1
|
Muhammad I, Contes K, Bility MT, Tang Q. Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses 2025; 17:528. [PMID: 40284971 PMCID: PMC12031425 DOI: 10.3390/v17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The innate immune response, particularly the interferon-mediated pathway, serves as the first line of defense against viral infections. During virus infection, viral pathogen-associated molecular patterns (PAMPs) are recognized by host pattern recognition receptors (PRRs), triggering downstream signaling pathways. This leads to the activation of transcription factors like IRF3, IRF7, and NF-κB, which translocate to the nucleus and induce the production of type I interferons (IFN-α and IFN-β). Once secreted, type I interferons bind to their receptors (IFNARs) on the surfaces of infected and neighboring cells, activating the JAK-STAT pathway. This results in the formation of the ISGF3 complex (composed of STAT1, STAT2, and IRF9), which translocates to the nucleus and drives the expression of interferon-stimulated genes (ISGs). Some ISGs exert antiviral effects by directly or indirectly blocking infection and replication. Among these ISGs, ISG15 plays a crucial role in the ISGylation process, a ubiquitin-like modification that tags viral and host proteins, regulating immune responses and inhibiting viral replication. However, viruses have evolved counteractive strategies to evade ISG15-mediated immunity and ISGylation. This review first outlines the PAMP-PRR-induced pathways leading to the production of cytokines and ISGs, followed by a summary of ISGylation's role in antiviral defense and viral evasion mechanisms targeting ISG15 and ISGYlation.
Collapse
Affiliation(s)
| | | | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (I.M.); (K.C.); (M.T.B.)
| |
Collapse
|
2
|
Schmidt HM, Horner SM. Towards a Universal Translator: Decoding the PTMs That Regulate Orthoflavivirus Infection. Viruses 2025; 17:287. [PMID: 40007042 PMCID: PMC11861903 DOI: 10.3390/v17020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Post-translational modifications (PTMs) serve as critical regulators of protein function across biological systems, including during viral infection. For orthoflaviviruses, including human pathogens like dengue, Zika, and West Nile viruses, PTMs on viral proteins regulate multiple aspects of the viral lifecycle and pathogenesis. Here, we review the mechanisms by which PTMs regulate orthoflavivirus infection in both vertebrate and arthropod hosts. We examine how ubiquitination and glycosylation on the viral envelope proteins facilitate viral entry and how phosphorylation, SUMOylation, and acetylation on non-structural proteins modulate viral RNA replication. Additionally, we describe how PTMs on viral structural proteins dynamically regulate viral assembly and egress. We also describe how PTMs can influence tissue tropism and host-specific pathogenesis, with some modifications showing divergent functions between arthropod vectors and vertebrate hosts, and how the host antiviral response can trigger specific PTMs on viral proteins to restrict infection, highlighting PTMs as key mediators of host-pathogen interactions. While significant progress has been made in identifying PTMs on viral proteins, many questions remain about their temporal dynamics, mechanisms of action, and conservation across the orthoflavivirus genus. Understanding how PTMs regulate orthoflavivirus infection may reveal new therapeutic strategies, particularly given recent advances in targeting specific protein modifications for disease treatment.
Collapse
Affiliation(s)
- Hannah M. Schmidt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Plaça DR, Fonseca DLM, Marques AHC, Zaki Pour S, Usuda JN, Baiocchi GC, Prado CADS, Salgado RC, Filgueiras IS, Freire PP, Rocha V, Camara NOS, Catar R, Moll G, Jurisica I, Calich VLG, Giil LM, Rivino L, Ochs HD, Cabral-Miranda G, Schimke LF, Cabral-Marques O. Immunological signatures unveiled by integrative systems vaccinology characterization of dengue vaccination trials and natural infection. Front Immunol 2024; 15:1282754. [PMID: 38444851 PMCID: PMC10912564 DOI: 10.3389/fimmu.2024.1282754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.
Collapse
Affiliation(s)
- Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Alexandre H. C. Marques
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Shahab Zaki Pour
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Crispim Baiocchi
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ranieri Coelho Salgado
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Paccielli Freire
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
- Department of Hematology, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Niels Olsen Saraiva Camara
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vera Lúcia Garcia Calich
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lasse M. Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Research Institute, Seattle, WA, United States
| | - Gustavo Cabral-Miranda
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lena F. Schimke
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| |
Collapse
|
4
|
Espada CE, da Rocha EL, Ricciardi-Jorge T, dos Santos AA, Soares ZG, Malaquias G, Patrício DO, Gonzalez Kozlova E, dos Santos PF, Bordignon J, Sanford TJ, Fajardo T, Sweeney TR, Báfica A, Mansur DS. ISG15/USP18/STAT2 is a molecular hub regulating IFN I-mediated control of Dengue and Zika virus replication. Front Immunol 2024; 15:1331731. [PMID: 38384473 PMCID: PMC10879325 DOI: 10.3389/fimmu.2024.1331731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.
Collapse
Affiliation(s)
- Constanza Eleonora Espada
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz da Rocha
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Taissa Ricciardi-Jorge
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Adara Aurea dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Zamira Guerra Soares
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Malaquias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Oliveira Patrício
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edgar Gonzalez Kozlova
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paula Fernandes dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Instituto Carlos Chagas (ICC)/Fiocruz-PR, Curitiba, Brazil
| | - Thomas J. Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Trevor R. Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Viral Gene Expression Group, The Pirbright Institute, Guildford, United Kingdom
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
Shen J, Wang Z, Liu M, Zhu YJ, Zheng L, Wang LL, Cheng JL, Liu TT, Zhang GD, Yang TY, Wang X, Zhang L. LincRNA-ROR/miR-145/ZEB2 regulates liver fibrosis by modulating HERC5-mediated p53 ISGylation. FASEB J 2023; 37:e22936. [PMID: 37144417 DOI: 10.1096/fj.202201182rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The tumor suppressor p53 has been implicated in the pathogenesis of liver fibrosis. HERC5-mediated posttranslational ISG modification of the p53 protein is critical for controlling its activity. Here, we demonstrated that the expression of HERC5 and ISG15 is highly elevated, whereas p53 is downregulated, in fibrotic liver tissues of mice and transforming growth factor-β1 (TGF-β1)-induced LX2 cells. HERC5 siRNA clearly increased the protein expression of p53, but the mRNA expression of p53 was not obviously changed. The inhibition of lincRNA-ROR (ROR) downregulated HERC5 expression and elevated p53 expression in TGF-β1-stimulated LX-2 cells. Furthermore, the expression of p53 was almost unchanged after TGF-β1-stimulated LX-2 cells were co-transfected with a ROR-expressing plasmid and HERC5 siRNA. We further confirmed that miR-145 is a target gene of ROR. In addition, we also showed that ROR regulates the HERC5-mediated ISGylation of p53 through mir-145/ZEB2. Together, we propose that ROR/miR-145/ZEB2 might be involved in the course of liver fibrosis by regulating ISGylation of the p53 protein.
Collapse
Affiliation(s)
- Jie Shen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zhu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Mei Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Jie Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Zheng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Li-Li Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jie-Ling Cheng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Tong-Tong Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Guo-Dong Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Tian-Yu Yang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
6
|
Suzuki Y. Interferon-induced restriction of Chikungunya virus infection. Antiviral Res 2023; 210:105487. [PMID: 36657882 DOI: 10.1016/j.antiviral.2022.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Chikungunya virus (CHIKV) is an enveloped RNA virus that causes Chikungunya fever (CHIKF), which is transmitted to humans through the bite of infected Aedes mosquitos. Although CHIKVF had been regarded as an endemic disease in limited regions of Africa and Asia, the recent global reemergence of CHIKV heightened awareness of this infectious disease, and CHIKV infection is currently considered an increasing threat to public health. However, no specific drug or licensed vaccine is available for CHIKV infection. As seen in other RNA virus infections, CHIKV triggers the interferon (IFN) response that plays a central role in host defense against pathogens. Experimental evidence has demonstrated that control of CHIVK replication by the IFN response is achieved by antiviral effector molecules called interferon-stimulated genes (ISGs), whose expressions are upregulated by IFN stimulation. This review details the molecular basis of the IFN-mediated suppression of CHIKV, particularly the ISGs restricting CHIKV replication.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| |
Collapse
|
7
|
Free ISG15 Inhibits the Replication of Peste des Petits Ruminants Virus by Breaking the Interaction of Nucleoprotein and Phosphoprotein. Microbiol Spectr 2022; 10:e0103122. [PMID: 36036587 PMCID: PMC9603952 DOI: 10.1128/spectrum.01031-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a highly contagious disease in small ruminants and severe economic losses in developing countries. PPRV infection can stimulate high levels of interferon (IFN) and many IFN-stimulated genes (ISGs), such as ISG15, which may play a key role in the process of viral infection. However, the role of ISG15 in PPRV infection and replication has not yet been reported. In this study, we found ISG15 expression to be significantly upregulated after PPRV infection of caprine endometrial epithelial cells (EECs), and ISG15 inhibits the proliferation of PPRV. Further analysis showed that free ISG15 could inhibit PPRV proliferation. Moreover, ISG15 does not affect the binding, entry, and transcription but does suppress the replication of PPRV. A detailed analysis revealed that ISG15 interacts and colocalizes with both viral N and P proteins and that its interactive regions are all located in the N-terminal domain. Further studies showed that ISG15 can competitively interact with N and P proteins and significantly interfere with their binding. Finally, through the construction of the C-terminal mutants of ISG15 with different lengths, it was found that amino acids (aa) 77 to 101 play a key role in inhibiting the binding of N and P proteins and that interaction with the P protein disappears after the deletion of 77 to 101 aa. The present study revealed a novel mechanism of ISG15 in disrupting the activity of the N0-P complex to inhibit viral replication. IMPORTANCE PPRV, a widespread and fatal disease of small ruminants, is one of the most devastating animal diseases in Africa, the Middle East, and Asia, causing severe economic losses. IFNs play an important role as a component of natural immunity against pathogens, yet the role of ISG15, an IFN-stimulated gene, in protecting against PPRV infection is currently unknown. We demonstrated, for the first time, that free ISG15 inhibits PPRV proliferation by disrupting the activity of the N0-P complex, a finding that has not been reported in other viruses. Our results provide important insights that can further understand the pathogenesis and innate immune mechanisms of PPRV.
Collapse
|
8
|
Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Front Microbiol 2022; 13:835344. [PMID: 35602051 PMCID: PMC9120866 DOI: 10.3389/fmicb.2022.835344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a reversible protein post-translational modification that regulates various pivotal physiological and pathological processes in all eukaryotes. Recently, the antiviral immune response is enhanced by the regulation of ubiquitination. Intriguingly, Flaviviridae viruses can ingeniously hijack the ubiquitination system to help them survive, which has become a hot topic among worldwide researchers. The Flaviviridae family members, such as HCV and CSFV, can cause serious diseases of humans and animals around the world. The multiple roles of ubiquitination involved in the life cycle of Flaviviridae family would open new sight for future development of antiviral tactic. Here, we discuss recent advances with regard to functional roles of ubiquitination and some ubiquitin-like modifications in the life cycle of Flaviviridae infection, shedding new light on the antiviral mechanism research and therapeutic drug development.
Collapse
Affiliation(s)
- Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingli Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilin Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, Luoping, China
| | - Jing Fang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
9
|
Taraphdar D, Singh B, Pattanayak S, Kiran A, Kokavalla P, Alam MF, Syed GH. Comodulation of Dengue and Chikungunya Virus Infection During a Coinfection Scenario in Human Cell Lines. Front Cell Infect Microbiol 2022; 12:821061. [PMID: 35573775 PMCID: PMC9097606 DOI: 10.3389/fcimb.2022.821061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Dengue virus (DENV) and Chikungunya virus (CHIKV) are the arboviruses that pose a threat to global public health. Coinfection and antibody-dependent enhancement are major areas of concern during DENV and CHIKV infections, which can alter the clinical severity. Acute hepatic illness is a common manifestation and major sign of disease severity upon infection with either dengue or chikungunya. Hence, in this study, we characterized the coexistence and interaction between both the viruses in human hepatic (Huh7) cells during the coinfection/superinfection scenario. We observed that prior presence of or subsequent superinfection with DENV enhanced CHIKV replication. However, prior CHIKV infection negatively affected DENV. In comparison to monoinfection, coinfection with both DENV and CHIKV resulted in lower infectivity as compared to monoinfections with modest suppression of CHIKV but dramatic suppression of DENV replication. Subsequent investigations revealed that subneutralizing levels of DENV or CHIKV anti-sera can respectively promote the ADE of CHIKV or DENV infection in FcγRII bearing human myelogenous leukemia cell line K562. Our observations suggest that CHIKV has a fitness advantage over DENV in hepatic cells and prior DENV infection may enhance CHIKV disease severity if the patient subsequently contracts CHIKV. This study highlights the natural possibility of dengue-chikungunya coinfection and their subsequent modulation in human hepatic cells. These observations have important implications in regions where both viruses are prevalent and calls for proper management of DENV-CHIKV coinfected patients.
Collapse
Affiliation(s)
- Debjani Taraphdar
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bharati Singh
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Sabyasachi Pattanayak
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Avula Kiran
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Poornima Kokavalla
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd. Faraz Alam
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Gulam Hussain Syed
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
10
|
Roles of ESCRT proteins (ALIX and CHIMP4A) and their interplay with ISG15 during tick-borne flavivirus infection. J Virol 2021; 96:e0162421. [PMID: 34851141 PMCID: PMC8826915 DOI: 10.1128/jvi.01624-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.
Collapse
|
11
|
Kaikai H, Zhao D, Liu Y, Liu Q, Huang X, Yang J, Zhang L, Li Y. The E3 Ubiquitin Ligase TRIM25 Inhibits Tembusu Virus Replication in vitro. Front Vet Sci 2021; 8:722113. [PMID: 34595229 PMCID: PMC8476877 DOI: 10.3389/fvets.2021.722113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused significant economic losses to the duck industry in China since 2010 due to egg production losses and neurological dysfunction. DTMUV is a public health concern because the infection spreads rapidly among birds. Retinoic acid-inducible gene-I (RIG-I)serves as an innate immune sensor and plays a key role in host antiviral defenses. Tripartite motif-containing protein 25 (TRIM25), an E3 ubiquitin ligase, is pivotal for RIG-I ubiquitination and activation. In addition, TRIM25 acts as an interferon-stimulated gene and mediates the antiviral activity. However, the effect of duck TRIM25 on DTMUV has not been assessed. Herein, we reportthe antiviral function of TRIM25 against DTMUV. First, we constructed the pcDNA3.1-c-myc-duTRIM25 plasmid. TRIM25 has a 2052 bp open reading frame that encodes a predicted 684 amino acid protein consisting of a RING finger domain, a B-box domain, a coiled-coil domain, and a PRY/SPRY domain. The protein sequence identity with chicken, mouse, and human TRIM25 is 69.7, 47.8, and 48.3%, respectively. TRIM25 was upregulated in BHK-21 cells, duck embryo fibroblasts, and 293T cellsupon DTMUV infection. The expression of viral RNA and proteins was significantly lower in cells over expressing TRIM25 than in control cells. Furthermore, siRNA-mediated silencing of TRIM25 increased the production of viral progeny. These results help elucidate the molecular mechanisms underlying the host response to DTMUV infection and suggest potential control measures for DTMUV outbreaks.
Collapse
Affiliation(s)
- Han Kaikai
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Yang
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lijiao Zhang
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yin Li
- Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Ji ZX, Wang XQ, Liu XF. NS1: A Key Protein in the "Game" Between Influenza A Virus and Host in Innate Immunity. Front Cell Infect Microbiol 2021; 11:670177. [PMID: 34327148 PMCID: PMC8315046 DOI: 10.3389/fcimb.2021.670177] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Since the influenza pandemic occurred in 1918, people have recognized the perniciousness of this virus. It can cause mild to severe infections in animals and humans worldwide, with extremely high morbidity and mortality. Since the first day of human discovery of it, the “game” between the influenza virus and the host has never stopped. NS1 protein is the key protein of the influenza virus against host innate immunity. The interaction between viruses and organisms is a complex and dynamic process, in which they restrict each other, but retain their own advantages. In this review, we start by introducing the structure and biological characteristics of NS1, and then investigate the factors that affect pathogenicity of influenza which determined by NS1. In order to uncover the importance of NS1, we analyze the interaction of NS1 protein with interferon system in innate immunity and the molecular mechanism of host antagonism to NS1 protein, highlight the unique biological function of NS1 protein in cell cycle.
Collapse
Affiliation(s)
- Zhu-Xing Ji
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-Quan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiu-Fan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Hanley JP, Tu HA, Dragon JA, Dickson DM, Rio-Guerra RD, Tighe SW, Eckstrom KM, Selig N, Scarpino SV, Whitehead SS, Durbin AP, Pierce KK, Kirkpatrick BD, Rizzo DM, Frietze S, Diehl SA. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun 2021; 12:3054. [PMID: 34031380 PMCID: PMC8144425 DOI: 10.1038/s41467-021-22930-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
About 20-25% of dengue virus (DENV) infections become symptomatic ranging from self-limiting fever to shock. Immune gene expression changes during progression to severe dengue have been documented in hospitalized patients; however, baseline or kinetic information is difficult to standardize in natural infection. Here we profile the host immunotranscriptome response in humans before, during, and after infection with a partially attenuated rDEN2Δ30 challenge virus (ClinicalTrials.gov NCT02021968). Inflammatory genes including type I interferon and viral restriction pathways are induced during DENV2 viremia and return to baseline after viral clearance, while others including myeloid, migratory, humoral, and growth factor immune regulation factors pathways are found at non-baseline levels post-viremia. Furthermore, pre-infection baseline gene expression is useful to predict rDEN2Δ30-induced immune responses and the development of rash. Our results suggest a distinct immunological profile for mild rDEN2Δ30 infection and offer new potential biomarkers for characterizing primary DENV infection.
Collapse
Affiliation(s)
- John P Hanley
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Huy A Tu
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Dorothy M Dickson
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Roxana Del Rio-Guerra
- Flow Cytometry and Cell Sorting Facility, Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Scott W Tighe
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Korin M Eckstrom
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Nicholas Selig
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Donna M Rizzo
- Department of Civil and Environmental Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Seth Frietze
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA.
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
14
|
Ye H, Duan X, Yao M, Kang L, Li Y, Li S, Li B, Chen L. USP18 Mediates Interferon Resistance of Dengue Virus Infection. Front Microbiol 2021; 12:682380. [PMID: 34017322 PMCID: PMC8130619 DOI: 10.3389/fmicb.2021.682380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies demonstrated that dengue virus (DENV) infection developed resistance to type-I interferons (IFNα/β). The underlying mechanism remains unclear. USP18 is a negative regulator of IFNα/β signaling, and its expression level is significantly increased following DENV infection in cell lines and patients’ blood. Our previous study revealed that increased USP18 expression contributed to the IFN-α resistance of Hepatitis C Virus (HCV). However, the role of USP18 in DENV replication and resistance to IFN-α is elusive. In this current study, we aimed to explore the role of USP18 in DENV-2 replication and resistance to IFN-α. The level of USP18 was up-regulated by plasmid transfection and down-regulated by siRNA transfection in Hela cells. USP18, IFN-α, IFN-β expression, and DENV-2 replication were monitored by qRT-PCR and Western blot. The activation of the Jak/STAT signaling pathway was assessed at three levels: p-STAT1/p-STAT2 (Western blot), interferon-stimulated response element (ISRE) activity (Dual-luciferase assay), and interferon-stimulated genes (ISGs) expression (qRT-PCR). Our data showed that DENV-2 infection increased USP18 expression in Hela cells. USP18 overexpression promoted DENV-2 replication, while USP18 silence inhibited DENV-2 replication. Silence of USP18 potentiated the anti-DENV-2 activity of IFN-α through activation of the IFN-α-mediated Jak/STAT signaling pathway as shown by increased expression of p-STAT1/p-STAT2, enhanced ISRE activity, and elevated expression of some ISGs. Our data indicated that USP18 induced by DENV-2 infection is a critical host factor utilized by DENV-2 to confer antagonism on IFN-α.
Collapse
Affiliation(s)
- Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Yao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Lan Kang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Bin Li
- Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China.,Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020; 22:ijms22010323. [PMID: 33396899 PMCID: PMC7796338 DOI: 10.3390/ijms22010323] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.
Collapse
|
16
|
Wang Y, Ren K, Li S, Yang C, Chen L. Interferon stimulated gene 15 promotes Zika virus replication through regulating Jak/STAT and ISGylation pathways. Virus Res 2020; 287:198087. [PMID: 32738280 DOI: 10.1016/j.virusres.2020.198087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022]
Abstract
Zika virus is an emergent arbovirus that has caused a public health emergency in South America. Zika virus infection is known to cause microcephaly and other congenital defects and Guillain-Barré syndrome. Unfortunately no direct antiviral treatments are available at present. IFN-stimulated gene 15 (ISG15) is one of the most upregulated host genes following type I interferon treatment or virus infections. ISG15 has been shown to have antiviral effect on a wide variety of viruses although pro-HCV replication was observed. However, the effect of ISG15 on ZIKV infection is not well defined. In this study, we try to clarify the effect of ISG15 on ZIKV replication and to further dissect the underlying mechanism. Our results indicated that ZIKV infection led to the increased expression of ISG15 in A549, 2fTGH, U5A cells. Overexpression of ISG15 stimulated ZIKV replication although ISG15 did not affect the viral entry. Further studies showed that this proviral effect was mediated through Jak/STAT signaling pathway and was ISGylation-dependent. Taken together, our work demonstrates that ISG15 is an important host factor exploited by ZIKV to facilitate its replication and might serve as a potential target for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Yancui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Kai Ren
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China; Toronto General Research Institute, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
18
|
Li Y, Yao M, Duan X, Ye H, Li S, Chen L, Yang C, Chen Y. The USP18 cysteine protease promotes HBV production independent of its protease activity. Virol J 2020; 17:47. [PMID: 32248821 PMCID: PMC7133002 DOI: 10.1186/s12985-020-01304-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hepatitis B virus (HBV) infection remains as one of the major public health problems in the world. Type I interferon (IFN) plays an essential role in antiviral defense by induced expression of a few hundred interferon stimulated genes (ISGs), including ubiquitin-specific protease 18 (USP18). The expression level of USP18 was elevated in the pretreatment liver tissues of chronic hepatitis B(CHB) patients who did not respond to IFN treatment. Thus, this study was designed to investigate the effects of USP18 on HBV replication/production. Methods The levels of wild type USP18(WT-USP18) and USP18 catalytically inactive form C64S were up-regulated by plasmids transfection in HepAD38 cells, respectively. Real-time PCR and ELISA were used to quantify HBV replication. Type I IFN signaling pathway was monitored at three levels: p-STAT1 (western Blot), interferon stimulated response element (ISRE) activity (dual luciferase assay) and ISGs expression (real time PCR). Results Our data demonstrated that overexpression of either WT-USP18 or USP18-C64S inactive mutant increased the intracellular viral pgRNA, total DNA, cccDNA, as well as HBV DNA levels in the culture supernatant, while silencing USP18 led to opposite effect on HBV production. In addition, upregulated WT-USP18 or USP18-C64S suppressed ISRE activity and the expression levels of p-STAT1 and ISGs. Conclusion USP18 promoted HBV replication via inhibiting type I IFN signaling pathway, which was independent of its protease activity.
Collapse
Affiliation(s)
- Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Min Yao
- The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.,Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, M5G1L6, Canada
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
| | - Yongjun Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
| |
Collapse
|
19
|
Abstract
The host response to viral infection includes the induction of type I interferons and the subsequent upregulation of hundreds of interferon-stimulated genes. Ubiquitin-like protein ISG15 is an interferon-induced protein that has been implicated as a central player in the host antiviral response. Over the past 15 years, efforts to understand how ISG15 protects the host during infection have revealed that its actions are diverse and pathogen-dependent. In this Review, we describe new insights into how ISG15 directly inhibits viral replication and discuss the recent finding that ISG15 modulates the host damage and repair response, immune response and other host signalling pathways. We also explore the viral immune-evasion strategies that counteract the actions of ISG15. These findings are integrated with a discussion of the recent identification of ISG15-deficient individuals and a cellular receptor for ISG15 that provides new insights into how ISG15 shapes the host response to viral infection. Ubiquitin-like protein ISG15 is an interferon-induced protein that has been implicated as a central player in the host antiviral response. In this Review, Perng and Lenschow provide new insights into how ISG15 restricts and shapes the host response to viral infection and the viral immune-evasion strategies that counteract ISG15.
Collapse
Affiliation(s)
- Yi-Chieh Perng
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Deborah J Lenschow
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
20
|
Singh PK, Singh S, Farr D, Kumar A. Interferon-stimulated gene 15 (ISG15) restricts Zika virus replication in primary human corneal epithelial cells. Ocul Surf 2019; 17:551-559. [PMID: 30905842 PMCID: PMC6708474 DOI: 10.1016/j.jtos.2019.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Zika virus (ZIKV) has emerged as an important human pathogen causing ocular complications. There have been reports of the shedding of ZIKV in human as well as animal tears. In this study, we investigated the infectivity of ZIKV in corneal epithelial cells and their antiviral immune response. METHODS Primary human corneal epithelial cells (Pr. HCECs) and an immortalized cell line (HUCL) were infected with two different strains of ZIKV (PRVABC59 & BeH823339) or dengue virus (DENV, serotypes 1-4). Viral infectivity was assessed by immunostaining of viral antigen and plaque assay. qRT-PCR and immunoblot analyses were used to assess the expression of innate inflammatory and antiviral genes. Supplementation of recombinant ISG15 (rISG15) and gene silencing approaches were used to elucidate the role of ISG15 in corneal antiviral defense. RESULTS Pr. HCECs, but not the HUCL cells, were permissive to both ZIKV strains and specifically to DENV3 infection. ZIKV induced the expression of viral recognition receptors (TLR3, RIG-I, &MDA5), and genes involved in inflammatory (CXCL10 & CCL5) and antiviral (IFNs, MX1, OAS2, ISG15) responses in Pr. HCECs. Furthermore, ZIKV infection caused Pr. HCECs cell death, as evidenced by TUNEL staining. Silencing of ISG15 increased ZIKV infectivity while supplementation with rISG15 reduced ZIKV infection by direct inactivation of ZIKV and inhibiting its entry. CONCLUSIONS Our study demonstrates for the first time, that ZIKV can readily infect and replicate in Pr. HCECs. Therefore, ZIKV may persist in the cornea and pose the potential risk of transmission via corneal transplantation.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Dustin Farr
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
21
|
Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat Microbiol 2019; 4:1096-1104. [PMID: 30988429 PMCID: PMC6588457 DOI: 10.1038/s41564-019-0425-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Current paradigms of cell intrinsic immunity to RNA viruses center on virus-triggered inducible antiviral responses initiated by RIG-I-like receptors (RLRs) or Toll-like receptors (TLRs) that sense pathogen-associated molecular patterns, and signal downstream through interferon regulatory factors (IRFs), transcription factors that induce synthesis of type I and type III interferons (IFNs)1. RNA viruses have evolved sophisticated strategies to disrupt these signaling pathways and evade elimination by cells, attesting to their importance2. Less attention has been paid how IRFs maintain basal levels of protection against viruses. Here, we depleted antiviral factors linked to RLR and TLR signaling in order to map critical host pathways restricting positive-strand RNA virus replication in immortalized hepatocytes and identified an unexpected role for IRF1. We show constitutively expressed IRF1 acts independently of MAVS, IRF3, and STAT1-dependent signaling to provide intrinsic antiviral protection in actinomycin D-treated cells. IRF1 localizes to the nucleus, where it maintains basal transcription of a suite of antiviral genes that protect against multiple pathogenic RNA viruses, including hepatitis A and C viruses (HAV and HCV), dengue virus (DENV) and Zika virus (ZIKV). Our findings reveal an unappreciated layer of hepatocyte intrinsic immunity to these positive-strand RNA viruses, and identify previously unrecognized antiviral effector genes.
Collapse
|
22
|
Chen YL, Wu WL, Jang CW, Yen YC, Wang SH, Tsai FY, Shen YY, Chen YW. Interferon-stimulated gene 15 modulates cell migration by interacting with Rac1 and contributes to lymph node metastasis of oral squamous cell carcinoma cells. Oncogene 2019; 38:4480-4495. [PMID: 30765861 DOI: 10.1038/s41388-019-0731-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/15/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
In an effort to understand the underlying mechanisms of lymph node metastasis in oral squamous cell carcinoma (OSCC), through in vivo selection, LN1-1 cells were previously established from OEC-M1 cells and showed enhanced lymphangiogenesis and lymphatic metastasis capabilities. In the current study, we use a stable isotope labeling with amino acids in cell culture (SILAC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic platform to compare LN1-1 to OEC-M1 cells. Interferon-stimulated gene 15 (ISG15) was found highly expressed in LN1-1 cells. Immunohistochemical analysis and meta-analysis of publicly available microarray datasets revealed that the ISG15 level was increased in human OSCC tissues and associated with poor disease outcome. Knockdown of ISG15 had minimal effects on tumor growth but did decrease tumor lymphangiogenesis and lymphatic metastasis of LN1-1 cells. Consistent with the in vivo assay, ISG15 knockdown did not impair cell growth but diminished cell migration, invasion, and transendothelial migration in vitro. ISG15-induced cell migration was independent of ISGylation and associated with membrane protrusion. Ectopic expression of ISG15 increased Rac1 activity and knockdown of Rac1 impaired ISG15-enhanced migration. Furthermore, Rac1 colocalized with ISG15 to a region of membrane protrusion and ISG15 coimmunoprecipitated with Rac1, especially with the Rac1-GDP form. Importantly, as shown by proximity ligation assays, ISG15 and Rac1 physically interacted with each other. Our results indicated that ISG15 affects cell migration by interacting with Rac1 and regulating Rac1 activity and contributes to lymphatic metastasis in OSCC.
Collapse
Affiliation(s)
- Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wan-Lin Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chuan-Wei Jang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Chen Yen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Ying Shen
- Pathology Core Laboratory, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
The Scorpion Venom Peptide Smp76 Inhibits Viral Infection by Regulating Type-I Interferon Response. Virol Sin 2018; 33:545-556. [PMID: 30569290 DOI: 10.1007/s12250-018-0068-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) have spread throughout many countries in the developing world and infect millions of people every year, causing severe harm to human health and the economy. Unfortunately, there are few effective vaccines and therapies available against these viruses. Therefore, the discovery of new antiviral agents is critical. Herein, a scorpion venom peptide (Smp76) characterized from Scorpio maurus palmatus was successfully expressed and purified in Escherichia coli BL21(DE3). The recombinant Smp76 (rSmp76) was found to effectively inhibit DENV and ZIKV infections in a dose-dependent manner in both cultured cell lines and primary mouse macrophages. Interestingly, rSmp76 did not inactivate the viral particles directly but suppressed the established viral infection, similar to the effect of interferon (IFN)-β. Mechanistically, rSmp76 was revealed to upregulate the expression of IFN-β by activating interferon regulatory transcription factor 3 (IRF3) phosphorylation, enhancing the type-I IFN response and inhibiting viral infection. This mechanism is significantly different from traditional virucidal antimicrobial peptides (AMPs). Overall, the scorpion venom peptide Smp76 is a potential new antiviral agent with a unique mechanism involving type-I IFN responses, demonstrating that natural AMPs can enhance immunity by functioning as immunomodulators.
Collapse
|
24
|
Moreno P, Alvarez-Torres D, Garcia-Rosado E, Borrego JJ, Alonso MC. Differential antiviral activity of European sea bass interferon-stimulated 15 protein (ISG15) against RGNNV and SJNNV betanodaviruses. FISH & SHELLFISH IMMUNOLOGY 2018; 83:148-157. [PMID: 30195901 DOI: 10.1016/j.fsi.2018.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 05/07/2023]
Abstract
ISG15 is an antiviral protein acting intracellularly, by conjugation to viral or cellular proteins, or extracellularly, as cytokine. In this work, an in vitro system, consisting of E-11 cells over-expressing European sea bass ISG15 (Dl_ISG15_E11 cells), has been developed to evaluate the European sea bass ISG15 protein activity against RGNNV and SJNNV isolates. Regarding RGNNV, RNA2 copy number and viral titres were similar in E-11 and Dl_ISG15_E11 cells, and the cellular survival analyses demonstrated that Dl_ISG15_E11 cells were not protected from this virus. In contrast, ISG15 compromises SJNNV replication, since a reduction of the SJNNV genome synthesis has been recorded. The ISG15 anti-SJNNV activity was confirmed by viral titration and survival assays. In addition, a role of the intracellular ISG15 in modulating the transcription of endogenous genes has being recorded, with tlr3 gene being knocked out and e3 gene being up-regulated in RGNNV-inoculated Dl_ISG15_E11 cells. Sea bass ISG15 has also been detected extracellularly, and its activity has been evaluated by co-culture. The survival rate of RGNNV-inoculated E-11 cells increased from 25% to 46% when they were co-cultured with ISG15-producing cells. Similarly, the survival rate of SJNNV-inoculated E-11 cells increased from 27% to 51% in co-culture with ISG15-producing cells. To our knowledge, this is the first description of a differential antiviral activity of an ISG15 protein against two betanodavirus species, and the first evaluation of the cytokine-like activity of a fish ISG15 protein on non-immune cells.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Daniel Alvarez-Torres
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Esther Garcia-Rosado
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain.
| |
Collapse
|
25
|
Tsuji R, Yamamoto N, Yamada S, Fujii T, Yamamoto N, Kanauchi O. Induction of anti-viral genes mediated by humoral factors upon stimulation with Lactococcus lactis strain plasma results in repression of dengue virus replication in vitro. Antiviral Res 2018; 160:101-108. [PMID: 30393011 DOI: 10.1016/j.antiviral.2018.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection. There is currently no effective vaccine or antiviral treatment available against DENV. In previous studies, we showed that Lactococcus lactis strain Plasma (LC-Plasma) could activate plasmacytoid dendritic cells, which play an important role against virus infection. LC-Plasma administration ameliorated symptoms of viral diseases and its effect appeared to be associated with IFN-α induction. However the precise mechanism of LC-Plasma protection remained unclear. In this study, we investigated the effects of LC-Plasma-induced humoral factors on DENV replication using HepG2 cells as an in vitro infection model. When HepG2 cells were preincubated with supernatants of LC-Plasma-stimulated bone marrow-derived dendritic cells, the replication of DENV was significantly inhibited in a dose dependent manner and its activity was evident regardless of the DENV serotype. In addition, the expression of interferon-stimulated genes, including ISG15, IFITM-1, MxA, RSAD2, and RyDEN, was significantly upregulated by humoral factors. We also compared the effects of representative strains of lactic acid bacteria and found that the ability to prevent DENV replication was unique to LC-Plasma. In addition, it was revealed that both anti-DENV replication activity and ISG induction depended on type I IFN rather than type III IFN signaling. Taken together, since LC-Plasma induces, in a more natural form, potent anti-DENV replication activities irrespective of viral serotypes via induction of type I IFN, LC-Plasma could be safely used as a prophylactic anti-DENV option.
Collapse
Affiliation(s)
- Ryohei Tsuji
- Research Laboratories for Health Science and Food Technologies, Kirin Co, Ltd., Japan.
| | - Norio Yamamoto
- Department of Infection Control Science, Graduate School of Medicine, Juntendo University, Japan
| | - Sayuri Yamada
- Research Laboratories for Health Science and Food Technologies, Kirin Co, Ltd., Japan
| | - Toshio Fujii
- Research Laboratories for Health Science and Food Technologies, Kirin Co, Ltd., Japan
| | - Naoki Yamamoto
- National Institute of Infectious Diseases and Tokyo Medical and Dental University, Japan
| | - Osamu Kanauchi
- Research Laboratories for Health Science and Food Technologies, Kirin Co, Ltd., Japan
| |
Collapse
|
26
|
Suzuki H, Tsuji R, Sugamata M, Yamamoto N, Yamamoto N, Kanauchi O. Administration of plasmacytoid dendritic cell-stimulative lactic acid bacteria is effective against dengue virus infection in mice. Int J Mol Med 2018; 43:426-434. [PMID: 30365042 DOI: 10.3892/ijmm.2018.3955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
Dengue virus (DENV), a mosquito‑borne flavivirus, causes an acute febrile illness that is a major public health problem in the tropics and subtropics globally. However, methods to prevent or treat DENV infection have not been well established. It was previously demonstrated that Lactococcus lactis strain plasma (LC‑plasma) has the ability to stimulate plasmacytoid dendritic cells (pDCs). As pDCs are key immune cells that control viral infection by producing large amounts of type I interferons (IFN), the present study evaluated the effect of LC‑plasma on DENV infection using a mouse infectious DENV strain. Mice were divided into two groups and the test group was orally administered LC‑plasma for two weeks. Two weeks following administration, the mice were infected with DENV and the relative viral titers and the expression of the inflammatory genes in DENV‑infected tissue were measured using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The relative viral titers were notably lower in the DENV‑infected tissues compared with the control group when LC‑plasma was orally administered prior to DENV infection. Furthermore, the expression of the inflammatory genes associated with DENV infection was also reduced by LC‑plasma administration. To investigate how LC‑plasma administration controls DENV infection, the present study examined anti‑viral gene expression, which is critical for the viral clearance induced by type I IFN. Two weeks subsequent to the administration of LC‑plasma, the expression of anti‑viral gene was measured using RT‑qPCR. Oral intake of LC‑plasma enhanced anti‑viral gene expression in DENV‑infected spleen tissue. To clarify the detailed mechanism, in vitro co‑culture studies using bone‑marrow derived DC (BMDC) were performed. BMDC were stimulated with LC‑plasma in combination with anti‑IFN‑α/β antibody and the expression of anti‑viral genes was measured. In vitro studies revealed that the effect of LC‑plasma on anti‑viral genes was dependent on type I IFN. Based on these results, LC‑plasma may be effective against DENV infection by stimulating pDCs, which results in the increased production of anti‑viral factors.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| | - Ryohei Tsuji
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| | - Miho Sugamata
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| | - Naoki Yamamoto
- National Institute of Infectious Diseases, Tokyo 162‑8640, Japan
| | - Norio Yamamoto
- Department of Infection Control Science, Graduate School of Medicine, Juntendo University, Tokyo 113‑8421, Japan
| | - Osamu Kanauchi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| |
Collapse
|
27
|
Immunomodulatory effect of 1, 25 dihydroxy vitamin D 3 on the expression of RNA sensing pattern recognition receptor genes and cytokine response in dengue virus infected U937-DC-SIGN cells and THP-1 macrophages. Int Immunopharmacol 2018; 62:237-243. [PMID: 30032048 DOI: 10.1016/j.intimp.2018.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) infections are straining public health systems worldwide. Vitamin D, a secosteroid hormone, is currently being investigated for its immunomodulatory effects in DENV infections. The objectives of the present study was to study the effect of 1, 25 dihydroxy vitamin D3 (1,25(OH)2D3) on the expression of genes coding for RNA sensing pattern recognition receptors, downstream signaling components including oligoadenylate synthetases (OAS) and interferon stimulated gene 15 (ISG15) and T helper (Th)1, Th2 and Th17 cytokine response in DENV infected U937-DC-SIGN cells and THP-1 macrophages. U937-DC-SIGN RNA was investigated for the expression of TLR3, DDX58, IFIH1, OAS1, OAS2, OAS3, CAMP and ISG15 genes using gene expression assays. Interleukin (IL)-12p70, IL-10, IL-4 and IL-17A levels were assessed in the THP-1 macrophage culture supernatants. The results revealed that 1,25(OH)2D3 increased the expression of DDX58, OAS1, OAS2 and OAS3 at 0.1 μM while higher concentration had diminishing effect. 1,25(OH)2D3 enhanced the expression of ISG15 and CAMP genes. 1,25(OH)2D3 suppressed the levels of IL-4 and IL-17A. Lower concentration of 1,25(OH)2D3 suppressed IL-12p70 and IL-10 levels while a higher concentration enhanced the levels. The results suggest that 1,25(OH)2D3 may have concentration dependent immunomodulatory effects. Higher dose of 1,25(OH)2D3 might have an immunoregulatory role in ameliorating inflammation during dengue infections. Further studies are needed to evaluate the efficacy of different doses of 1,25(OH)2D3 in preventing severe dengue.
Collapse
|
28
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
29
|
Martín-Vicente M, Medrano LM, Resino S, García-Sastre A, Martínez I. TRIM25 in the Regulation of the Antiviral Innate Immunity. Front Immunol 2017; 8:1187. [PMID: 29018447 PMCID: PMC5614919 DOI: 10.3389/fimmu.2017.01187] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Luz M Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Hishiki T, Kato F, Tajima S, Toume K, Umezaki M, Takasaki T, Miura T. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle. Front Microbiol 2017; 8:1674. [PMID: 28912773 PMCID: PMC5582420 DOI: 10.3389/fmicb.2017.01674] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/17/2017] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.
Collapse
Affiliation(s)
- Takayuki Hishiki
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto UniversityKyoto, Japan
| | - Fumihiro Kato
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto UniversityKyoto, Japan
| | - Shigeru Tajima
- Department of Virology 1, National Institute of Infectious DiseasesTokyo, Japan
| | - Kazufumi Toume
- Division of Pharmacognosy, Institute of Natural Medicine, University of ToyamaToyama, Japan
| | - Masahito Umezaki
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of ToyamaToyama, Japan
| | | | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto UniversityKyoto, Japan
| |
Collapse
|
31
|
Han P, Ye W, Lv X, Ma H, Weng D, Dong Y, Cheng L, Chen H, Zhang L, Xu Z, Lei Y, Zhang F. DDX50 inhibits the replication of dengue virus 2 by upregulating IFN-β production. Arch Virol 2017; 162:1487-1494. [PMID: 28181036 DOI: 10.1007/s00705-017-3250-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/13/2017] [Indexed: 02/03/2023]
Abstract
Dengue virus (DENV) infects approximately 390 million people per year, and each of the four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) is capable of causing infection. At present, there is no antiviral drug available for the treatment of DENV. Several DExD/H-box helicases have been shown to be involved in the antiviral immune response or viral replication. In the present study, we investigated the role of DDX50 in DENV-2 RNA replication. Our data showed that the level of DENV-2 RNA increased in DDX50 knockdown cells during an early stage of viral infection and decreased in DDX50-overexpressing cells. DDX50, in conjunction with RIG-I and MDA5, upregulated the production of IFN-β in infected cells through an additive effect on the IFN-β promoter. Furthermore, transcription of several IFN-stimulated genes was increased in DDX50-overexpressing cells infected with DENV-2. These results provide evidence that DDX50 negatively regulates DENV-2 replication during the early stages of infection by inducing IFN-β production.
Collapse
Affiliation(s)
- Peijun Han
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Wei Ye
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Xin Lv
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Hongwei Ma
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Daihui Weng
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Yangchao Dong
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Linfeng Cheng
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Hesong Chen
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Liang Zhang
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Zhikai Xu
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Yingfeng Lei
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China.
| | - Fanglin Zhang
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China.
| |
Collapse
|
32
|
Singh PK, Guest JM, Kanwar M, Boss J, Gao N, Juzych MS, Abrams GW, Yu FS, Kumar A. Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes. JCI Insight 2017; 2:e92340. [PMID: 28239662 PMCID: PMC5313066 DOI: 10.1172/jci.insight.92340] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is an important pathogen that causes not only neurologic, but also ocular, abnormalities. Thus, it is imperative that models to study ZIKV pathogenesis in the eye are developed to identify potential targets for interventions. Here, we studied ZIKV interactions with human retinal cells and evaluated ZIKV's pathobiology in mouse eyes. We showed that cells lining the blood-retinal barrier (BRB), the retinal endothelium, and retinal pigment epithelium (RPE) were highly permissive and susceptible to ZIKV-induced cell death. Direct inoculation of ZIKV in eyes of adult C57BL/6 and IFN-stimulated gene 15 (ISG15) KO mice caused chorioretinal atrophy with RPE mottling, a common ocular manifestation of congenital ZIKV infection in humans. This response was associated with induced expression of multiple inflammatory and antiviral (IFNs) response genes in the infected mouse retina. Interestingly, ISG15 KO eyes exhibited severe chorioretinitis, which coincided with increased retinal cell death and higher ZIKV replication. Collectively, our study provides the first evidence to our knowledge that ZIKV causes retinal lesions and infects the cells lining the BRB and that ISG15 plays a role in retinal innate defense against ZIKV infection. Our mouse model can be used to study mechanisms underlying ZIKV-induced chorioretinitis and to gauge ocular antiviral therapies.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- Kresge Eye Institute, Department of Ophthalmology
- Department of Anatomy and Cell Biology, and
| | | | - Mamta Kanwar
- Kresge Eye Institute, Department of Ophthalmology
| | - Joseph Boss
- Kresge Eye Institute, Department of Ophthalmology
| | - Nan Gao
- Kresge Eye Institute, Department of Ophthalmology
| | | | | | - Fu-Shin Yu
- Kresge Eye Institute, Department of Ophthalmology
- Department of Anatomy and Cell Biology, and
| | - Ashok Kumar
- Kresge Eye Institute, Department of Ophthalmology
- Department of Anatomy and Cell Biology, and
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
33
|
Hermann M, Bogunovic D. ISG15: In Sickness and in Health. Trends Immunol 2017; 38:79-93. [PMID: 27887993 DOI: 10.1016/j.it.2016.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022]
Abstract
ISG15 is a type I interferon (IFN)-inducible gene encoding a protein with pleiotropic functions, acting both as a soluble molecule and as a protein modifier. Surprisingly, and despite the antiviral functions of ISG15 described in mice, humans born with inactivating mutations of ISG15 do not present with any overt viral phenotype, but are highly susceptible to environmental mycobacteria and have autoinflammatory disease presentations. In vitro, ISG15 deficiency also leads to persistently high levels of type I IFN-stimulated gene expression and to increased resistance to all viruses tested to date. This suggests that ISG15 deficiency increases antiviral responses in humans, in stark contrast to expectations based on mouse experiments. We discuss here the roles of each of the forms of ISG15 in health and disease, as well as the differences between species.
Collapse
Affiliation(s)
- Mark Hermann
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA.
| |
Collapse
|
34
|
Zhou MJ, Chen FZ, Chen HC, Wan XX, Zhou X, Fang Q, Zhang DZ. ISG15 inhibits cancer cell growth and promotes apoptosis. Int J Mol Med 2016; 39:446-452. [PMID: 28035359 DOI: 10.3892/ijmm.2016.2845] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer-related mortality in women in developing countries. Interferon (IFN)-α has been widely used in the treatment of various types of cancer, including cervical cancer, and IFN-stimulated gene 15 (ISG15), an ubiquitin-like protein, is upregulated by IFN-α treatment. The anti-virus and antitumor effects of ISG15 have been reported; however, its mechanism of action have not yet been fully elucidated. In this study, HeLa cells were used as a model system to investigate the roles of ISG15 in IFN-α-mediated cancer cell growth inhibition and induction of apoptosis. The results revealed that both p53 and p21 were upregulated in HeLa cells treated with IFN-α or in the HeLa cells overexpressing ISG15. In addition, the expression levels of ubiquitin-like modifier-activating enzyme 7 (UBA7, also known as UBE1L; ISG15 E1-activating enzyme), UBCH8 (ISG15 E2-conjugating enzyme) and HERC5 (ISG15 E3-ligase) were elevated in the HeLa cells treated with IFN-α. The levels of p53 in the HeLa cells were attenuated by transient transfection with small interfering RNA (siRNA) targeting ISG15 (ISG15-siRNA). Cell viability was inhibited by both IFN-α treatment and ISG15 overexpression. However, these effects were significantly diminished when p53 was knocked down, suggesting that the effects of inhibitory effects of ISG15 on HeLa cell growth and the induction of apoptosis were p53-dependent. Taken together, these results suggest the existence of the IFN-α/ISG15/p53 axis in cervical cancer cells and any strategies manipulating the levels of ISG15 may thus prove to be effective in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Mei-Juan Zhou
- Department of Biochemistry, School of Life Sciences and the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, P.R. China
| | - Fang-Zhi Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Han-Chun Chen
- Department of Biochemistry, School of Life Sciences and the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin-Xing Wan
- Department of Biochemistry, School of Life Sciences and the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xi Zhou
- Department of Biochemistry, School of Life Sciences and the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qian Fang
- Department of Biochemistry, School of Life Sciences and the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, P.R. China
| | - Dian-Zheng Zhang
- Department of Biochemistry, School of Life Sciences and the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
35
|
Strouts FR, Popper SJ, Partidos CD, Stinchcomb DT, Osorio JE, Relman DA. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates. PLoS Negl Trop Dis 2016; 10:e0004731. [PMID: 27214236 PMCID: PMC4877054 DOI: 10.1371/journal.pntd.0004731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. METHODOLOGY/PRINCIPAL FINDINGS In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. CONCLUSIONS/SIGNIFICANCE These results suggest that early transcriptional responses may be predictive of development of adaptive immunity to TDV vaccination in cynomolgus macaques, and will inform studies of human responses to dengue vaccines.
Collapse
Affiliation(s)
- Fiona R. Strouts
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Stephen J. Popper
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | | | - Dan T. Stinchcomb
- Takeda Vaccines, Inc., Deerfield, Illinois, United States of America
| | - Jorge E. Osorio
- Takeda Vaccines, Inc., Deerfield, Illinois, United States of America
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Department of Medicine, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Small G Rac1 is involved in replication cycle of dengue serotype 2 virus in EAhy926 cells via the regulation of actin cytoskeleton. SCIENCE CHINA-LIFE SCIENCES 2016; 59:487-94. [PMID: 27056258 PMCID: PMC7088618 DOI: 10.1007/s11427-016-5042-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022]
Abstract
Bleeding is a clinical characteristic of severe dengue and may be due to increased vascular permeability. However, the pathogenesis of severe dengue remains unclear. In this study, we showed that the Rac1-microfilament signal pathway was involved in the process of DENV serotype 2 (DENV2) infection in EAhy926 cells. DENV2 infection induced dynamic changes in actin organization, and treatment with Cytochalasin D or Jasplakinolide disrupted microfilament dynamics, reduced DENV2 entry, and inhibited DENV2 assembly and maturation. Rac1 activities decreased during the early phase and gradually increased by the late phase of infection. Expression of the dominant-negative form of Rac1 promoted DENV2 entry but inhibited viral assembly, maturation and release. Our findings demonstrated that Rac1 plays an important role in the DENV2 life cycle by regulating actin reorganization in EAhy926 cells. This finding provides further insight into the pathogenesis of severe dengue.
Collapse
|
37
|
ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation. J Virol 2016; 90:3428-38. [PMID: 26763998 DOI: 10.1128/jvi.02695-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/07/2016] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV), for which neither a vaccine nor an effective therapeutic treatment is currently available, is the leading cause of severe lower respiratory tract infections in children. Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that is highly increased during viral infections and has been reported to have an antiviral or a proviral activity, depending on the virus. Previous studies from our laboratory demonstrated strong ISG15 upregulation during RSV infection in vitro. In this study, an in-depth analysis of the role of ISG15 in RSV infection is presented. ISG15 overexpression and small interfering RNA (siRNA)-silencing experiments, along with ISG15 knockout (ISG15(-/-)) cells, revealed an anti-RSV effect of the molecule. Conjugation inhibition assays demonstrated that ISG15 exerts its antiviral activity via protein ISGylation. This antiviral activity requires high levels of ISG15 to be present in the cells before RSV infection. Finally, ISG15 is also upregulated in human respiratory pseudostratified epithelia and in nasopharyngeal washes from infants infected with RSV, pointing to a possible antiviral role of the molecule in vivo. These results advance our understanding of the innate immune response elicited by RSV and open new possibilities to control infections by the virus. IMPORTANCE At present, no vaccine or effective treatment for human respiratory syncytial virus (RSV) is available. This study shows that interferon-stimulated gene 15 (ISG15) lowers RSV growth through protein ISGylation. In addition, ISG15 accumulation highly correlates with the RSV load in nasopharyngeal washes from children, indicating that ISG15 may also have an antiviral role in vivo. These results improve our understanding of the innate immune response to RSV and identify ISG15 as a potential target for virus control.
Collapse
|
38
|
Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog 2016; 12:e1005357. [PMID: 26735137 PMCID: PMC4703206 DOI: 10.1371/journal.ppat.1005357] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.
Collapse
|
39
|
Becker M, De Bastiani MA, Parisi MM, Guma FTCR, Markoski MM, Castro MAA, Kaplan MH, Barbé-Tuana FM, Klamt F. Integrated Transcriptomics Establish Macrophage Polarization Signatures and have Potential Applications for Clinical Health and Disease. Sci Rep 2015; 5:13351. [PMID: 26302899 PMCID: PMC4548187 DOI: 10.1038/srep13351] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/23/2015] [Indexed: 02/08/2023] Open
Abstract
Growing evidence defines macrophages (Mφ) as plastic cells with wide-ranging states of activation and expression of different markers that are time and location dependent. Distinct from the simple M1/M2 dichotomy initially proposed, extensive diversity of macrophage phenotypes have been extensively demonstrated as characteristic features of monocyte-macrophage differentiation, highlighting the difficulty of defining complex profiles by a limited number of genes. Since the description of macrophage activation is currently contentious and confusing, the generation of a simple and reliable framework to categorize major Mφ phenotypes in the context of complex clinical conditions would be extremely relevant to unravel different roles played by these cells in pathophysiological scenarios. In the current study, we integrated transcriptome data using bioinformatics tools to generate two macrophage molecular signatures. We validated our signatures in in vitro experiments and in clinical samples. More importantly, we were able to attribute prognostic and predictive values to components of our signatures. Our study provides a framework to guide the interrogation of macrophage phenotypes in the context of health and disease. The approach described here could be used to propose new biomarkers for diagnosis in diverse clinical settings including dengue infections, asthma and sepsis resolution.
Collapse
Affiliation(s)
- Matheus Becker
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS/UFRGS, 90035-003 Porto Alegre (RS), Brazil
- National Institutes of Science & Technology—Translational Medicine (INCT-TM), 90035-903 Porto Alegre (RS), Brazil
| | - Marco A. De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS/UFRGS, 90035-003 Porto Alegre (RS), Brazil
- National Institutes of Science & Technology—Translational Medicine (INCT-TM), 90035-903 Porto Alegre (RS), Brazil
| | - Mariana M. Parisi
- Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry, ICBS/UFRGS, 90035-003 Porto Alegre (RS), Brazil
| | - Fátima T. C. R. Guma
- Laboratory of Biochemistry and Cellular Biology of Lipids, Department of Biochemistry, ICBS/UFRGS, 90035-003 Porto Alegre (RS), Brazil
| | - Melissa M. Markoski
- Laboratory of Cellular and Molecular Cardiology, IC/FUC, Porto Alegre, RS 90620-000, Brazil
| | - Mauro A. A. Castro
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Polytechnic Center, UFPR, 81531-970 Curitiba (PR), Brazil
| | - Mark H. Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis (IN), 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (IN), 46202, USA
| | - Florencia M. Barbé-Tuana
- Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry, ICBS/UFRGS, 90035-003 Porto Alegre (RS), Brazil
- Biomedical Research Institute, PUCRS, 90619-900, Porto Alegre (RS), Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS/UFRGS, 90035-003 Porto Alegre (RS), Brazil
- National Institutes of Science & Technology—Translational Medicine (INCT-TM), 90035-903 Porto Alegre (RS), Brazil
| |
Collapse
|