1
|
Fuller PJ, Yang J, Young MJ, Cole TJ. Mechanisms of ligand-mediated modulation of mineralocorticoid receptor signaling. Mol Cell Endocrinol 2025; 600:112504. [PMID: 39983891 DOI: 10.1016/j.mce.2025.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The mineralocorticoid receptor plays a central role in homeostasis, mediating the regulation by aldosterone of epithelial sodium transport. In addition, it regulates a range of responses in other tissues where it is likely responding to both mineralocorticoids and glucocorticoids. Structural, functional and evolutionary studies have provided insights into the mechanisms of receptor activation by agonist ligands and how interactions within the domains of the mineralocorticoid receptor may modulate the response to individual ligands including the mechanisms of antagonism. This review will discuss the current understanding, including recent insights into these interactions, with implications for an emerging array of novel non-steroidal compounds targeting the mineralocorticoid receptor; and highlight their relevance to ligand- or tissue-specificity as well as their suitability as therapeutic agents.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre of Endocrinology and Metabolism, Hudson Institute of Medical Research and Department of Molecular Translational Science, Monash University Clayton, Victoria, Australia.
| | - Jun Yang
- Centre of Endocrinology and Metabolism, Hudson Institute of Medical Research and Department of Molecular Translational Science, Monash University Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Discovery & Preclinical Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Johnson TA, Fettweis G, Wagh K, Ceacero-Heras D, Krishnamurthy M, Sánchez de Medina F, Martínez-Augustin O, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor. Proc Natl Acad Sci U S A 2024; 121:e2413737121. [PMID: 39541347 PMCID: PMC11588051 DOI: 10.1073/pnas.2413737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR coexpression on MR genome-wide transcriptional responses and chromatin binding upon activation by aldosterone and glucocorticoids, both physiological ligands of this receptor. Transcriptional responses of MR in the absence of GR result in fewer regulated genes. In contrast, coexpression of GR potentiates MR-mediated transcription, particularly in response to aldosterone, both in cell lines and in the more physiologically relevant model of mouse colon organoids. MR chromatin binding is altered by GR coexpression in a locus- and ligand-specific way. Single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that coexpression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Department of Physics, University of Maryland, College Park, MD20742
| | - Diego Ceacero-Heras
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada18071, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna38200, Spain
| |
Collapse
|
3
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Lotsios N, Vrettou C, Poupouzas G, Chalioti A, Keskinidou C, Pratikaki M, Giannopoulou V, Kotanidou A, Vassiliadi D, Dimopoulou I, Vassiliou A. Glucocorticoid receptor response and glucocorticoid-induced leucine zipper expression in neutrophils of critically ill patients with traumatic and non-traumatic brain injury. Front Endocrinol (Lausanne) 2024; 15:1414785. [PMID: 39314520 PMCID: PMC11416954 DOI: 10.3389/fendo.2024.1414785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Critically ill patients, including those with brain injuries (BI), are frequently hospitalized in an intensive care unit (ICU). As with other critical states, an adequate stress response is essential for survival. Research on the hypothalamic-pituitary-adrenal gland (HPA) axis function in BI has primarily focused on assessing ACTH and cortisol levels. However, the immunological, metabolic, and hemodynamic effects of glucocorticoids (GCs) are mediated through the glucocorticoid receptor (GCR), a ubiquitously distributed intracellular receptor protein. Data on GCR-α expression and its signaling in acute BI injury are lacking. Methods We designed a prospective observational study, carried out in one academic multi-disciplinary ICU. Forty-two critically ill patients with acute (BI)were included. These patients suffered from traumatic BI (N= 20), subarachnoid hemorrhage (N= 12), intracranial hemorrhage (N= 7), or ischemic stroke (N= 3). All patients were steroid-free. Twenty-four age and sex-matched healthy controls were used for comparison. Results Expression of GCR-α and the glucocorticoid-inducible leucine zipper (GILZ), serum cortisol, interleukins (IL) 6, 8, 10 and TNF- α, and the BI biomarkers glial fibrillary acidic protein (GFAP) and total Tau were measured on ICU admission (within 48 hours) and 5-7 days from admission. Compared to healthy controls, in the critically ill patients with BI, GCR-α mRNA expression was significantly downregulated on admission, and after 5-7 days in the ICU (2.3-fold, p<0.05 and 2.6-fold, p<0.01, respectively). Even though GCR-α was downregulated, its downstream gene, GILZ, was expressed at the same levels as in normal controls on admission and was significantly upregulated 5-7 days following admission (2-fold, p<0.001). TNF-α levels were undetectable at both time-points. GCR-α expression levels inversely correlated with IL-6. The levels of cortisol and the BI biomarkers did not differ between the 2 time-points. Conclusions We provide novel evidence on the downregulated expression and upregulated signaling of the ligand-binding and functionally active GCR-α isoform in the polymorphonuclear neutrophils (PMNs) of critically ill patients with BI. The increased GILZ expression indicates an increased GC sensitivity in the PMNs of BI critically ill patients.
Collapse
Affiliation(s)
- N.S. Lotsios
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - C.S. Vrettou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - G. Poupouzas
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - A. Chalioti
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - C. Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - M. Pratikaki
- Biochemical Department, Evangelismos Hospital, Athens, Greece
| | - V. Giannopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - A. Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - D.A. Vassiliadi
- Department of Endocrinology, Diabetes and Metabolism, National Expertise Center for Rare Endocrine Diseases, Evangelismos Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - A.G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
5
|
Johnson TA, Fettweis G, Wagh K, Almeida-Prieto B, Krishnamurthy M, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The Glucocorticoid Receptor is Required for Efficient Aldosterone-Induced Transcription by the Mineralocorticoid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525745. [PMID: 36789429 PMCID: PMC9928040 DOI: 10.1101/2023.01.26.525745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR co-expression on MR genome-wide chromatin binding and transcriptional responses to aldosterone and glucocorticoids, both physiological ligands of this receptor. Our data show that GR co-expression alters MR genome-wide binding to consensus DNA sequences in a locus- and ligand-specific way. MR binding to consensus DNA sequences is affected by GR. Transcriptional responses of MR in the absence of GR are weak and show poor correlation with chromatin binding. In contrast, co-expression of GR potentiates MR-mediated transcription, particularly in response to aldosterone. Finally, single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that co-expression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
6
|
Mainsiouw L, Ryan ME, Hafizi S, Fleming JC. The molecular and clinical role of Tensin 1/2/3 in cancer. J Cell Mol Med 2023. [PMID: 37296531 DOI: 10.1111/jcmm.17714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/12/2023] Open
Abstract
Tensin 1 was originally described as a focal adhesion adaptor protein, playing a role in extracellular matrix and cytoskeletal interactions. Three other Tensin proteins were subsequently discovered, and the family was grouped as Tensin. It is now recognized that these proteins interact with multiple cell signalling cascades that are implicated in tumorigenesis. To understand the role of Tensin 1-3 in neoplasia, current molecular evidence is categorized by the hallmarks of cancer model. Additionally, clinical data involving Tensin 1-3 are reviewed to investigate the correlation between cellular effects and clinical phenotype. Tensin proteins commonly interact with the tumour suppressor, DLC1. The ability of Tensin to promote tumour progression is directly correlated with DLC1 expression. Members of the Tensin family appear to have tumour subtype-dependent effects on oncogenesis; despite numerous data evidencing a tumour suppressor role for Tensin 2, association of Tensins 1-3 with an oncogenic role notably in colorectal carcinoma and pancreatic ductal adenocarcinoma is of potential clinical relevance. The complex interplay between these focal adhesion adaptor proteins and signalling pathways are discussed to provide an up to date review of their role in cancer biology.
Collapse
Affiliation(s)
| | - Matthew Edward Ryan
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Liverpool Head and Neck Centre, University of Liverpool, Liverpool, UK
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Jason C Fleming
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Liverpool Head and Neck Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
8
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of frugivory adaptations in the bat kidney and pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528204. [PMID: 36824791 PMCID: PMC9949079 DOI: 10.1101/2023.02.12.528204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.
Collapse
|
9
|
Fuller PJ, Young MJ, Yang J, Cole TJ. Structure-function relationships of the aldosterone receptor. VITAMINS AND HORMONES 2023; 123:285-312. [PMID: 37717989 DOI: 10.1016/bs.vh.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cellular response to the adrenal steroid aldosterone is mediated by the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. The MR binds more than one physiological ligand with binding at the MR determined by pre-receptor metabolism of glucocorticoid ligands by 11β hydroxysteroid dehydrogenase type 2. The MR has a wide tissue distribution with multiple roles beyond the classical role in electrolyte homeostasis including cardiovascular function, immune cell signaling, neuronal fate and adipocyte differentiation. The MR has three principal functional domains, an N-terminal ligand domain, a central DNA binding domain and a C-terminal, ligand binding domain, with structures having been determined for the latter two domains but not for the whole receptor. MR signal-transduction can be best viewed as a series of interactions which are determined by the conformation conferred on the receptor by ligand binding. This conformation then determines subsequent intra- and inter-molecular interactions. These interactions include chromatin, coregulators and other transcription factors, and additional less well characterized cytoplasmic non-genomic effects via crosstalk with other signaling pathways. This chapter will provide a review of MR structure and function, and an analysis of the critical interactions involved in MR-mediated signal transduction, which contribute to ligand- and tissue-specificity. Understanding the relevant mechanisms for selective MR signaling in terms of these interactions opens the possibility of novel therapeutic approaches for the treatment of MR-mediated diseases.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia.
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; University of Melbourne and Baker HDI Department of Cardiometabolic Health and Disease, Melbourne, VIC, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| | - Timothy J Cole
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Koorneef LL, van der Meulen M, Kooijman S, Sánchez-López E, Scheerstra JF, Voorhoeve MC, Ramesh ANN, Rensen PCN, Giera M, Kroon J, Meijer OC. Dexamethasone-associated metabolic effects in male mice are partially caused by depletion of endogenous corticosterone. Front Endocrinol (Lausanne) 2022; 13:960279. [PMID: 36034417 PMCID: PMC9399852 DOI: 10.3389/fendo.2022.960279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic glucocorticoids are clinically used to treat auto-immune and inflammatory disease. Despite the high efficacy, glucocorticoid treatments causes side effects such as obesity and insulin resistance in many patients. Via their pharmacological target, the glucocorticoid receptor (GR), glucocorticoids suppress endogenous glucocorticoid secretion. Endogenous, but not synthetic, glucocorticoids activate the mineralocorticoid receptor (MR) and side effects of synthetic glucocorticoids may thus not only result from GR hyperactivation but also from MR hypoactivation. Here, we tested the hypothesis that reactivation of MR with corticosterone add-on treatment can attenuate the metabolic effects of the synthetic glucocorticoid dexamethasone. Male 8-week-old C57Bl/6J mice received a high-fat diet supplemented with dexamethasone or vehicle, and were subcutaneously implanted with low-dose corticosterone- or vehicle-containing pellets. Dexamethasone strongly reduced body weight and fat mass gain, while corticosterone add-on partially normalized this. Dexamethasone-induced hyperglycemia and hyperinsulinemia were exacerbated by corticosterone add-on, which was prevented by MR antagonism. In subcutaneous white adipose tissue, corticosterone add-on prevented the dexamethasone-induced expression of intracellular lipolysis genes. In brown adipose tissue, dexamethasone also upregulated gene expression of brown adipose tissue identity markers, lipid transporters and lipolysis enzymes, which was prevented by corticosterone add-on. In conclusion, corticosterone add-on treatment prevents several, while exacerbating other metabolic effects of dexamethasone. While the exact role of MR remains elusive, this study suggests that corticosterone suppression by dexamethasone contributes to its effects in mice.
Collapse
Affiliation(s)
- Lisa L. Koorneef
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Merel van der Meulen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jari F. Scheerstra
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike C. Voorhoeve
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Ajith N. Nadamuni Ramesh
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick C. N. Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Onno C. Meijer,
| |
Collapse
|
11
|
Li Y, Yu X, Zhang Y, Wang X, Zhao L, Liu D, Zhao G, Gao X, Fu J, Zang A, Jia Y. Identification of a novel prognosis-associated ceRNA network in lung adenocarcinoma via bioinformatics analysis. Biomed Eng Online 2021; 20:117. [PMID: 34819106 PMCID: PMC8611860 DOI: 10.1186/s12938-021-00952-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of nonsmall-cell lung cancer (NSCLC) and has a high incidence rate and mortality. The survival of LUAD patients has increased with the development of targeted therapeutics, but the prognosis of these patients is still poor. Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of LUAD. The purpose of this study was to identify novel abnormally regulated lncRNA–microRNA (miRNA)–messenger RNA (mRNA) competing endogenous RNA (ceRNA) networks that may suggest new therapeutic targets for LUAD or relate to LUAD prognosis. Methods We used the SBC human ceRNA array V1.0 to screen for differentially expressed (DE) lncRNAs and mRNAs in four paired LUAD samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate the DE lncRNAs and mRNAs. R bioinformatics packages, The Cancer Genome Atlas (TCGA) LUAD database, and Kaplan–Meier (KM) survival analysis tools were used to validate the microarray data and construct the lncRNA–miRNA–mRNA ceRNA regulatory network. Then, quantitative real-time PCR (qRT-PCR) was used to validate the DE lncRNAs in 7 LUAD cell lines. Results A total of 2819 DE lncRNAs and 2396 DE mRNAs (P < 0.05 and fold change ≥ 2 or ≤ 0.5) were identified in four paired LUAD tissue samples. In total, 255 of the DE lncRNAs were also identified in TCGA. The GO and KEGG analysis results suggested that the DE genes were most enriched in angiogenesis and cell proliferation, and were closely related to human cancers. Moreover, the differential expression of ENST00000609697, ENST00000602992, and NR_024321 was consistent with the microarray data, as determined by qRT-PCR validation in 7 LUAD cell lines; however, only ENST00000609697 was associated with the overall survival of LUAD patients (log-rank P = 0.029). Finally, through analysis of ENST00000609697 target genes, we identified the ENST00000609697–hsa-miR-6791-5p–RASL12 ceRNA network, which may play a tumor-suppressive role in LUAD. Conclusion ENST00000609697 was abnormally expressed in LUAD. Furthermore, downregulation of ENST00000609697 and its target gene RASL12 was associated with poor prognosis in LUAD. The ENST00000609697–hsa-miR-6791-5p–RASL12 axis may play a tumor-suppressive role. These results suggest new potential prognostic and therapeutic biomarkers for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-021-00952-x.
Collapse
Affiliation(s)
- Yumiao Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Xiaoxue Yu
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Yuhao Zhang
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Xiaofang Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Linshan Zhao
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Dan Liu
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Guofa Zhao
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Xiangpeng Gao
- College of Clinical Medicine, Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000, Hebei, People's Republic of China
| | - Jiejun Fu
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiovascular Health and Disease. Cells 2021; 10:cells10082155. [PMID: 34440924 PMCID: PMC8394287 DOI: 10.3390/cells10082155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids (GCs) are essential in regulating functions and homeostasis in many biological systems and are extensively used to treat a variety of conditions associated with immune/inflammatory processes. GCs are among the most powerful drugs for the treatment of autoimmune and inflammatory diseases, but their long-term usage is limited by severe adverse effects. For this reason, to envision new therapies devoid of typical GC side effects, research has focused on expanding the knowledge of cellular and molecular effects of GCs. GC-induced leucine zipper (GILZ) is a GC-target protein shown to mediate several actions of GCs, including inhibition of the NF-κB and MAPK pathways. GILZ expression is not restricted to immune cells, and it has been shown to play a regulatory role in many organs and tissues, including the cardiovascular system. Research on the role of GILZ on endothelial cells has demonstrated its ability to modulate the inflammatory cascade, resulting in a downregulation of cytokines, chemokines, and cellular adhesion molecules. GILZ also has the capacity to protect myocardial cells, as its deletion makes the heart, after a deleterious stimulus, more susceptible to apoptosis, immune cell infiltration, hypertrophy, and impaired function. Despite these advances, we have only just begun to appreciate the relevance of GILZ in cardiovascular homeostasis and dysfunction. This review summarizes the current understanding of the role of GILZ in modulating biological processes relevant to cardiovascular biology.
Collapse
|
13
|
Laulhé M, Dumeige L, Vu TA, Hani I, Pussard E, Lombès M, Viengchareun S, Martinerie L. Sexual Dimorphism of Corticosteroid Signaling during Kidney Development. Int J Mol Sci 2021; 22:ijms22105275. [PMID: 34069759 PMCID: PMC8155845 DOI: 10.3390/ijms22105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Sexual dimorphism involves differences between biological sexes that go beyond sexual characteristics. In mammals, differences between sexes have been demonstrated regarding various biological processes, including blood pressure and predisposition to develop hypertension early in adulthood, which may rely on early events during development and in the neonatal period. Recent studies suggest that corticosteroid signaling pathways (comprising glucocorticoid and mineralocorticoid signaling pathways) have distinct tissue-specific expression and regulation during this specific temporal window in a sex-dependent manner, most notably in the kidney. This review outlines the evidence for a gender differential expression and activation of renal corticosteroid signaling pathways in the mammalian fetus and neonate, from mouse to human, that may favor mineralocorticoid signaling in females and glucocorticoid signaling in males. Determining the effects of such differences may shed light on short term and long term pathophysiological consequences, markedly for males.
Collapse
Affiliation(s)
- Margaux Laulhé
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laurence Dumeige
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
| | - Thi An Vu
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Imene Hani
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Eric Pussard
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Mozaffari MS. Role of GILZ in the Kidney and the Cardiovascular System: Relevance to Cardiorenal Complications of COVID-19. J Pharmacol Exp Ther 2020; 375:398-405. [PMID: 33008869 DOI: 10.1124/jpet.120.000243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Glucocorticoids are extensively used for a variety of conditions, including those associated with dysregulation of immune and inflammatory responses as primary etiopathogenic factors. Indeed, the proinflammatory cytokine storm of coronavirus disease 2019 (COVID-19) is the latest condition for which the use of a glucocorticoid has been advocated. Recognition of serious adverse effects of glucocorticoids has led to research aimed at unraveling molecular basis by which they impact immune and inflammatory events with the ultimate objective of devising novel therapies to circumvent glucocorticoids-related adverse outcomes. Consequently, glucocorticoid-induced leucine zipper (GILZ) protein was discovered and is increasingly recognized as the pivotal regulator of the effects of glucocorticoids on immune and inflammatory responses. Importantly, the advent of GILZ-based options raises the prospect of their eventual therapeutic use for a variety of conditions accompanied with dysregulation of immune and inflammatory responses and associated target organ complications. Thus, the objective of this minireview is to describe our current understanding of the role of GILZ in the cardiovascular system and the kidney along with outcome of GILZ-based interventions on associated disorders. This information is also of relevance for emerging complications of COVID-19. SIGNIFICANCE STATEMENT: Glucocorticoid-induced leucine zipper (GILZ) was initially discovered as the pivotal mediator of immune regulatory/suppressive effects of glucocorticoids. Since the use of glucocorticoids is associated with serious adverse effects, GILZ-based formulations could offer therapeutic advantages. Thus, this minireview will describe our current understanding of the role of GILZ in the kidney and the cardiovascular system, which is of relevance and significance for pathologies affecting them, including the multiorgan complications of coronavirus disease 2019.
Collapse
Affiliation(s)
- Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, the Dental College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
15
|
Rivers CA, Rogers MF, Stubbs FE, Conway-Campbell BL, Lightman SL, Pooley JR. Glucocorticoid Receptor-Tethered Mineralocorticoid Receptors Increase Glucocorticoid-Induced Transcriptional Responses. Endocrinology 2019; 160:1044-1056. [PMID: 30980716 PMCID: PMC6462215 DOI: 10.1210/en.2018-00819] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
Mineralocorticoid and glucocorticoid receptors (MRs and GRs) constitute a functionally important dual receptor system detecting and transmitting circulating corticosteroid signals. High expression of MRs and GRs occurs in the same cells in the limbic system, the primary site of glucocorticoid action on cognition, behavior, and mood; however, modes of interaction between the receptors are poorly characterized. We used chromatin immunoprecipitation with nucleotide resolution using exonuclease digestion, unique barcode, and single ligation (ChIP-nexus) for high-resolution genome-wide characterization of MR and GR DNA binding profiles in neuroblastoma cells and demonstrate recruitment to highly similar DNA binding sites. Expressed MR or GR showed differential regulation of endogenous gene targets, including Syt2 and Ddc, whereas coexpression produced augmented transcriptional responses even when MRs were unable to bind DNA (MR-XDBD). ChIP confirmed that MR-XDBD could be tethered to chromatin by GR. Our data demonstrate that MR can interact at individual genomic DNA sites in multiple modes and suggest a role for MR in increasing the transcriptional response to glucocorticoids.
Collapse
Affiliation(s)
- Caroline A Rivers
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mark F Rogers
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Felicity E Stubbs
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Becky L Conway-Campbell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John R Pooley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Correspondence: John R. Pooley, PhD, University of Bristol, Translational Health Sciences, Bristol Medical School, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom. E-mail:
| |
Collapse
|
16
|
Nagata Y, Goto T, Miyamoto H. The Role of Mineralocorticoid Receptor Signaling in Genitourinary Cancers. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Abstract
The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. Several cues elicit aldosterone release, and the long-term action of the hormone is to restore blood pressure and/or increase the retrieval of sodium from filtered plasma in the kidney. While the signaling cascade that results in aldosterone release is well studied, the impact of this hormone on tissues and cells in various organ systems is pleotropic. Emerging evidence indicates aldosterone may alter non-coding RNAs (ncRNAs) to integrate the hormonal response, and these ncRNAs may contribute to the heterogeneity of signaling outcomes in aldosterone target tissues. The best studied of the ncRNAs in aldosterone action are the small ncRNAs, microRNAs. MicroRNA expression is regulated by aldosterone stimulation, and microRNAs are able to modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling system. The discovery and synthesis of microRNAs will be briefly covered followed by a discussion of the reciprocal role of aldosterone/microRNA regulation, including misregulation of microRNA signaling in aldosterone-linked disease states.
Collapse
|
18
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
19
|
Richardson RV, Batchen EJ, Thomson AJW, Darroch R, Pan X, Rog-Zielinska EA, Wyrzykowska W, Scullion K, Al-Dujaili EAS, Diaz ME, Moran CM, Kenyon CJ, Gray GA, Chapman KE. Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis. J Endocrinol 2017; 232:437-450. [PMID: 28057868 PMCID: PMC5292999 DOI: 10.1530/joe-16-0458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023]
Abstract
Corticosteroids directly affect the heart and vasculature and are implicated in the pathogenesis of heart failure. Attention is focussed upon the role of the mineralocorticoid receptor (MR) in mediating pro-fibrotic and other adverse effects of corticosteroids upon the heart. In contrast, the role of the glucocorticoid receptor (GR) in the heart and vasculature is less well understood. We addressed this in mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice). Survival of SMGRKO mice to weaning was reduced compared with that of littermate controls. Doppler measurements of blood flow across the mitral valve showed an elongated isovolumetric contraction time in surviving adult SMGRKO mice, indicating impairment of the initial left ventricular contractile phase. Although heart weight was elevated in both genders, only male SMGRKO mice showed evidence of pathological cardiomyocyte hypertrophy, associated with increased myosin heavy chain-β expression. Left ventricular fibrosis, evident in both genders, was associated with elevated levels of mRNA encoding MR as well as proteins involved in cardiac remodelling and fibrosis. However, MR antagonism with spironolactone from birth only modestly attenuated the increase in pro-fibrotic gene expression in SMGRKO mice, suggesting that elevated MR signalling is not the primary driver of cardiac fibrosis in SMGRKO mice, and cardiac fibrosis can be dissociated from MR activation. Thus, GR contributes to systolic function and restrains normal cardiac growth, the latter through gender-specific mechanisms. Our findings suggest the GR:MR balance is critical in corticosteroid signalling in specific cardiac cell types.
Collapse
MESH Headings
- Animals
- Corticosterone/blood
- Female
- Fibrosis/metabolism
- Fibrosis/pathology
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocardial Contraction/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Nonmuscle Myosin Type IIB/genetics
- Nonmuscle Myosin Type IIB/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Sex Factors
- Spironolactone/pharmacology
- Ventricular Function, Left/genetics
Collapse
Affiliation(s)
- Rachel V Richardson
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Emma J Batchen
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | | | - Rowan Darroch
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Xinlu Pan
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Eva A Rog-Zielinska
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Wiktoria Wyrzykowska
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Kathleen Scullion
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Emad A S Al-Dujaili
- DieteticsNutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, UK
| | - Mary E Diaz
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Carmel M Moran
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Edinburgh Preclinical ImagingUniversity of Edinburgh, Edinburgh, UK
| | - Christopher J Kenyon
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Gillian A Gray
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
20
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Mallipattu SK, Estrada CC, He JC. The critical role of Krüppel-like factors in kidney disease. Am J Physiol Renal Physiol 2016; 312:F259-F265. [PMID: 27852611 DOI: 10.1152/ajprenal.00550.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 01/27/2023] Open
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors critical to mammalian embryonic development, regeneration, and human disease. There is emerging evidence that KLFs play a vital role in key physiological processes in the kidney, ranging from maintenance of glomerular filtration barrier to tubulointerstitial inflammation to progression of kidney fibrosis. Seventeen members of the KLF family have been identified, and several have been well characterized in the kidney. Although they may share some overlap in their downstream targets, their structure and function remain distinct. This review highlights our current knowledge of KLFs in the kidney, which includes their pattern of expression and their function in regulating key biological processes. We will also critically examine the currently available literature on KLFs in the kidney and offer some key areas in need of further investigation.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York;
| | - Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
22
|
Glucocorticoid-induced leucine zipper (GILZ) is involved in glucocorticoid-induced and mineralocorticoid-induced leptin production by osteoarthritis synovial fibroblasts. Arthritis Res Ther 2016; 18:219. [PMID: 27716396 PMCID: PMC5050640 DOI: 10.1186/s13075-016-1119-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Background Glucocorticoid-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory activities of glucocorticoids. However, GILZ deletion does not impair the anti-inflammatory activities of exogenous glucocorticoids in mice arthritis models and GILZ could also mediate some glucocorticoid-related adverse events. Osteoarthritis (OA) is a metabolic disorder that is partly attributed to adipokines such as leptin, and we previously observed that glucocorticoids induced leptin secretion in OA synovial fibroblasts. The purpose of this study was to position GILZ in OA through its involvement in the anti-inflammatory activities of glucocorticoids and/or in the metabolic pathway of leptin induction. The influences of mineralocorticoids on GILZ and leptin expression were also investigated. Methods Human synovial fibroblasts were isolated from OA patients during knee replacement surgery. Then, the cells were treated with a glucocorticoid (prednisolone), a mineralocorticoid (aldosterone), a glucocorticoid receptor (GR) antagonist (mifepristone), a selective glucocorticoid receptor agonist (Compound A), mineralocorticoid receptor (MR) antagonists (eplerenone and spironolactone), TNF-α or transforming growth factor (TGF)-β. Cells were transfected with shRNA lentiviruses for the silencing of GILZ and GR. The leptin, IL-6, IL-8 and matrix metalloproteinase (MMP)-1 levels were measured by ELISA. Leptin, the leptin receptor (Ob-R), GR and GILZ expression levels were analyzed by western blotting and/or RT-qPCR. Results (1) The glucocorticoid prednisolone and the mineralocorticoid aldosterone induced GILZ expression dose-dependently in OA synovial fibroblasts, through GR but not MR. Similar effects on leptin and Ob-R were observed: leptin secretion and Ob-R expression were also induced by prednisolone and aldosterone through GR; (2) GILZ silencing experiments demonstrated that GILZ was involved in the glucocorticoid-induced and mineralocorticoid-induced leptin secretion and Ob-R expression in OA synovial fibroblasts; and (3) GILZ inhibition did not alter the production of pro-inflammatory cytokines by OA synovial fibroblast or the anti-inflammatory properties of glucocorticoids. Conclusions The absence of GILZ prevents corticoid-induced leptin and Ob-R expression without affecting the anti-inflammatory properties of glucocorticoids in OA synovial fibroblasts. Mineralocorticoids also induce leptin and Ob-R expression through GILZ.
Collapse
|
23
|
Ivy JR, Oosthuyzen W, Peltz TS, Howarth AR, Hunter RW, Dhaun N, Al-Dujaili EAS, Webb DJ, Dear JW, Flatman PW, Bailey MA. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter. Hypertension 2016; 67:1029-37. [PMID: 26953322 PMCID: PMC4905621 DOI: 10.1161/hypertensionaha.115.06977] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/08/2016] [Indexed: 12/04/2022]
Abstract
Supplemental Digital Content is available in the text. Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic–pituitary–adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine53 (pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess.
Collapse
Affiliation(s)
- Jessica R Ivy
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Wilna Oosthuyzen
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Theresa S Peltz
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Amelia R Howarth
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Robert W Hunter
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Neeraj Dhaun
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Emad A S Al-Dujaili
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - David J Webb
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - James W Dear
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Peter W Flatman
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Matthew A Bailey
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.).
| |
Collapse
|
24
|
Pihlajamaa P, Sahu B, Jänne OA. Determinants of Receptor- and Tissue-Specific Actions in Androgen Signaling. Endocr Rev 2015; 36:357-84. [PMID: 26052734 DOI: 10.1210/er.2015-1034] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The physiological androgens testosterone and 5α-dihydrotestosterone regulate the development and maintenance of primary and secondary male sexual characteristics through binding to the androgen receptor (AR), a ligand-dependent transcription factor. In addition, a number of nonreproductive tissues of both genders are subject to androgen regulation. AR is also a central target in the treatment of prostate cancer. A large number of studies over the last decade have characterized many regulatory aspects of the AR pathway, such as androgen-dependent transcription programs, AR cistromes, and coregulatory proteins, mostly in cultured cells of prostate cancer origin. Moreover, recent work has revealed the presence of pioneer/licensing factors and chromatin modifications that are important to guide receptor recruitment onto appropriate chromatin loci in cell lines and in tissues under physiological conditions. Despite these advances, current knowledge related to the mechanisms responsible for receptor- and tissue-specific actions of androgens is still relatively limited. Here, we review topics that pertain to these specificity issues at different levels, both in cultured cells and tissues in vivo, with a particular emphasis on the nature of the steroid, the response element sequence, the AR cistromes, pioneer/licensing factors, and coregulatory proteins. We conclude that liganded AR and its DNA-response elements are required but are not sufficient for establishment of tissue-specific transcription programs in vivo, and that AR-selective actions over other steroid receptors rely on relaxed rather than increased stringency of cis-elements on chromatin.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Biswajyoti Sahu
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Olli A Jänne
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
25
|
Chadwick JA, Hauck JS, Lowe J, Shaw JJ, Guttridge DC, Gomez-Sanchez CE, Gomez-Sanchez EP, Rafael-Fortney JA. Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB J 2015; 29:4544-54. [PMID: 26178166 DOI: 10.1096/fj.15-276782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Early treatment with heart failure drugs lisinopril and spironolactone improves skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. The angiotensin converting enzyme inhibitor lisinopril and mineralocorticoid receptor (MR) antagonist spironolactone indirectly and directly target MR. The presence and function of MR in skeletal muscle have not been explored. MR mRNA and protein are present in all tested skeletal muscles from both wild-type mice and DMD mouse models. MR expression is cell autonomous in both undifferentiated myoblasts and differentiated myotubes from mouse and human skeletal muscle cultures. To test for MR function in skeletal muscle, global gene expression analysis was conducted on human myotubes treated with MR agonist (aldosterone; EC50 1.3 nM) or antagonist (spironolactone; IC50 1.6 nM), and 53 gene expression differences were identified. Five differences were conserved in quadriceps muscles from dystrophic mice treated with spironolactone plus lisinopril (IC50 0.1 nM) compared with untreated controls. Genes down-regulated more than 2-fold by MR antagonism included FOS, ANKRD1, and GADD45B, with known roles in skeletal muscle, in addition to NPR3 and SERPINA3, bona fide targets of MR in other tissues. MR is a novel drug target in skeletal muscle and use of clinically safe antagonists may be beneficial for muscle diseases.
Collapse
Affiliation(s)
- Jessica A Chadwick
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - J Spencer Hauck
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeovanna Lowe
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeremiah J Shaw
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Denis C Guttridge
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Celso E Gomez-Sanchez
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Elise P Gomez-Sanchez
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jill A Rafael-Fortney
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
26
|
Le Billan F, Khan JA, Lamribet K, Viengchareun S, Bouligand J, Fagart J, Lombès M. Cistrome of the aldosterone-activated mineralocorticoid receptor in human renal cells. FASEB J 2015; 29:3977-89. [PMID: 26054365 DOI: 10.1096/fj.15-274266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023]
Abstract
Aldosterone exerts its effects mainly by activating the mineralocorticoid receptor (MR), a transcription factor that regulates gene expression through complex and dynamic interactions with coregulators and transcriptional machinery, leading to fine-tuned control of vectorial ionic transport in the distal nephron. To identify genome-wide aldosterone-regulated MR targets in human renal cells, we set up a chromatin immunoprecipitation (ChIP) assay by using a specific anti-MR antibody in a differentiated human renal cell line expressing green fluorescent protein (GFP)-MR. This approach, coupled with high-throughput sequencing, allowed identification of 974 genomic MR targets. Computational analysis identified an MR response element (MRE) including single or multiple half-sites and palindromic motifs in which the AGtACAgxatGTtCt sequence was the most prevalent motif. Most genomic MR-binding sites (MBSs) are located >10 kb from the transcriptional start sites of target genes (84%). Specific aldosterone-induced recruitment of MR on the first most relevant genomic sequences was further validated by ChIP-quantitative (q)PCR and correlated with concomitant and positive aldosterone-activated transcriptional regulation of the corresponding gene, as assayed by RT-qPCR. It was notable that most MBSs lacked MREs but harbored DNA recognition motifs for other transcription factors (FOX, EGR1, AP1, PAX5) suggesting functional interaction. This work provides new insights into aldosterone MR-mediated renal signaling and opens relevant perspectives for mineralocorticoid-related pathophysiology.
Collapse
Affiliation(s)
- Florian Le Billan
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Junaid A Khan
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Khadija Lamribet
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Say Viengchareun
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Jérôme Bouligand
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Jérôme Fagart
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Marc Lombès
- *Unité 1185, Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S1185, Université Paris-Sud, Le Kremlin-Bicêtre, France; and Service de Génétique Moléculaire, Pharmacogénétique et d'Hormonologie and Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
27
|
Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 2015; 95:297-340. [PMID: 25540145 DOI: 10.1152/physrev.00011.2014] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Michael E Baker
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
28
|
Nagase M. Recent topics on podocytes and aldosterone. J Ren Nutr 2014; 25:201-4. [PMID: 25499230 DOI: 10.1053/j.jrn.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria, a core component of chronic kidney disease. We reported that podocyte impairment underlied the early glomerulopathy in animal models of lifestyle-related diseases, such as hypertension and metabolic syndrome. Accumulating evidence suggests that overactivation of the aldosterone-mineralocorticoid receptor (MR) system has harmful effects on podocytes. We found that MR signaling was enhanced in such lifestyle-related diseases with podocyte injury and proteinuria, which were ameliorated by MR antagonist. Subsequent studies revealed that plasma aldosterone concentrations are not always increased in proteinuric conditions with renal MR activation, and the mechanisms of MR overactivation remained elusive. We recently identified a novel mechanism of Rac1-mediated podocyte impairment using RhoGDIα knockout mice; Rac1 potentiates the activity of MR in a ligand-independent manner, thereby accelerating podocyte injury. We demonstrated that the Rac1-MR pathway contributes to the ligand-independent aberrant MR activation in salt-sensitive hypertension and renal injury models. The importance of the RhoGDIα-Rac1-MR pathway in human glomerular disease is underscored by the findings that mutations in RhoGDIαgene cause nephrotic syndrome. Our results provide evidence that the Rac1-MR signal cascade as a novel therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Miki Nagase
- Department of Anatomy and Life Structure, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
29
|
Barrett Mueller K, Lu Q, Mohammad NN, Luu V, McCurley A, Williams GH, Adler GK, Karas RH, Jaffe IZ. Estrogen receptor inhibits mineralocorticoid receptor transcriptional regulatory function. Endocrinology 2014; 155:4461-72. [PMID: 25051445 PMCID: PMC4197987 DOI: 10.1210/en.2014-1270] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The steroid hormone aldosterone (aldo) contributes to cardiovascular disease in animal models and in humans. Aldo activates the mineralocorticoid receptor (MR), a hormone-activated transcription factor, and indeed, pharmacological MR inhibition improves cardiovascular outcomes. Because the incidence of cardiovascular disease is lower in premenopausal women, we hypothesized that estrogen (E2) signaling through the estrogen receptor (ER) may protect the vasculature by inhibiting the detrimental effects of aldo signaling through the MR. We demonstrate that E2-activated ER inhibits MR-mediated gene transcription from the mouse mammary tumor virus reporter in human embryonic kidney-293 cells. In contrast, aldo-activated MR does not affect ER-mediated gene transcription. The ERα N terminus (amino acids 1-253) containing part of the DNA-binding domain is sufficient to inhibit MR genomic function, although point mutations reveal that DNA binding, ligand-independent activation, and rapid nongenomic ERα signaling are not required for this effect. Furthermore, ERα and MR are part of a complex in cell lysates, with amino acids 1-233 of the ERα N terminus being sufficient to complex with the MR. Overall, the ability of ERα to inhibit MR-mediated gene transcription correlates with the ability of ERα segments to both localize to the nucleus and complex with the MR. In cultured vascular endothelial cells expressing ERα, E2 inhibits aldo induction of the vascular MR target gene intercellular adhesion molecule-1 (ICAM-1). ICAM-1 induction by endothelial MR is known to promote vascular inflammation that could contribute to the mechanism of aldo-induced atherosclerosis. E2 also inhibits aldo induction of ICAM-1 protein and prevents aldo-enhanced leukocyte adhesion to endothelial cells. These studies support a new model in which E2-activated ER in endothelial cells forms a complex with MR in the nucleus to modulate MR regulation of the proinflammatory gene ICAM-1. Estrogen inhibition of MR regulation of genes that contribute to cardiovascular disease may be a new mechanism by which premenopausal women are protected from cardiovascular disease.
Collapse
Affiliation(s)
- Katelee Barrett Mueller
- Molecular Cardiology Research Institute (K.B.M., Q.L., N.N.M., V.L., A.M., R.H.K., I.Z.J.), Tufts Medical Center, and Sackler School of Biomedical Graduate Studies (K.B.M., R.H.K., I.Z.J.), Tufts University School of Medicine, Boston, Massachusetts 02111; and Division of Endocrinology, Diabetes, and Hypertension (G.H.W., G.K.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hudson WH, Youn C, Ortlund EA. Crystal structure of the mineralocorticoid receptor DNA binding domain in complex with DNA. PLoS One 2014; 9:e107000. [PMID: 25188500 PMCID: PMC4154765 DOI: 10.1371/journal.pone.0107000] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/12/2014] [Indexed: 01/21/2023] Open
Abstract
The steroid hormone receptors regulate important physiological functions such as reproduction, metabolism, immunity, and electrolyte balance. Mutations within steroid receptors result in endocrine disorders and can often drive cancer formation and progression. Despite the conserved three-dimensional structure shared among members of the steroid receptor family and their overlapping DNA binding preference, activation of individual steroid receptors drive unique effects on gene expression. Here, we present the first structure of the human mineralocorticoid receptor DNA binding domain, in complex with a canonical DNA response element. The overall structure is similar to the glucocorticoid receptor DNA binding domain, but small changes in the mode of DNA binding and lever arm conformation may begin to explain the differential effects on gene regulation by the mineralocorticoid and glucocorticoid receptors. In addition, we explore the structural effects of mineralocorticoid receptor DNA binding domain mutations found in type I pseudohypoaldosteronism and multiple types of cancer.
Collapse
MESH Headings
- Amino Acid Sequence
- Crystallography, X-Ray
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Humans
- Molecular Sequence Data
- Mutation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Pseudohypoaldosteronism/genetics
- Pseudohypoaldosteronism/metabolism
- Pseudohypoaldosteronism/pathology
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
Collapse
Affiliation(s)
- William H. Hudson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Christine Youn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|