgery, VAS was better in the study group than the control group, whereas other parameters were similar. However, the use of rescue drugs was less in the study group than in the placebo group.
Conclusion
A high-tech knee pad may contribute to a faster recovery within the first week after a knee replacement, limiting the use of painkillers and allowing a quick functional recovery by the control of pain and postoperative effusion.
Level of Evidence
Level II, randomized prospective study with small sample size.
Collapse
Affiliation(s)
| | - Michele Mancini
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Marina Faccio
- Department of Orthopaedics, University of Florence, Florence, Italy
| | | | - Paolo Buselli
- Department of Rehabilitation, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | - Sara Messina
- Department of Rehabilitation, Azienda Ospedaliera Istituti Ospitalieri, Cremona, Italy
| | | | | |
Collapse
|
29
|
Dual contribution of TRPV4 antagonism in the regulatory effect of vasoinhibins on blood-retinal barrier permeability: diabetic milieu makes a difference. Sci Rep 2017; 7:13094. [PMID: 29026201 PMCID: PMC5638810 DOI: 10.1038/s41598-017-13621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/29/2017] [Indexed: 01/05/2023] Open
Abstract
Breakdown of the blood-retinal barrier (BRB), as occurs in diabetic retinopathy and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing vision loss. Vasoinhibins are N-terminal fragments of prolactin that prevent BRB breakdown during diabetes. They modulate the expression of some transient receptor potential (TRP) family members, yet their role in regulating the TRP vanilloid subtype 4 (TRPV4) remains unknown. TRPV4 is a calcium-permeable channel involved in barrier permeability, which blockade has been shown to prevent and resolve pulmonary edema. We found TRPV4 expression in the endothelium and retinal pigment epithelium (RPE) components of the BRB, and that TRPV4-selective antagonists (RN-1734 and GSK2193874) resolve BRB breakdown in diabetic rats. Using human RPE (ARPE-19) cell monolayers and endothelial cell systems, we further observed that (i) GSK2193874 does not seem to contribute to the regulation of BRB and RPE permeability by vasoinhibins under diabetic or hyperglycemic-mimicking conditions, but that (ii) vasoinhibins can block TRPV4 to maintain BRB and endothelial permeability. Our results provide important insights into the pathogenesis of diabetic retinopathy that will further guide us toward rationally-guided new therapies: synergistic combination of selective TRPV4 blockers and vasoinhibins can be proposed to mitigate diabetes-evoked BRB breakdown.
Collapse
|
30
|
Li K, Xia L, Liu NF, Nicoli F, Constantinides J, D'Ambrosia C, Lazzeri D, Tremp M, Zhang JF, Zhang YX. Far infrared ray (FIR) therapy: An effective and oncological safe treatment modality for breast cancer related lymphedema. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:95-101. [DOI: 10.1016/j.jphotobiol.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023]
|
31
|
Li K, Xu H, Liu NF, Sadigh P, Evans V, Zhang YX. Far-infrared ray for treating chronic lower extremity lymphedema with dermatolymphangioadenitis: a postoperative complication of gynecological tumor resection. Arch Gynecol Obstet 2017; 295:1441-1450. [DOI: 10.1007/s00404-017-4371-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
|
32
|
Efficacy and safety of far infrared radiation in lymphedema treatment: clinical evaluation and laboratory analysis. Lasers Med Sci 2017; 32:485-494. [DOI: 10.1007/s10103-016-2135-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/21/2016] [Indexed: 01/10/2023]
|
33
|
Li K, Liu N, Yu Z, Sadigh P, Lazzeri D, Zhang YX. Heating and Compression Bandage Treatment Is Effective for Chronic Lymphedema with Dermatolymphangioadenitis—A Case-Controlled Study. Lymphat Res Biol 2016; 14:233-239. [PMID: 27267348 DOI: 10.1089/lrb.2015.0054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ke Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningfei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziyou Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Parviz Sadigh
- The Royal London Hospital, Department of Plastic Reconstructive Surgery, London, United Kingdom
| | - Davide Lazzeri
- Plastic Reconstructive and Aesthetic Surgery Unit, Villa Salaria Clinic, Rome, Italy
| | - Yi Xin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Li N, Zhao Y, Yue Y, Chen L, Yao Z, Niu W. Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance. Biochem Biophys Res Commun 2016; 478:46-52. [PMID: 27457805 DOI: 10.1016/j.bbrc.2016.07.095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023]
Abstract
PURPOSE Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, is an antidiabetic drug. It has been shown to improve endothelial dysfunction, but the mechanism remains somewhat unclear. Leptin can also improve endothelial function. Cardiovascular disease (CVD) is linked to hyperleptinemia, and leptin resistance, how liraglutide influences the effect of leptin on endothelial function, is never reported. We used palmitic acid (PA) to mimic hyperlipidemia in endothelial cells to explore the cardio-protective mechanism of liraglutide and its impact on the role of leptin. METHODS Human umbilical vein endothelial cells (HUVECs) were incubated with PA for 16 h and then were treated with liraglutide for 30 min. RESULTS PA elevated not only phosphorylation of JNK and IKKα/β, but also the expression of IL-6 in HUVECs. These effects of PA were reversed by liraglutide. In addition, liraglutide increased phosphorylation of eNOS, AMPK, and the release of NO but had no effect on PKC phosphorylation. In addition, leptin elevated eNOS phosphorylation but was abrogated by PA. However, in the presence of liraglutide, leptin regained its function of elevating eNOS phosphorylation. Last, we found that liraglutide inhibited PA-elevated SOCS3, which is a marker of leptin resistance. CONCLUSIONS GLP-1 impairs endothelial inflammatory signals, improves endothelial function, and reverses leptin resistance.
Collapse
Affiliation(s)
- Nana Li
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China; Tianjin Hospital, Tianjin, 300070, China
| | - Yihe Zhao
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yingying Yue
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
35
|
Loturco I, Abad C, Nakamura FY, Ramos SP, Kobal R, Gil S, Pereira LA, Burini F, Roschel H, Ugrinowitsch C, Tricoli V. Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: a randomized double-blind placebo-controlled trial. Biol Sport 2016; 33:277-83. [PMID: 27601783 PMCID: PMC4993144 DOI: 10.5604/20831862.1208479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
The aim was to investigate the effects of far infrared (FIR) ray emitting clothes on indirect markers of exercise-induced muscle damage and physical performance recovery after a plyometric bout applied to soccer players. Twenty-one male players (18.9±0.6 years; 70.8±5.01 kg; 178.3±0.06 cm) performed 100 drop-jumps. Six hours after the bout, athletes put on FIR clothes (FIR) (density of 225 g·m-2, 88% far infrared rays emitting polyamide 66 Emana yarn (PA66) fibre, 12% Spandex, emissivity of 0.88 and power emitted of 341 W/m2µm at 37°C in the 5-20 µm wavelength range, patent WO 2009/077834 A2) (N = 10) or placebo clothes (PLA) (N = 11). Mid-thigh circumferences, creatine kinase (CK), and delayed-onset muscle soreness (DOMS) were assessed before, immediately after and 24, 48, and 72 h after the bout. Squat (SJ) and countermovement jump (CMJ) heights were measured before and at 24, 48, and 72 h after, while 1RM leg press (maximum strength) was measured before and at 72 h after the plyometrics. No differences between groups were found in mid-thigh circumferences, SJ, CMJ or 1RM. CK increased significantly 24 h after the plyometrics in comparison to before (p < 0.05) in both groups. PLA showed significant DOMS increases at 24, 48, and 72 h, while FIR showed significant increases at 24 and 48 h (p < 0.05). DOMS effect sizes were greater in FIR (moderate at 48 h, ES = 0.737 and large at 72 h, ES = 0.844), suggesting that FIR clothes may reduce perceived DOMS after an intense plyometric session performed by soccer players.
Collapse
Affiliation(s)
- I Loturco
- NAR - Nucleus of High Performance in Sport, São Paulo, SP, Brazil
| | - Ccc Abad
- NAR - Nucleus of High Performance in Sport, São Paulo, SP, Brazil
| | - F Y Nakamura
- State University of Londrina, Londrina, PR, Brazil
| | - S P Ramos
- State University of Londrina, Londrina, PR, Brazil
| | - R Kobal
- NAR - Nucleus of High Performance in Sport, São Paulo, SP, Brazil
| | - S Gil
- NAR - Nucleus of High Performance in Sport, São Paulo, SP, Brazil
| | - L A Pereira
- NAR - Nucleus of High Performance in Sport, São Paulo, SP, Brazil
| | - Fhp Burini
- Nutrition and Exercise Metabolism Center - UNESP, Botucatu, SP, Brazil
| | - H Roschel
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - C Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - V Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Wang Q, Zhang Y, Li D, Zhang Y, Tang B, Li G, Yang Y, Yang D. Transgenic overexpression of transient receptor potential vanilloid subtype 1 attenuates isoproterenol-induced myocardial fibrosis in mice. Int J Mol Med 2016; 38:601-9. [PMID: 27314441 DOI: 10.3892/ijmm.2016.2648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel with high permeability to Ca2+. Intracellular Ca2+ signaling is an essential regulator of endothelial nitric oxide (NO) synthase (eNOS) that plays a beneficial role in myocardial fibrosis. The aim of the present study was to determine the role of TRPV1 in isoproterenol-induced myocardial fibrosis. Transgenic mice overexpressing TRPV1 were generated on a C57BL/6J genetic background. An animal model of myocardial fibrosis was created by subcutaneously injecting the mice with isoproterenol. We found that the wild-type mice exhibited a significant increase in heart/body weight ratio, left ventricle/body weight ratio, left ventricular end-diastolic pressure (LVEDP), the cardiac fibrotic lesion area and collagen content, as well as a marked decrease in eNOS phosphorylation and NO/cyclic guanosine monophosphate (cGMP) levels at 2 weeks after the administration of isoproterenol (all p<0.01). However, these changes were significantly attenuated in the TRPV1 transgenic mice (p<0.05 or p<0.01). Moreover, the beneficial effects on myocardial fibrosis exerted by the overexpression of TRPV1 were attenuated by the administration of the eNOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (all p<0.05). Similar anti-fibrotic effects were observed in in vitro experiments with primary cultured cardiac fibroblasts. The findings of our study suggest that TRPV1 overexpression attenuates isoproterenol‑induced myocardial fibrosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yunrong Zhang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yan Zhang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Bing Tang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Gang Li
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Jinniu, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
37
|
Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311:C462-78. [PMID: 27306369 DOI: 10.1152/ajpcell.00341.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
Abstract
First characterized in neuronal tissues, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key signaling component in several mammalian biological systems. Its unique capacity to integrate various Ca(2+) signals into different specific outcomes is a precious asset to excitable and nonexcitable cells. Numerous studies have reported roles and mechanisms involving CaMKII in brain and heart tissues. However, corresponding functions in vascular cell types (endothelium and vascular smooth muscle cells) remained largely unexplored until recently. Investigation of the intracellular Ca(2+) dynamics, their impact on vascular cell function, the regulatory processes involved and more recently the spatially restricted oscillatory Ca(2+) signals and microdomains triggered significant interest towards proteins like CaMKII. Heteromultimerization of CaMKII isoforms (four isoforms and several splice variants) expands this kinase's peculiar capacity to decipher Ca(2+) signals and initiate specific signaling processes, and thus controlling cellular functions. The physiological functions that rely on CaMKII are unsurprisingly diverse, ranging from regulating contractile state and cellular proliferation to Ca(2+) homeostasis and cellular permeability. This review will focus on emerging evidence of CaMKII as an essential component of the vascular system, with a focus on the kinase isoform/splice variants and cellular system studied.
Collapse
Affiliation(s)
- Fanny Toussaint
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Molecular and Integrative Physiology, Université de Montréal, Montreal Quebec, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montreal Quebec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal Quebec, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and
| |
Collapse
|
38
|
Li X, Dai Y, Yan S, Shi Y, Li J, Liu J, Cha L, Mu J. Resveratrol lowers blood pressure in spontaneously hypertensive rats via calcium-dependent endothelial NO production. Clin Exp Hypertens 2016; 38:287-93. [PMID: 27018796 DOI: 10.3109/10641963.2015.1089882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Resveratrol, a polyphenol of natural compounds, has beneficial cardiovascular effects, many of which are mediated by nitric oxide (NO). Resveratrol increases intracellular calcium and activates AMP-activated protein kinase (AMPK), all of which could increase NO production. We hypothesized that resveratrol via a calcium-dependent NO production lowers blood pressure (BP) in spontaneously hypertensive rats (SHR). METHODS Acetylcholine (Ach)-induced endothelium-dependent relaxations in rat aortas were examined by organ chamber. Blood pressures were determined by radiotelemetry methods. RESULTS Incubation of isolated aortas from SHR with resveratrol dramatically improved vasorelaxation induced by Ach. Preincubation of aortas with endothelial NO synthase (eNOS) inhibitor or calcium chelant blunted the effects of resveratrol on Ach-induced relaxation, as wells as NO production and eNOS phosphorylation. In animal studies, administration of resveratrol significantly lowered systemic BP in SHR. CONCLUSION Resveratrol increases endothelial NO production to improve endothelial dysfunction and lowers BP in hypertensive rats, which depends on calcium-eNOS activation.
Collapse
Affiliation(s)
- Xin Li
- a Department of Cardiology , The First Affiliated Hospital of Medical College, Xi'an Jiao Tong University , Xi'an , China.,b Department of Cardiology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Yingnan Dai
- b Department of Cardiology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Shujun Yan
- b Department of Cardiology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Yanli Shi
- b Department of Cardiology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Jingxiu Li
- b Department of Cardiology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Jinglu Liu
- b Department of Cardiology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Li Cha
- b Department of Cardiology , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Jianjun Mu
- a Department of Cardiology , The First Affiliated Hospital of Medical College, Xi'an Jiao Tong University , Xi'an , China
| |
Collapse
|
39
|
Choi SJ, Cho EH, Jo HM, Min C, Ji YS, Park MY, Kim JK, Hwang SD. Clinical utility of far-infrared therapy for improvement of vascular access blood flow and pain control in hemodialysis patients. Kidney Res Clin Pract 2015; 35:35-41. [PMID: 27069856 PMCID: PMC4811988 DOI: 10.1016/j.krcp.2015.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023] Open
Abstract
Background Maintenance of a well-functioning vascular access and minimal needling pain are important goals for achieving adequate dialysis and improving the quality of life in hemodialysis (HD) patients. Far-infrared (FIR) therapy may improve endothelial function and increase access blood flow (Qa) and patency in HD patients. The aim of this study was to evaluate effects of FIR therapy on Qa and patency, and needling pain in HD patients. Methods This prospective clinical trial enrolled 25 outpatients who maintained HD with arteriovenous fistula. The other 25 patients were matched as control with age, sex, and diabetes. FIR therapy was administered for 40 minutes during HD 3 times/wk and continued for 12 months. The Qa was measured by the ultrasound dilution method, whereas pain was measured by a numeric rating scale at baseline, then once per month. Results One patient was transferred to another facility, and 7 patients stopped FIR therapy because of an increased body temperature and discomfort. FIR therapy improved the needling pain score from 4 to 2 after 1 year. FIR therapy increased the Qa by 3 months and maintained this change until 1 year, whereas control patients showed the decrease in Qa. The 1-year unassisted patency with FIR therapy was not significantly different from control. Conclusion FIR therapy improved needling pain. Although FIR therapy improved Qa, the unassisted patency was not different compared with the control. A larger and multicenter study is needed to evaluate the effect of FIR therapy.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
- Corresponding author. Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Jung-dong, Wonmi-gu, Bucheon, Gyunggi, 420-767, Korea.
| | - Eun Hee Cho
- Artificial Kidney Unit, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hye Min Jo
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Changwook Min
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Sok Ji
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Moo Yong Park
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Kuk Kim
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Seung Duk Hwang
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
40
|
Hwang S, Lee HJ, Kim G, Won KJ, Park YS, Jo I. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis. Free Radic Biol Med 2015; 89:229-40. [PMID: 26393424 DOI: 10.1016/j.freeradbiomed.2015.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/14/2015] [Accepted: 08/05/2015] [Indexed: 11/30/2022]
Abstract
Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.
Collapse
Affiliation(s)
- Soojin Hwang
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Gyungah Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Kyung-Jong Won
- Department of Medical Science, School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - Yoon Shin Park
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea.
| |
Collapse
|
41
|
Peng H, Zhuang Y, Harbeck MC, He D, Xie L, Chen W. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation. PLoS One 2015; 10:e0142854. [PMID: 26560496 PMCID: PMC4641627 DOI: 10.1371/journal.pone.0142854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01). VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01). Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.
Collapse
Affiliation(s)
- Hu Peng
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Yugang Zhuang
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Mark C. Harbeck
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Donghong He
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Lishi Xie
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| | - Weiguo Chen
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States
| |
Collapse
|
42
|
Toussaint F, Charbel C, Blanchette A, Ledoux J. CaMKII regulates intracellular Ca²⁺ dynamics in native endothelial cells. Cell Calcium 2015; 58:275-85. [PMID: 26100947 DOI: 10.1016/j.ceca.2015.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 01/11/2023]
Abstract
Localized endothelial Ca(2+) signalling, such as Ca(2+) pulsars, can modulate the contractile state of the underlying vascular smooth muscle cell through specific endothelial targets. In addition to K(Ca)3.1 as a target, Ca(2+) pulsars, an IP3R-dependent pulsatile Ca(2+) release from the endoplasmic reticulum (ER) could activate a frequency-sensitive Ca(2+)-dependent kinase such as CaMKII. In the absence of extracellular Ca(2+), acetylcholine increased endothelial CaMKII phosphorylation and activation, thereby suggesting CaMKII activation independently of Ca(2+) influx. Herein, a reciprocal relation where CaMKII controls endothelial Ca(2+) dynamics has been investigated in mesenteric arteries. Both CaMKIIα and β isoforms have been identified in endothelial cells and close proximity (<40 nm) suggests their association in heteromultimers. Intracellular Ca(2+) monitoring with high speed confocal microscopy then showed that inhibition of CaMKII with KN-93 significantly increased the population of Ca(2+) pulsars active sites (+89%), suggesting CaMKII as a major regulator of Ca(2+) pulsars in native endothelium. Mechanistic insights were then sought through the elucidation of the impact of CaMKII on ER Ca(2+) store. ER Ca(2+) emptying was accelerated by CaMKII inhibition and ER Ca(2+) content was assessed using ionomycin. Exposure to KN-93 strongly diminished ER Ca(2+) content (-61%) by relieving CaMKII-dependent inhibition of IP3 receptors (IP3R). Moreover, in situ proximity ligation assay suggested CaMKII-IP3R promiscuity, essential condition for a protein-protein interaction. Interestingly, segregation of IP3R within myoendothelial projection (MEP) appears to be isoform-specific. Hence, only IP3R type 1 and type 2 are detected within fenestrations of the internal elastic lamina, sites of MEP, whilst type 3 is absent from these structures. In summary, CaMKII seems to act as a Ca(2+)-sensitive switch of a negative feedback loop regulating endothelial Ca(2+) homeostasis, including Ca(2+) pulsars.
Collapse
Affiliation(s)
- Fanny Toussaint
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Department of Physiology, Université de Montréal, Québec, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Department of Pharmacology, Université de Montréal, Québec, Canada
| | | | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Department of Physiology, Université de Montréal, Québec, Canada; Department of Pharmacology, Université de Montréal, Québec, Canada; Department of Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
43
|
Shui S, Wang X, Chiang JY, Zheng L. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: A systematic review. Exp Biol Med (Maywood) 2015; 240:1257-65. [PMID: 25716016 DOI: 10.1177/1535370215573391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/31/2014] [Indexed: 01/08/2023] Open
Abstract
Physical therapy (physiotherapy), a complementary and alternative medicine therapy, has been widely applied in diagnosing and treating various diseases and defects. Increasing evidence suggests that convenient and non-invasive far-infrared (FIR) rays, a vital type of physiotherapy, improve the health of patients with cardiovascular disease, diabetes mellitus, and chronic kidney disease. Nevertheless, the molecular mechanisms by which FIR functions remain elusive. Hence, the purpose of this study was to review and summarize the results of previous investigations and to elaborate on the molecular mechanisms of FIR therapy in various types of disease. In conclusion, FIR therapy may be closely related to the increased expression of endothelial nitric oxide synthase as well as nitric oxide production and may modulate the profiles of some circulating miRNAs; thus, it may be a beneficial complement to treatments for some chronic diseases that yields no adverse effects.
Collapse
Affiliation(s)
- Shanshan Shui
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xia Wang
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
| | - John Y Chiang
- Department of Computer Science & Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lei Zheng
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
44
|
Hsu WL, Yoshioka T. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin. Biophysics (Nagoya-shi) 2015; 11:25-32. [PMID: 27493511 PMCID: PMC4736782 DOI: 10.2142/biophysics.11.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure.
Collapse
Affiliation(s)
- Wen-Li Hsu
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; The Institute of Basic Medical Sciences, National Cheng Kung University Medical College, 1 University Road, Tainan 70101, Taiwan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
45
|
Kim HP. Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation. Biomol Ther (Seoul) 2014; 22:491-6. [PMID: 25489415 PMCID: PMC4256027 DOI: 10.4062/biomolther.2014.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/24/2014] [Accepted: 07/31/2014] [Indexed: 11/23/2022] Open
Abstract
Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.
Collapse
Affiliation(s)
- Hong Pyo Kim
- Ajou University, School of Pharmacy, Suwon 443-749, Republic of Korea
| |
Collapse
|