1
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Guo X, Jiao H, Cao L, Meng F. Biological implications and clinical potential of invasion and migration related miRNAs in glioma. Front Integr Neurosci 2022; 16:989029. [PMID: 36479040 PMCID: PMC9720134 DOI: 10.3389/fnint.2022.989029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2022] [Indexed: 12/01/2024] Open
Abstract
Gliomas are the most common primary malignant brain tumors and are highly aggressive. Invasion and migration are the main causes of poor prognosis and treatment resistance in gliomas. As migration and invasion occur, patient survival and prognosis decline dramatically. MicroRNAs (miRNAs) are small, non-coding 21-23 nucleotides involved in regulating the malignant phenotype of gliomas, including migration and invasion. Numerous studies have demonstrated the mechanism and function of some miRNAs in glioma migration and invasion. However, the biological and clinical significance (including diagnosis, prognosis, and targeted therapy) of glioma migration and invasion-related miRNAs have not been systematically discussed. This paper reviews the progress of miRNAs-mediated migration and invasion studies in glioma and discusses the clinical value of migration and invasion-related miRNAs as potential biomarkers or targeted therapies for glioma. In addition, these findings are expected to translate into future directions and challenges for clinical applications. Although many biomarkers and their biological roles in glioma invasion and migration have been identified, none have been specific so far, and further exploration of clinical treatment is still in progress; therefore, we aimed to further identify specific markers that may guide clinical treatment and improve the quality of patient survival.
Collapse
Affiliation(s)
| | | | | | - Facai Meng
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
3
|
García-Gómez P, Golán I, Dadras MS, Mezheyeuski A, Bellomo C, Tzavlaki K, Morén A, Carreras-Puigvert J, Caja L. NOX4 regulates TGFβ-induced proliferation and self-renewal in glioblastoma stem cells. Mol Oncol 2022; 16:1891-1912. [PMID: 35203105 PMCID: PMC9067149 DOI: 10.1002/1878-0261.13200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common glioma subtype, with a median survival of 15 months after diagnosis. Current treatments have limited therapeutic efficacy; thus, more effective approaches are needed. The glioblastoma tumoural mass is characterised by a small cellular subpopulation – glioblastoma stem cells (GSCs) – that has been held responsible for glioblastoma initiation, cell invasion, proliferation, relapse and resistance to chemo‐ and radiotherapy. Targeted therapies against GSCs are crucial, as is understanding the molecular mechanisms that govern the GSCs. Transforming growth factor β (TGFβ) signalling and reactive oxygen species (ROS) production are known to govern and regulate cancer stem cell biology. Among the differentially expressed genes regulated by TGFβ in a transcriptomic analysis of two different patient‐derived GSCs, we found NADPH oxidase 4 (NOX4) as one of the top upregulated genes. Interestingly, when patient tissues were analysed, NOX4 expression was found to be higher in GSCs versus differentiated cells. A functional analysis of the role of NOX4 downstream of TGFβ in several patient‐derived GSCs showed that TGFβ does indeed induce NOX4 expression and increases ROS production in a NOX4‐dependent manner. NOX4 downstream of TGFβ regulates GSC proliferation, and NOX4 expression is necessary for TGFβ‐induced expression of stem cell markers and of the transcription factor nuclear factor erythroid 2‐related factor 2 (NRF2), which in turn controls the cell’s antioxidant and metabolic responses. Interestingly, overexpression of NOX4 recapitulates the effects induced by TGFβ in GSCs: enhanced proliferation, stemness and NRF2 expression. In conclusion, this work functionally establishes NOX4 as a key mediator of GSC biology.
Collapse
Affiliation(s)
- Pedro García-Gómez
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.,Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Mahsa S Dadras
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.,Weill Cornell Medical College Brain and Mind Research Institute, New York, NY, USA, 10021-5608
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | - Claudia Bellomo
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Kalliopi Tzavlaki
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Anita Morén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences, Box 591, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden. Ludwig Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| |
Collapse
|
4
|
Pang T, Yin X, Luo T, Lu Z, Nie M, Yin K, Xue X. Cancer‐associated fibroblasts promote malignancy of gastric cancer cells via Nodal signalling. Cell Biochem Funct 2019; 38:4-11. [PMID: 31733068 DOI: 10.1002/cbf.3446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Tao Pang
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Xiaoyi Yin
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Tianhang Luo
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Zhengmao Lu
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Mingming Nie
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Kai Yin
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Xuchao Xue
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| |
Collapse
|
5
|
Wang H, Tang F, Bian E, Zhang Y, Ji X, Yang Z, Zhao B. IFITM3/STAT3 axis promotes glioma cells invasion and is modulated by TGF-β. Mol Biol Rep 2019; 47:433-441. [PMID: 31637620 DOI: 10.1007/s11033-019-05146-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022]
Abstract
Glioma is the most aggressive primary brain tumor. We have previously provided evidence that IFITM3 promoted glioma cells migration. However, the mechanism of how IFITM3 regulates glioma cells invasion and whether IFITM3 participates in TGF-β-mediated glioma invasion are still unknown. In this paper, we proved that IFITM3 was notably up-regulated in glioma tissues. Knockdown of IFITM3 suppressed STAT3 phosphorylation in vitro, and a specific STAT3 inhibitor AG490 reversed IFITM3-induced invasion of glioma cells. Furthermore, IFITM3 expression was induced by TGF-β in glioma and IFITM3 knockdown abolished TGF-β-mediated glioma cells invasion. Collectively, the results indicate that IFITM3/STAT3 axis may promote TGF-β-induced glioma cells invasion. This study provided some suggestions for the clinical treatment of the brain tumor.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Yile Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Xinghu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
6
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
7
|
Jiang Y, Zhou J, Hou D, Luo P, Gao H, Ma Y, Chen YS, Li L, Zou D, Zhang H, Zhang Y, Jing Z. Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-β1/Smad signaling pathway. J Pathol 2019; 249:26-38. [PMID: 30953361 DOI: 10.1002/path.5278] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Mesenchymal glioblastoma (GBM) is the most aggressive subtype of GBM. Our previous study found that neurotrophic factor prosaposin (PSAP) is highly expressed and secreted in glioma and can promote the growth of glioma. The role of PSAP in mesenchymal GBM is still unclear. In this study, bioinformatic analysis, western blotting and RT-qPCR were used to detect the expression of PSAP in different GBM subtypes. Human glioma cell lines and patient-derived glioma stem cells were studied in vitro and in vivo, revealing that mesenchymal GBM expressed and secreted the highest level of PSAP among four subtypes of GBM, and PSAP could promote GBM invasion and epithelial-mesenchymal transition (EMT)-like processes in vivo and in vitro. Bioinformatic analysis and western blotting showed that PSAP mainly played a regulatory role in GBM invasion and EMT-like processes via the TGF-β1/Smad signaling pathway. In conclusion, the overexpression and secretion of PSAP may be an important factor causing the high invasiveness of mesenchymal GBM. PSAP is therefore a potential target for the treatment of mesenchymal GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang City, PR China.,Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang City, PR China
| | - Dianqi Hou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Peng Luo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang City, PR China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Yanju Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, PR China
| | - Yin-Sheng Chen
- Department of Neurosurgery/Neuro-oncology, SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang City, PR China
| | - Dan Zou
- The First laboratory of cancer institute, the First Hospital of China Medical University, Shenyang City, PR China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, Shenyang City, PR China
| | - Ye Zhang
- The First laboratory of cancer institute, the First Hospital of China Medical University, Shenyang City, PR China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang City, PR China
| |
Collapse
|
8
|
Jiang Z, Guo Y, Miao L, Han L, Zhang W, Jiang Y. SMAD3 silencing enhances DNA damage in radiation therapy by interacting with MRE11-RAD50-NBS1 complex in glioma. J Biochem 2019; 165:317-322. [PMID: 30535026 DOI: 10.1093/jb/mvy110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023] Open
Abstract
Radiotherapy is the major treatment modality for malignant glioma. However, the treatment response of radiotherapy is suboptimal due to resistance. Here we aimed to explore the effect and mechanism of Mothers against decapentaplegic homologue (SMAD3) silencing in sensitizing malignant glioma to radiotherapy. Clonogenic assay was used to evaluate the sensitivity of glioma cells to increasing doses of radiation. Glioma cells were transfected with small-interfering RNAs (siRNAs) specific to SMAD3. Overexpression of SMAD3 was achieved by transfecting expression plasmid encoding SMAD3 cDNA. Changes in MRE11-RAD50-NBS1 mRNA and protein levels were assessed through qPCR analysis and western blot analysis, respectively. Chromatin immunoprecipitation (ChIP) was used to confirm the interaction between SMAD3 and MRE11-RAD50-NBS1 (MRN) complex. Silencing of SMAD3 increased sensitivity of glioma cells to radiotherapy. MRE11, RAD50 and NBS1 were overexpressed in response to radiotherapy, which was attenuated by SMAD3 silencing while boosted by SMAD3 overexpression. ChIP analysis confirmed the interaction of SMAD3 with MRE11, RAD50 and NBS1 under radiotherapy, which was inhibited by SMAD3 silencing. SMAD3 silencing is an effective strategy for sensitizing glioma to radiotherapy, which is mediated by the interaction of SMAD3 with the MRN complex.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, P. R. China
| | - Yan Guo
- Department of Internal Medicine, People's Hospital of Qingzhou, No. 1726 Linglongshan Road, Qingzhou, Shandong Province, P. R. China
| | - Lifeng Miao
- Department of Neurosurgery, Dezhou People Hospital, No. 1751 Xinhu Street, Dezhou, Shandong Province, P. R. China
| | - Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, P. R. China
| | - Wei Zhang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138 Linglongshan Road, Qingzhou, Shandong Province, P. R. China
| | - Yuquan Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, P. R. China
| |
Collapse
|
9
|
Li Q, Yu Q, Ji J, Wang P, Li D. Comparison and analysis of lncRNA-mediated ceRNA regulation in different molecular subtypes of glioblastoma. Mol Omics 2019; 15:406-419. [DOI: 10.1039/c9mo00126c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
LncRNA-mediated ceRNA regulation varies among different molecular subtypes in glioblastoma.
Collapse
Affiliation(s)
- Qianpeng Li
- School of Biomedical Engineering
- Capital Medical University
- Beijing 100069
- People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical
| | - Qiuhong Yu
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University
- Beijing 100070
- People's Republic of China
| | - Jianghuai Ji
- School of Biomedical Engineering
- Capital Medical University
- Beijing 100069
- People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical
| | - Peng Wang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- People's Republic of China
| | - Dongguo Li
- School of Biomedical Engineering
- Capital Medical University
- Beijing 100069
- People's Republic of China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical
| |
Collapse
|
10
|
Li Y, Zhong W, Zhu M, Hu S, Su X. Nodal regulates bladder cancer cell migration and invasion via the ALK/Smad signaling pathway. Onco Targets Ther 2018; 11:6589-6597. [PMID: 30323631 PMCID: PMC6178944 DOI: 10.2147/ott.s177514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bladder cancer is the most common malignant tumor of the urinary tract. We aimed to explore the biological role and molecular mechanism of Nodal in bladder cancer. Materials and methods The expression of Nodal in bladder cancer tissues and cells was determined by quantitative real-time polymerase chain reaction. The effect of silencing of Nodal on cell proliferation, clone formation, and migration and invasion was evaluated by MTT cell proliferation assay, colony formation, and transwell assays, respectively. Western blot analysis was employed to detect the expression of proliferation- and invasion-related proteins and proteins involved in ALK/Smad signaling. Results We found that the expression of Nodal was significantly increased in bladder cancer tissues and cell lines. Downregulation of Nodal effectively weakened cell proliferation, clone formation, and cell migration and invasion abilities. The protein expression levels of CDC6, E-cadherin, MMP-2, and MMP-9 were also altered by downregulation of Nodal. Knockdown of Nodal also blocked the expression of ALK4, ALK7, Smad2, and Smad4, which are involved in ALK/Smad signaling. Additionally, the ALK4/7 receptor blocker SB431542 reversed the promotive effects of Nodal overexpression on bladder cancer cell proliferation, migration, and invasion. Conclusion Our study indicated that Nodal functions as an oncogene by regulating cell proliferation, migration, and invasion in bladder cancer via the ALK/Smad signaling pathway, thereby providing novel insights into its role in bladder cancer treatment.
Collapse
Affiliation(s)
- Youkong Li
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Wen Zhong
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China
| | - Min Zhu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Shengguo Hu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Xiaokang Su
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| |
Collapse
|
11
|
Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget 2018; 9:24766-24777. [PMID: 29872504 PMCID: PMC5973871 DOI: 10.18632/oncotarget.25346] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSC) display tumor tropism and have been addressed as vehicles for delivery of anti-cancer agents. As cellular components of the tumor microenvironment, MSC also influence tumor progression. However, the contribution of MSC in brain cancer is not well understood since either oncogenic or tumor suppressor effects have been reported for these cells. Here, MSC were found capable of stimulating human Glioblastoma (GBM) cell proliferation through a paracrine effect mediated by TGFB1. Moreover, when in direct cell-cell contact with GBM cells, MSC elicited an increased proliferative and invasive tumor cell behavior under 3D conditions, as well as accelerated tumor development in nude mice, independently of paracrine TGFB1. A secretome profiling of MSC-GBM co-cultures identified 126 differentially expressed proteins and 10 proteins exclusively detected under direct cell-cell contact conditions. Most of these proteins are exosome cargos and are involved in cell motility and tissue development. These results indicate a dynamic interaction between MSC and GBM cells, favoring aggressive tumor cell traits through alternative and independent mechanisms. Overall, these findings indicate that MSC may exert pro-tumorigenic effects when in close contact with tumor cells, which must be carefully considered when employing MSC in targeted cell therapy protocols against cancer.
Collapse
|
12
|
Mehta S, Lo Cascio C. Developmentally regulated signaling pathways in glioma invasion. Cell Mol Life Sci 2018; 75:385-402. [PMID: 28821904 PMCID: PMC5765207 DOI: 10.1007/s00018-017-2608-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023]
Abstract
Malignant gliomas are the most common, infiltrative, and lethal primary brain tumors affecting the adult population. The grim prognosis for this disease is due to a combination of the presence of highly invasive tumor cells that escape surgical resection and the presence of a population of therapy-resistant cancer stem cells found within these tumors. Several studies suggest that glioma cells have cleverly hijacked the normal developmental program of neural progenitor cells, including their transcriptional programs, to enhance gliomagenesis. In this review, we summarize the role of developmentally regulated signaling pathways that have been found to facilitate glioma growth and invasion. Furthermore, we discuss how the microenvironment and treatment-induced perturbations of these highly interconnected signaling networks can trigger a shift in cellular phenotype and tumor subtype.
Collapse
Affiliation(s)
- Shwetal Mehta
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| | - Costanza Lo Cascio
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| |
Collapse
|
13
|
Zheng G, Shen Z, Xu A, Jiang K, Wu P, Yang X, Chen X, Shao J. Synergistic Chemopreventive and Therapeutic Effects of Co-drug UA-Met: Implication in Tumor Metastasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10973-10983. [PMID: 29227654 DOI: 10.1021/acs.jafc.7b04378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The anticancer properties of ursolic acid (UA) and metformin (Met) have been well demonstrated. However, whether these compounds can act synergistically to prevent and treat cancer is not known. We present in this study, the synergism between UA and Met, and that of a new codrug made of UA and Met (UA-Met) against several cancer cell lines. The combination of high concentration of UA (25, 50, 75, 100 μM) and Met (5, 10, 20, 40 mM) resulted in synergetic cytotoxicity on MDA-MB-231 and MCF-7 cells (CI < 0.8). Molecular and cellular studies showed that codrug UA-Met significantly inhibited the invasion (∼55.3 ± 2.74%) and migration (∼52.4 ± 1.57%) of TGF-β induced breast cancer MDA-MB-231 and MCF-7 cells in vitro at low concentration of 10 μM. These effects were accompanied by down-regulation of CXCR4, uPA, vimentin, E-cadherin, N-cadherin, and MMP-2/9 proteins expression and regulation of the AMPK/m-TOR signaling pathways as expected from UA and Met. Moreover, UA-Met could reduce the progression of pulmonary metastasis by 4T1 cells (63.4 ± 3.52%) without influencing the glucose blood level in mice. Our study suggests that the codrug UA-Met is safe and effective in preventing cancer metastasis and possibly treatment of cancer.
Collapse
Affiliation(s)
- Guirong Zheng
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Zhichun Shen
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Aixiao Xu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Kai Jiang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Pengyu Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Xiang Yang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Xian Chen
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University , Fuzhou 350116, China
| |
Collapse
|
14
|
Seth B, Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK. Inhibition of the transforming growth factor-β/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J Biol Chem 2017; 292:19423-19440. [PMID: 28982980 DOI: 10.1074/jbc.m117.798074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The widely used carbamate pesticide carbofuran causes neurophysiological and neurobehavioral deficits in rodents and humans and therefore poses serious health hazards around the world. Previously, we reported that gestational carbofuran exposure has detrimental effects on hippocampal neurogenesis, the generation of new neurons from neural stem cells (NSC), in offspring. However, the underlying cellular and molecular mechanisms for carbofuran-impaired neurogenesis remain unknown. Herein, we observed that chronic carbofuran exposure from gestational day 7 to postnatal day 21 altered expression of genes and transcription factors and levels of proteins involved in neurogenesis and the TGF-β pathway (i.e. TGF-β; SMAD-2, -3, and -7; and SMURF-2) in the rat hippocampus. We found that carbofuran increases TGF-β signaling (i.e. increased phosphorylated SMAD-2/3 and reduced SMAD-7 expression) in the hippocampus, which reduced NSC proliferation because of increased p21 levels and reduced cyclin D1 levels. Moreover, the carbofuran-altered TGF-β signaling impaired neuronal differentiation (BrdU/DCX+ and BrdU/NeuN+ cells) and increased apoptosis and neurodegeneration in the hippocampus. Blockade of the TGF-β pathway with the specific inhibitor SB431542 and via SMAD-3 siRNA prevented carbofuran-mediated inhibition of neurogenesis in both hippocampal NSC cultures and the hippocampus, suggesting the specific involvement of this pathway. Of note, both in vitro and in vivo studies indicated that TGF-β pathway attenuation reverses carbofuran's inhibitory effects on neurogenesis and associated learning and memory deficits. These results suggest that carbofuran inhibits NSC proliferation and neuronal differentiation by altering TGF-β signaling. Therefore, we conclude that TGF-β may represent a potential therapeutic target against carbofuran-mediated neurotoxicity and neurogenesis disruption.
Collapse
Affiliation(s)
- Brashket Seth
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Anuradha Yadav
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Swati Agarwal
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Shashi Kant Tiwari
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Rajnish Kumar Chaturvedi
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India, .,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
15
|
Zheng Y, Miu Y, Yang X, Yang X, Zhu M. CCR7 Mediates TGF-β1-Induced Human Malignant Glioma Invasion, Migration, and Epithelial–Mesenchymal Transition by Activating MMP2/9 Through the Nuclear Factor KappaB Signaling Pathway. DNA Cell Biol 2017; 36:853-861. [PMID: 28817313 DOI: 10.1089/dna.2017.3818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yanyan Zheng
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Yiting Miu
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaokai Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaoguo Yang
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Meijia Zhu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan, Shandong Province, China
| |
Collapse
|
16
|
TGF-β-mediated repression of MST1 by DNMT1 promotes glioma malignancy. Biomed Pharmacother 2017; 94:774-780. [PMID: 28802229 DOI: 10.1016/j.biopha.2017.07.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022] Open
Abstract
Human gliomas are related to high rates of morbidity and mortality. TGF-β promotes the growth of glioma cells, and correlate with the degree of malignancy of human gliomas. However, the molecular mechanisms involved in the malignant function of TGF-β are not fully elucidated. Here, we showed that TGF-β induced the downregulation of MST1 expression in U87 and U251 glioma cells. Treatment of glioma cells with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC) prevented the loss of MST1 expression. Addition of 5-AzadC also reduced the TGF-β-stimulated proliferation, migration and invasiveness of glioma cells. Furthermore, Knockdown of DNMT1 upregulated MST1 expression in gliomas cells. In addition, the inhibition of DNMT1 blocked TGF-β-induced proliferation, migration and invasiveness in glioma cells. These results suggest that TGF-β promotes glioma malignancy through DNMT1-mediated loss of MST1 expression.
Collapse
|
17
|
Qi YF, Wu L, Li ZQ, Wu ML, Wang HF, Chan KY, Lu LL, Cai SH, Wang HS, Du J. Nodal signaling modulates the expression of Oct-4 via nuclear translocation of β-catenin in lung and prostate cancer cells. Arch Biochem Biophys 2016; 608:34-41. [PMID: 27592306 DOI: 10.1016/j.abb.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
Nodal is a member of transforming growth factor beta (TGF-β) superfamily. Nodal promotes the self-renewal of human cancer stem cells (CSCs) and triggers carcinogenesis of human cancers via an autocrine manner through Smad2/3 pathway. In our study, generation of Nodal-overexpressed cancer cells was constructed, and the effect of Nodal on the stem cell marker Oct-4 was evaluated by overexpression or blocked Nodal/ALKs signaling pathway in non-small cell lung cancer cells A549 and prostate cancer cells PC3. Functionally, Nodal also increased the proliferation via the β-catenin nuclear translocation. This increase was attributed to GSK-3β dephosphorylating, and activin receptor-like kinase 4/7 (ALK4/7) played a major role in human cancer cells. Our study provides a positive understanding of Nodal function in cancer cells and suggests a potential novel target for clinical therapeutic research.
Collapse
Affiliation(s)
- Yi-Fei Qi
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Long Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China
| | - Zi-Qian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Meng-Ling Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Ka-Ying Chan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Lin-Lin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Shao-Hui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China.
| |
Collapse
|
18
|
Nana AW, Yang PM, Lin HY. Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression. Asian Pac J Cancer Prev 2016; 16:6813-23. [PMID: 26514451 DOI: 10.7314/apjcp.2015.16.16.6813] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor β (TGFβ) superfamily is a large group of structurally related proteins including TGFβ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The TGFβ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulin- like growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (αvβ3, α5β1) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the TGFβ subfamily yields advantageous results, enhancing BMPs production is also beneficial.
Collapse
Affiliation(s)
- Andre Wendindonde Nana
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan E-mail :
| | | | | |
Collapse
|
19
|
Gallo-Oller G, Vollmann-Zwerenz A, Meléndez B, Rey JA, Hau P, Dotor J, Castresana JS. P144, a Transforming Growth Factor beta inhibitor peptide, generates antitumoral effects and modifies SMAD7 and SKI levels in human glioblastoma cell lines. Cancer Lett 2016; 381:67-75. [PMID: 27473823 DOI: 10.1016/j.canlet.2016.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 60-70% of all gliomas. Current median patient survival time is 14-16 months after diagnosis. Numerous efforts in therapy have not significantly altered the nearly uniform lethality of this malignancy. The Transforming Growth Factor beta (TGF-β) signaling pathway plays a key role in GBM and is implicated in proliferation, invasion and therapy resistance. Several inhibitors of the TGF-β pathway have entered clinical trials or are under development. In this work, the therapeutic potential of P144, a TGF-β inhibitor peptide, was analyzed. P144 decreased proliferation, migration, invasiveness, and tumorigenicity in vitro, whereas apoptosis and anoikis were significantly increased for GBM cell lines. SMAD2 phosphorylation was reduced, together with a downregulation of SKI and an upregulation of SMAD7 at both transcriptional and translational levels. Additionally, P144 was able to impair tumor growth and increase survival in an in vivo flank model. Our findings suggest a potential effect of P144 in vitro and in vivo that is mediated by regulation of transcriptional target genes of the TGF-β pathway, suggesting a therapeutic potential of P144 for GBM treatment.
Collapse
Affiliation(s)
- Gabriel Gallo-Oller
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Arabel Vollmann-Zwerenz
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, Virgen de la Salud Hospital, Toledo, Spain
| | - Juan A Rey
- IdiPaz Research Unit, La Paz University Hospital, Madrid, Spain
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | | | - Javier S Castresana
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.
| |
Collapse
|
20
|
FANG LIPING, ZHAO JIUHAN, WANG DAN, ZHU LIYU, WANG JIAN, JIANG KUI. Jumonji AT-rich interactive domain 1B overexpression is associated with the development and progression of glioma. Int J Mol Med 2016; 38:172-82. [PMID: 27246838 PMCID: PMC4899035 DOI: 10.3892/ijmm.2016.2614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Previous studies have suggested that jumonji AT-rich interactive domain 1B (JARID1B) plays an important role in the genesis of some types of cancer, and it is therefore considered to be an important drug target protein. Although the expression of JARID1B has been researched in some types of cancer, little is known about JARID1B expression in glioma and its function in the tumorigenesis of gliomas. In the present study, we examined the expression of JARID1B in glioma. In addition, RT-PCR, western blot analysis and immunohistochemical analysis were performed using glioma tissue samples and the results revealed that JARID1B expression increased according to the histological grade of glioma. However, in the normal brain tissue samples JARID1B expression was barely detected. Kaplan‑Meier analysis revealed that higher JARID1B expression in patients with glioma was associated with a poorer prognosis. The overexpression of JARID1B stimulated the proliferation and migration of glioma cells as well as sphere formation, whereas suppressing the expression of JARID1B produced opposite effects. The overexpression of JARID1B increased the tumorigenicity of glioma cells in vivo in a nude mouse xenograft model of glioma. Moreover, the activation of phosphorylated (p-)Smad2 contributes to JARID1B-induced oncogenic activities. These findings suggest that JARID1B is involved in the pathogenesis of glioma, and that the downregulation of JARID1B in glioma cells may be a therapeutic target for the treatment of patients with glioma.
Collapse
Affiliation(s)
- LIPING FANG
- Department of Oncology 5, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - JIUHAN ZHAO
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - DAN WANG
- Department of Neurology, General Hospital of Shenyang Military Region, Shenyang, Liaoning 110001, P.R. China
| | - LIYU ZHU
- Department of Cardiothoracic Surgery, Dalian Friendship Hospital, Zhongshan, Dalian, Liaoning 116100, P.R. China
| | - JIAN WANG
- Department of Neurology, Liaoning Provincial People's Hospital, Shenyang, Liaoning 110016, P.R. China
| | - KUI JIANG
- Department of Oncology 5, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
21
|
Lee KP, Kim JE, Park WH, Hong H. Regulation of C6 glioma cell migration by thymol. Oncol Lett 2016; 11:2619-2624. [PMID: 27073528 DOI: 10.3892/ol.2016.4237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 01/18/2016] [Indexed: 11/05/2022] Open
Abstract
Tumor cell motility exhibits a crucial role in tumor development. Therefore, the present study aimed to investigate whether thymol could reduce C6 glioma cell migration. Cell viability was determined using the EZ-Cytox Cell Viability kit. The scratch wound healing and Boyden chamber assays were performed to test C6 glioma cell migration in the presence of fetal bovine serum (FBS). Additionally, the study investigated whether signaling proteins relevant to C6 glioma cell migration, i.e., extracellular signal-regulated kinases (ERK)1/2, protein kinase Cα (PKCα), matrix metallopeptidase (MMP)9 and MMP2, were affected by thymol treatment. Up to 30 µM, thymol did not alter cell viability, whereas 100 µM thymol induced the death of ~20% of the cells. Furthermore, thymol (30 µM) significantly reduced FBS-induced migration. In the FBS-stimulated C6 glioma cells, thymol (30 µM) suppressed PKCα and ERK1/2 phosphorylation. MMP9 and MMP2 production was also significantly reduced by treatment with 30 µM thymol in the C6 glioma cells. Taken together, these results indicate that thymol attenuates C6 glioma cell migration. Additionally, the study suggests that the effect of thymol on the FBS-induced migration of C6 glioma cells affects PKCα and ERK1/2 signaling, and suppresses MMP9 and MMP2 production.
Collapse
Affiliation(s)
- Kang Pa Lee
- Department of Physiology, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang 410-820, Republic of Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang 410-820, Republic of Korea
| | - Heeok Hong
- Department of Medical Science, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
22
|
Let-7a suppresses glioma cell proliferation and invasion through TGF-β/Smad3 signaling pathway by targeting HMGA2. Tumour Biol 2015; 37:8107-19. [PMID: 26715270 DOI: 10.1007/s13277-015-4674-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022] Open
Abstract
It has been shown that let-7a was associated with the tumorigenesis of glioma. Our study was designed to infer how let-7a targets high-mobility AT-hook 2 (HMGA2) and suppresses glioma cell proliferation, invasion, and migration. Glioma tissues from 60 glioma patients and 10 normal brain tissues were collected in this study. Real-time quantitative reverse transcription-PCR (qRT-PCR) and in situ hybridization were used to detect the expression levels of let-7a in tissues and cells. The HMGA2 and the proteins related to transforming growth factor-beta (TGF-β)/Smad3 signaling pathway were measured by immunohistochemistry and western blot. Glioma U87 cells were transfected with either let-7a mimics, HMGA2 small interfering RNA (siRNA), let-7a mimics + HMGA2, HMGA2, or scramble. A cell counting kit-8 (CCK-8) assay was used to detect and compare the difference among various transfection groups. Glioma tumor xenograft models on mice were built to evaluate the effects of let-7a and HMGA2 siRNA on glioma tumors in vivo. The expression level of let-7a significantly downregulated in glioma tissues, while the HMGA2 positive expression rate notably increased compared with those in normal brain tissues (all P < 0.05). Moreover, the expression levels of let-7a and HMGA2 were correlated with glioma grades (all P < 0.05). The proliferation of U87 cells transfected with let-7a mimics or HMGA2 siRNA was significantly inhibited in comparison to the blank control group and the apoptosis rates of U87 cells transfected with let-7a mimics or HMGA2 siRNA were significantly higher than those in the blank control group (all P < 0.05). Let-7a or HMGA2 siRNA could remarkably attenuate the invasion and migration ability of glioma cells (all P < 0.05). Apart from that, over-expressed exogenous HMGA2 could reverse the inhibition of glioma cell metastasis and proliferation induced by let-7a. As suggested by immunohistochemistry and western blot, the expression levels of TGF-β1 and p-Smad3 significantly decreased compared with the blank or scramble group (all P < 0.05). Thus, let-7a and HMGA2 siRNA could effectively suppress the growth of tumors in glioma xenograft models. Let-7a may suppress the proliferation and invasion of glioma cells through mediating TGF-β/Smad3 signaling pathway by targeting HMGA2.
Collapse
|
23
|
Narushima Y, Kozuka-Hata H, Koyama-Nasu R, Tsumoto K, Inoue JI, Akiyama T, Oyama M. Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties. Mol Cell Proteomics 2015; 15:1017-31. [PMID: 26670566 DOI: 10.1074/mcp.m115.049999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is one of the most malignant brain tumors with poor prognosis and their development and progression are known to be driven by glioblastoma stem cells. Although glioblastoma stem cells lose their cancer stem cell properties during cultivation in serum-containing medium, little is known about the molecular mechanisms regulating signaling alteration in relation to reduction of stem cell-like characteristics. To elucidate the global phosphorylation-related signaling events, we performed a SILAC-based quantitative phosphoproteome analysis of serum-induced dynamics in glioblastoma stem cells established from the tumor tissues of the patient. Among a total of 2876 phosphorylation sites on 1584 proteins identified in our analysis, 732 phosphorylation sites on 419 proteins were regulated through the alteration of stem cell-like characteristics. The integrative computational analyses based on the quantified phosphoproteome data revealed the relevant changes of phosphorylation levels regarding the proteins associated with cytoskeleton reorganization such as Rho family GTPase and Intermediate filament signaling, in addition to transforming growth factor-β receptor type-2 (TGFBR2) as a prominent upstream regulator involved in the serum-induced phosphoproteome regulation. The functional association of transforming growth factor-β receptor type-2 with stem cell-like properties was experimentally validated through signaling perturbation using the corresponding inhibitors, which indicated that transforming growth factor-β receptor type-2 could play an important role as a novel cell fate determinant in glioblastoma stem cell regulation.
Collapse
Affiliation(s)
- Yuta Narushima
- From the ‡Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Kozuka-Hata
- From the ‡Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryo Koyama-Nasu
- §Laboratory of Molecular and Genetic Information, The Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kouhei Tsumoto
- From the ‡Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; ¶Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jun-ichiro Inoue
- From the ‡Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; ‖Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tetsu Akiyama
- §Laboratory of Molecular and Genetic Information, The Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaaki Oyama
- From the ‡Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
24
|
TGF-β induced miR-132 enhances the activation of TGF-β signaling through inhibiting SMAD7 expression in glioma cells. Biochem Biophys Res Commun 2015; 463:187-92. [PMID: 25983322 DOI: 10.1016/j.bbrc.2015.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Transforming growth factors β (TGF-β) pathway has been proven to play important roles in oncogenesis and angiogenesis of gliomas. MiR-132 might be related to TGF-β signaling pathway and high miR-132 expression was reported to be a biomarker of poor prognosis in patients diagnosed with glioma. However, the expression regulation way involved in TGF-β pathway and clinical significance of miR-132 have not been investigated in glioma cells. Here we reported that the mRNA level of miR-132 and TGF-β concentration were both increased in patients with brain glioma. Correlation analysis revealed that TGF-β concentration was positively correlated with mRNA level of miR-132. In addition, the mRNA level of miR-132 was up-regulated by TGF-β in a concentration-dependent and time-dependent manner. Furthermore, we found that miR-132 was involved in modulation of the TGF-β signaling pathway and down-regulation of SMAD7 expression by directly targeting the SMAD7 3'-UTR. MiR-132 was negatively correlated with SMAD7 in patients with brain glioma. Taken together, our results suggest that miR-132 could be stimulated by TGF-β and might enhance the activation of TGF-β signaling through inhibiting SMAD7 expression in glioma cells. These findings contribute to a better understanding of the mechanism of the activation of TGF-β signaling by miR-132.
Collapse
|
25
|
Transforming growth factor β and bone morphogenetic protein actions in brain tumors. FEBS Lett 2015; 589:1588-97. [PMID: 25957771 DOI: 10.1016/j.febslet.2015.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Members of the transforming growth factor β (TGF-β) family are implicated in the biology of several cancers. Here we focus on malignancies of the brain and examine the TGFβ and the bone morphogenetic protein (BMP) signaling branches of the family. These pathways exhibit context-dependent actions during tumorigenesis, acting either as tumor suppressors or as pro-tumorigenic agents. In the brain, the TGF-βs associate with oncogenic development and progression to the more malignant state. Inversely, the BMPs suppress tumorigenic potential by acting as agents that induce tumor cell differentiation. The latter has been best demonstrated in grade IV astrocytomas, otherwise known as glioblastoma multiforme. We discuss how the actions of TGF-βs and BMPs on cancer stem cells may explain their effects on tumor progression, and try to highlight intricate mechanisms that may link tumor cell differentiation to invasion. The focus on TGF-β and BMP and their actions in brain malignancies provides a rich territory for mechanistic understanding of tumor heterogeneity and suggests ways for improved therapeutic intervention, currently being addressed by clinical trials.
Collapse
|
26
|
Glioblastoma vasculogenic mimicry: signaling pathways progression and potential anti-angiogenesis targets. Biomark Res 2015; 3:8. [PMID: 26085929 PMCID: PMC4469398 DOI: 10.1186/s40364-015-0034-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/25/2015] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GBM) is a highly angiogenic malignancy that is resistant to standard therapy; neo-formed vessels of this aggressive malignancy are thought to arise by sprouting of pre-existing brain capillaries. However, the conventional anti-angiogenic therapy, which seemed promising initially, shows transitory and incomplete efficacy. The discovery of vasculogenic mimicry (VM) has offered a new horizon for understanding tumor vascularization. VM is a tumor cell-constituted, matrix-embedded fluid-conducting meshwork that is independent of endothelial cells and is positively correlated with poor prognosis. Therefore, a better understanding of GBM vasculature is needed to optimize anti-angiogenic therapy. This review focuses on the signaling molecules and cascades involved in VM in relation to ongoing glioma research, as well as the clinical translational advances in GBM that have been offered by the development of optimized anti-angiogenesis treatment modalities.
Collapse
|
27
|
Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H, Whiteside TL. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 2015; 4:e1008347. [PMID: 26155415 DOI: 10.1080/2162402x.2015.1008347] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/12/2022] Open
Abstract
Exosomes in plasma of glioma patients hold promise as biomarkers of prognosis. We aimed to determine whether changes in total exosomal protein and mRNA expression levels could serve as surrogate markers of immunological and clinical responses in glioma patients receiving antitumor vaccines. Exosomes were isolated from pre/post-vaccine plasma specimens in 20/22 patients enrolled in a phase I/II trial with the antitumor vaccine. Exosomal protein content was analyzed and mRNA expression levels for 24 genes were simultaneously assessed by qRT-PCR. Pre- to post-vaccination changes in exosomal protein and ΔCt values were correlated with immunological and clinical responses and survival using Spearman rank statistics and hazard ratios (HR). Exosomal protein levels positively correlated (p < 0.0043) with the WHO tumor grade at diagnosis. Protein levels were lower in post- vs. pre-vaccination exosome fractions. Post-therapy increases in tumor size were associated with elevations in exosome proteins in glioblastoma but not always in anaplastic astrocytoma (AA). Only exosomal ΔCt values for IL-8, TIMP-1, TGF-β and ZAP70 were significant (p < 0.04 to p < 0.001). The ΔCt for IL-8 and TGF-β mRNA positively correlated with post-vaccine immunologic responses to glioma antigens, while ΔCt for TIMP-1 mRNA was negatively correlated to ΔCt for IL-8 and TGF-β. Only ΔCt for IL-8 weakly correlated with OS and time to progression (TTP). In post-vaccine exosomes of the longest surviving patient with AA, mRNA for PD-1 was persistently elevated. Protein and mRNA expression levels for immune-related genes in plasma exosomes were useful in evaluating glioma patients' response to vaccination therapy.
Collapse
Key Words
- AA, anaplastic astrocytoma
- AO, anaplastic oligodendroglioma
- ATP, adenosine triphosphates
- EV, extracellular vesicles
- GAA, glioma associated antigens
- GBM, glioblastoma multiforme
- MRI, magnetic resonance imaging
- NC, normal controls
- OS, overall survival
- PD-1, programmed death-1
- PD-L1, programmed death ligand 1
- TEM, transmission electron microscopy
- TEX, tumor-derived exosomes
- TTP, time to progression
- glioma
- mRNA
- plasma-derived exosomes
- survival
- vaccination
Collapse
Affiliation(s)
- Laurent Muller
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA ; Department of Otolaryngology and Head & Neck Surgery; University Hospital Basel ; Basel, Switzerland
| | | | | | - William Gooding
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA
| | - Hideho Okada
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA ; Departments of Neurological Surgery; Surgery and Immunology; University of Pittsburgh School of Medicine ; Pittsburgh, PA, USA
| | - Theresa L Whiteside
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA, USA ; Departments of Pathology; Immunology and Otolaryngology; University of Pittsburgh School of Medicine ; Pittsburgh, PA, USA
| |
Collapse
|
28
|
Lv S, Zhang J, Han M, Wang W, Zhang Y, Zhuang D, Shi R, Bian R, Yao C. Nucleolin promotes TGF-β signaling initiation via TGF-β receptor I in glioblastoma. J Mol Neurosci 2015; 55:1-6. [PMID: 24682943 DOI: 10.1007/s12031-014-0292-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022]
Abstract
The transforming growth factor β (TGF-β) pathway plays a key role in oncogenesis of advanced cancers, involving the non-Smad and Smad pathways. Meanwhile, nucleolin on the cell surface has been also reported to affect activation of signaling pathways. However, the effect of cell surface nucleolin on TGF-β pathway in glioblastoma is not still understood. Here, using antibodies of nucleolin and TGF-β receptor I (TβR-I), we observed blocking of either nucleolin or TβR-I inhibited the phosphorylation of CrkL, Erk1/2, and Smad2. Using nucleolin siRNA, nucleolin knockdown was also identified to suppress the expression of p-CrkL, p-Erk1/2, and p-Smad2. Furthermore, immunoprecipitation revealed the interaction between cell surface nucleolin and TβR-I on the U87 cell membrane. In addition, U87 cell wound-healing, soft-agar and MTT assay also showed si-nucleolin could obviously impair wound closure (p < 0.001), colony formation (p < 0.001) and cell growth (p < 0.001). In conclusion, nucleolin promotes and regulates the TGF-β pathway by interacting with TβR-I and is required for initiation and activation of TGF-β signaling. Thus, nucleolin could be a key factor in glioblastoma pathogenesis and considered a therapeutic target, which may also mediate more signaling pathways.
Collapse
Affiliation(s)
- Shunzeng Lv
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Jie Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Mingzhi Han
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Weiping Wang
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya Zhang
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Dongxiao Zhuang
- Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China, 200040
| | - Ranran Shi
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Ruixiang Bian
- Shandong University School of Medicine, Jinan, Shandong, China
| | - Chengjun Yao
- Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China, 200040.
| |
Collapse
|
29
|
Friedman A, Bar-Klein G, Serlin Y, Parmet Y, Heinemann U, Kaufer D. Should losartan be administered following brain injury? Expert Rev Neurother 2014; 14:1365-75. [PMID: 25346269 DOI: 10.1586/14737175.2014.972945] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain injury is a major health concern and associated with delayed neurological complications, including post-injury epilepsy, cognitive and emotional disabilities. Currently, there is no strategy to prevent post-injury delayed complications. We recently showed that dysfunction of the blood-brain barrier, often reported in brain injuries, can lead to epilepsy and neurodegeneration via activation of inflammatory TGF-β signaling in astrocytes. We further showed that the FDA approved angiotensin II type 1 receptor antagonist, losartan, blocks brain TGF-β signaling and prevents epilepsy in the albumin or blood-brain barrier breakdown models of epileptogenesis. Here we discuss the potential of losartan as an anti-epileptogenic and a neuroprotective drug, the rationale of its use following brain injury and the challenges of designing clinical trials. We highlight the urgent need to develop reliable biomarkers for epileptogenesis (and other complications) after brain injury as a pre-requisite to challenge neuroprotective therapies.
Collapse
Affiliation(s)
- Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, PO Box 15000, 5850 College Street, Halifax Nova Scotia B3H 4R2, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Lv S, Sun B, Dai C, Shi R, Zhou X, Lv W, Zhong X, Wang R, Ma W. The Downregulation of MicroRNA-146a Modulates TGF-β Signaling Pathways Activity in Glioblastoma. Mol Neurobiol 2014; 52:1257-1262. [PMID: 25326894 DOI: 10.1007/s12035-014-8938-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/28/2014] [Indexed: 01/24/2023]
Abstract
Transforming growth factor-β (TGF-β) is considered to be one of the main factors responsible for glioblastoma tumorigenesis. MicroRNAs have recently been shown to regulate cell proliferation, differentiation, and apoptosis. However, the involvement of miRNA-146a in TGF-β1-induced glioblastoma development remains largely unknown. Here, miRNA-164a transfection was used to overexpress miRNA-164a in U87, and then real-time quantitative PCR and Western blot were applied to detect the gene transcription and protein expression. In addition, MTT and wound healing assay were also used to observe cell proliferation and migration. Our data revealed that miRNA-146a was downregulated by TGF-β1 treatment, but upregulated by miRNA-164a transfection. MiRNA-146a overexpression significantly reduced SMAD4 protein expression instead of p-SMAD2. Besides, miRNA-146a overexpression also decreased the messenger RNA (mRNA) and protein expression of epidermal growth factor receptor (EGFR) and MMP9 as well as the p-ERK1/2 level. Furthermore, the upregulation of miRNA-146a suppressed TGF-β1-mediated U87 proliferation and migration. These results demonstrate that miRNA-146a acts as a novel regulator to modulate the activity and transduction of TGF-β signaling pathways in glioblastoma, and the downregulation of miRNA-146a is required for overexpression of EGFR and MMP9, which can be considered an efficiently therapeutic target and a better understanding of glioblastoma pathogenesis.
Collapse
Affiliation(s)
- Shunzeng Lv
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.,School of Medicine, Shandong University, Jinan, Shandong, China
| | - Bowen Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Congxin Dai
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Ranran Shi
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingtong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenyuan Lv
- School of Medicine, Shandong University, Jinan, Shandong, China.,Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao Zhong
- Department of Paediatrics, Xiaolan People's Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|