1
|
Thirupathi A, Marqueze LF, Outeiro TF, Radak Z, Pinho RA. Physical Exercise-Induced Activation of NRF2 and BDNF as a Promising Strategy for Ferroptosis Regulation in Parkinson's Disease. Neurochem Res 2024; 49:1643-1654. [PMID: 38782838 DOI: 10.1007/s11064-024-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.
Collapse
Affiliation(s)
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo A Pinho
- Faculty of Sports Science, Ningbo University, Ningbo, China.
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
2
|
Sun ME, Zheng Q. The Tale of DJ-1 (PARK7): A Swiss Army Knife in Biomedical and Psychological Research. Int J Mol Sci 2023; 24:ijms24087409. [PMID: 37108572 PMCID: PMC10138432 DOI: 10.3390/ijms24087409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
DJ-1 (also known as PARK7) is a multifunctional enzyme in human beings that is highly conserved and that has also been discovered in diverse species (ranging from prokaryotes to eukaryotes). Its complex enzymatic and non-enzymatic activities (such as anti-oxidation, anti-glycation, and protein quality control), as well as its role as a transcriptional coactivator, enable DJ-1 to serve as an essential regulator in multiple cellular processes (e.g., epigenetic regulations) and make it a promising therapeutic target for diverse diseases (especially cancer and Parkinson's disease). Due to its nature as a Swiss army knife enzyme with various functions, DJ-1 has attracted a large amount of research interest, from different perspectives. In this review, we give a brief summary of the recent advances with respect to DJ-1 research in biomedicine and psychology, as well as the progress made in attempts to develop DJ-1 into a druggable target for therapy.
Collapse
Affiliation(s)
- Mo E Sun
- Department of Psychology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
4
|
DJ-1 Can Replace FGF-2 for Long-Term Culture of Human Pluripotent Stem Cells in Defined Media and Feeder-Free Condition. Int J Mol Sci 2021; 22:ijms22115954. [PMID: 34073063 PMCID: PMC8197809 DOI: 10.3390/ijms22115954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Conventional human pluripotent stem cell (hPSC) cultures require high concentrations of expensive human fibroblast growth factor 2 (hFGF-2) for hPSC self-renewal and pluripotency in defined media for long-term culture. The thermal instability of the hFGF-2 mandates media change every day, which makes hPSC culture costly and cumbersome. Human DJ-1 (hDJ-1) can bind to and stimulate FGF receptor-1. In this study, for the first time, we have replaced hFGF-2 with hDJ-1 in the essential eight media and maintained the human embryonic stem cells (hESCs), H9, in the defined media at feeder-free condition. After more than ten passages, H9 in both groups still successfully maintained the typical hESC morphology and high protein levels of pluripotency markers, SSEA4, Tra1-60, Oct4, Nanog, and ALP. DNA microarray revealed that more than 97% of the 21,448 tested genes, including the pluripotency markers, Sox2, Nanog, Klf4, Lin28A, Lin28B, and Myc, have similar mRNA levels between the two groups. Karyotyping revealed no chromosome abnormalities in both groups. They also differentiated sufficiently into three germ layers by forming in vitro EBs and in vivo teratomas. There were some variations in the RT-qPCR assay of several pluripotency markers. The proliferation rates and the mitochondria of both groups were also different. Taken together, we conclude that hDJ-1 can replace hFGF-2 in maintaining the self-renewal and the pluripotency of hESCs in feeder-free conditions.
Collapse
|
5
|
Yoshida H, Wada A, Shimada T, Maki Y, Ishihama A. Coordinated Regulation of Rsd and RMF for Simultaneous Hibernation of Transcription Apparatus and Translation Machinery in Stationary-Phase Escherichia coli. Front Genet 2019; 10:1153. [PMID: 31867037 PMCID: PMC6904343 DOI: 10.3389/fgene.2019.01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023] Open
Abstract
Transcription and translation in growing phase of Escherichia coli, the best-studied model prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-dependent control of the synthesis of RNA polymerase (RNAP) core enzyme (the core component of transcription apparatus) and ribosomes (the core component of translation machinery) is tightly coordinated to keep the relative level of transcription apparatus and translation machinery constant for effective and efficient utilization of resources and energy. Upon entry into the stationary phase, transcription apparatus is modulated by replacing RNAP core-associated sigma (promoter recognition subunit) from growth-related RpoD to stationary-phase-specific RpoS. The anti-sigma factor Rsd participates for the efficient replacement of sigma, and the unused RpoD is stored silent as Rsd–RpoD complex. On the other hand, functional 70S ribosome is transformed into inactive 100S dimer by two regulators, ribosome modulation factor (RMF) and hibernation promoting factor (HPF). In this review article, we overview how we found these factors and what we know about the molecular mechanisms for silencing transcription apparatus and translation machinery by these factors. In addition, we provide our recent findings of promoter-specific transcription factor (PS-TF) screening of the transcription factors involved in regulation of the rsd and rmf genes. Results altogether indicate the coordinated regulation of Rsd and RMF for simultaneous hibernation of transcription apparatus and translation machinery.
Collapse
Affiliation(s)
- Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Wada
- Yoshida Biological Laboratory, Kyoto, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Japan.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Yasushi Maki
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
6
|
Andreeva A, Bekkhozhin Z, Omertassova N, Baizhumanov T, Yeltay G, Akhmetali M, Toibazar D, Utepbergenov D. The apparent deglycase activity of DJ-1 results from the conversion of free methylglyoxal present in fast equilibrium with hemithioacetals and hemiaminals. J Biol Chem 2019; 294:18863-18872. [PMID: 31653696 DOI: 10.1074/jbc.ra119.011237] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/19/2019] [Indexed: 01/16/2023] Open
Abstract
Loss-of-function mutations in the gene encoding human protein DJ-1 cause early onset of Parkinson's disease, suggesting that DJ-1 protects dopaminergic neurons. The molecular mechanisms underlying this neuroprotection are unclear; however, DJ-1 has been suggested to be a GSH-independent glyoxalase that detoxifies methylglyoxal (MGO) by converting it into lactate. It has also been suggested that DJ-1 serves as a deglycase that catalyzes hydrolysis of hemithioacetals and hemiaminals formed by reactions of MGO with the thiol and amino groups of proteins. In this report, we demonstrate that the equilibrium constant of reaction of MGO with thiols is ∼500 m-1 at 37 °C and that the half-life of the resulting hemithioacetal is only 12 s. These thermodynamic parameters would dictate that a significant fraction of free MGO will be present in a fast equilibrium with hemithioacetals in solution. We found that removal of free MGO by DJ-1's glyoxalase activity forces immediate spontaneous decomposition of hemithioacetals due to the shift in equilibrium position. This spontaneous decomposition of hemithioacetals could be mistaken for deglycase activity of DJ-1. Furthermore, we demonstrate that higher initial concentrations of hemithioacetals are associated with lower rates of DJ-1-mediated conversion of MGO, ruling out the possibility that hemithioacetals are DJ-1 substrates. Experiments with CRISPR/Cas-generated DJ-1-knockout HEK293 cells revealed that DJ-1 does not protect against acute MGO toxicity or carboxymethylation of lysine residues in cells. Combined, our results suggest that DJ-1 does not possess protein deglycase activity.
Collapse
Affiliation(s)
- Anna Andreeva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Zhanibek Bekkhozhin
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Nuriza Omertassova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Timur Baizhumanov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Gaziza Yeltay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Mels Akhmetali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Daulet Toibazar
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Darkhan Utepbergenov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
7
|
Haddad M, Perrotte M, Khedher MRB, Demongin C, Lepage A, Fülöp T, Ramassamy C. Methylglyoxal and Glyoxal as Potential Peripheral Markers for MCI Diagnosis and Their Effects on the Expression of Neurotrophic, Inflammatory and Neurodegenerative Factors in Neurons and in Neuronal Derived-Extracellular Vesicles. Int J Mol Sci 2019; 20:ijms20194906. [PMID: 31623327 PMCID: PMC6801730 DOI: 10.3390/ijms20194906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
Methylglyoxal (MG) and glyoxal (GO) are suggested to be associated with the development of neurodegenerative pathologies. However, their peripheral levels in relation to cognitive decline and their effects on key factors in neuronal cells are poorly investigated. The aim of this study was to determine their serum levels in MCI (mild cognitive impairment) and Alzheimer’s disease (AD) patients, to analyze their effects on the neurotrophic and inflammatory factors, on neurodegenerative markers in neuronal cells and in neuronal derived-extracellular vesicles (nEVs). Our results show that MG and GO levels in serum, determined by HPLC, were higher in MCI. ROC (receiver-operating characteristic curves) analysis showed that the levels of MG in serum have higher sensitivity to differentiate MCI from controls but not from AD. Meanwhile, serum GO levels differentiate MCI from control and AD groups. Cells and nEVs levels of BDNF, PRGN, NSE, APP, MMP-9, ANGPTL-4, LCN2, PTX2, S100B, RAGE, Aβ peptide, pTau T181 and alpha-synuclein were quantified by luminex assay. Treatment of neuronal cells with MG or GO reduced the cellular levels of NSE, PRGN, APP, MMP-9 and ANGPTL-4 and the nEVs levels of BDNF, PRGN and LCN2. Our findings suggest that targeting MG and GO may be a promising therapeutic strategy to prevent or delay the progression of AD.
Collapse
Affiliation(s)
- Mohamed Haddad
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Morgane Perrotte
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Mohamed Raâfet Ben Khedher
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Clément Demongin
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
| | - Aurélie Lepage
- Department of Medicine, Geriatric Division, Research Center on Aging, Sherbrooke University, Sherbrooke, QC J1H 4C4, Canada.
| | - Tamás Fülöp
- Department of Medicine, Geriatric Division, Research Center on Aging, Sherbrooke University, Sherbrooke, QC J1H 4C4, Canada.
| | - Charles Ramassamy
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
8
|
Sharma N, Rao SP, Kalivendi SV. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radic Biol Med 2019; 135:28-37. [PMID: 30796974 DOI: 10.1016/j.freeradbiomed.2019.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the degeneration of dopamine neurons of the substantia nigra pars compacta (SNpc) and the presence of intra-neuronal aggregates of α-synuclein and its post-translational products. Based on emerging reports on the association between glycated α-synuclein and PD; and the newly identified deglycase activity of DJ-1, we sought to find the relevance of deglycase activity of DJ-1 on glycation of α-synuclein and its plausible role in PD. Our results demonstrate that DJ-1 has a higher affinity towards the substrate methylglyoxal (MGO) (Km = 900 mM) as compared to its familial mutant, L166P (Km = 1900 mM). Also, CML α-synuclein (CML-syn) served as a substrate for the deglycase activity of DJ-1. Treatment of cells with Parkinsonian mimetic, 1-methyl-4-phenylpyridinium ion (MPP+); oxidants, such as H2O2 and methylglyoxal (MGO) lead to a dose-dependent decrease in the levels of DJ-1 with a concomitant increase in CML-syn. Also, MGO induced cytosolic α-synuclein aggregates in cells which stained positive with the anti-CML antibody. Further, unilateral stereotaxic administration of MGO into the SNpc of mice induced α-synuclein aggregates and CML-syn with a concomitant reduction in the number of TH positive neurons, protein levels of TH and DJ-1 at the site of injection. Interestingly, overexpression of DJ-1 enhanced the clearance of preformed CML-syn in cells, mitigated MGO induced CML-syn and intracellular α-synuclein aggregates. Overall, the findings of our present study demonstrate that DJ-1 plays a pivotal role in the glycation and aggregation of α-synuclein. Reduced DJ-1 activity due to mutations or oxidative stress may lead to the accumulation of glycated α-synuclein and its aggregates.
Collapse
Affiliation(s)
- Neelam Sharma
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Swetha Pavani Rao
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Shasi V Kalivendi
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
9
|
Bifunctional Chloroplastic DJ-1B from Arabidopsis thaliana is an Oxidation-Robust Holdase and a Glyoxalase Sensitive to H₂O₂. Antioxidants (Basel) 2019; 8:antiox8010008. [PMID: 30609642 PMCID: PMC6356872 DOI: 10.3390/antiox8010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/15/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
Members of the DJ-1 protein family are multifunctional enzymes whose loss increases the susceptibility of the cell to oxidative stress. However, little is known about the function of the plant DJ-1 homologs. Therefore, we analyzed the effect of oxidation on the structure and function of chloroplastic AtDJ-1B and studied the phenotype of T-DNA lines lacking the protein. In vitro oxidation of AtDJ-1B with H₂O₂ lowers its glyoxalase activity, but has no effect on its holdase chaperone function. Remarkably, upon oxidation, the thermostability of AtDJ-1B increases with no significant alteration of the overall secondary structure. Moreover, we found that AtDJ-1B transcript levels are invariable, and loss of AtDJ-1B does not affect plant viability, growth and stress response. All in all, two discrete functions of AtDJ-1B respond differently to H₂O₂, and AtDJ-1B is not essential for plant development under stress.
Collapse
|
10
|
Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3631-3643. [PMID: 30279139 DOI: 10.1016/j.bbadis.2018.08.036] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Glycative stress, caused by the accumulation of cytotoxic and irreversibly-formed sugar-derived advanced glycation end-products (AGEs), contributes to morbidity associated with aging, age-related diseases, and metabolic diseases. In this review, we summarize pathways leading to formation of AGEs, largely from sugars and glycolytic intermediates, and discuss detoxification of AGE precursors, including the glyoxalase system and DJ-1/Park7 deglycase. Disease pathogenesis downstream of AGE accumulation can be cell autonomous due to aggregation of glycated proteins and impaired protein function, which occurs in ocular cataracts. Extracellular AGEs also activate RAGE signaling, leading to oxidative stress, inflammation, and leukostasis in diabetic complications such as diabetic retinopathy. Pharmaceutical agents have been tested in animal models and clinically to diminish glycative burden. We summarize existing strategies and point out several new directions to diminish glycative stress including: plant-derived polyphenols as AGE inhibitors and glyoxalase inducers; improved dietary patterns, particularly Mediterranean and low glycemic diets; and enhancing proteolytic capacities of the ubiquitin-proteasome and autophagy pathways that are involved in cellular clearing of AGEs.
Collapse
Affiliation(s)
- Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
11
|
Richarme G, Abdallah J, Mathas N, Gautier V, Dairou J. Further characterization of the Maillard deglycase DJ-1 and its prokaryotic homologs, deglycase 1/Hsp31, deglycase 2/YhbO, and deglycase 3/YajL. Biochem Biophys Res Commun 2018; 503:703-709. [PMID: 29932913 DOI: 10.1016/j.bbrc.2018.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022]
Abstract
We reported recently that the Parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO and YajL function as deglycases that repair proteins and nucleotides from endogeneous glycation by glyoxal and methylglyoxal, two reactive by-products of glucose metabolism responsible for up to 60% of glycation damage. Here, we show that DJ-1, deglycase 1 and deglycase 2 repair glyoxal- and methylglyoxal-glycated substrates, whereas deglycase 3 principally repairs glyoxal-glycated substrates. Moreover, deglycase 1 and 2 are overexpressed in stationary phase, whereas deglycase 3 is steadily expressed throughout bacterial growth. Finally, deglycase mutants overexpress glyoxalases, aldoketoreductases, glutathione-S-transferase and efflux pumps to alleviate carbonyl stress. In the discussion, we present an overview of the multiple functions of DJ-1 proteins. Our thourough work on deglycases provides compelling evidence that their previously reported glyoxalase III activity merely reflects their deglycase activity. Moreover, for their deglycase activity the Maillard deglycases likely recruit: i) their chaperone activity to interact with glycated proteins, ii) glyoxalase 1 activity to catalyze the rearrangement of Maillard products (aminocarbinols and hemithioacetals) into amides and thioesters, respectively, iii) their protease activity to cleave amide bonds of glycated arginine, lysine and guanine, and iv) glyoxalase 2 activity to cleave thioester bonds of glycated cysteine. Finally, because glycation affects many cellular processes, the discovery of the Maillard deglycases, awaited since 1912, likely constitutes a major advance for medical research, including ageing, cancer, atherosclerosis, neurodegenerative, post-diabetic, renal and autoimmune diseases.
Collapse
Affiliation(s)
- Gilbert Richarme
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France.
| | - Jad Abdallah
- School of Pharmacy, Lebanese American University, Byblos, 2038 1401, Lebanon
| | - Nicolas Mathas
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| | - Valérie Gautier
- Stress Molecules, Institut Jacques Monod, Université Paris Diderot-UMR7592, 15 Rue Hélène Brion, 75013, Paris, France
| | - Julien Dairou
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| |
Collapse
|
12
|
Videira PAQ, Castro-Caldas M. Linking Glycation and Glycosylation With Inflammation and Mitochondrial Dysfunction in Parkinson's Disease. Front Neurosci 2018; 12:381. [PMID: 29930494 PMCID: PMC5999786 DOI: 10.3389/fnins.2018.00381] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 6.3 million people worldwide. PD is characterized by the progressive degeneration of dopaminergic neurons in the Substantia nigra pars compacta, resulting into severe motor symptoms. The cellular mechanisms underlying dopaminergic cell death in PD are still not fully understood, but mitochondrial dysfunction, oxidative stress and inflammation are strongly implicated in the pathogenesis of both familial and sporadic PD cases. Aberrant post-translational modifications, namely glycation and glycosylation, together with age-dependent insufficient endogenous scavengers and quality control systems, lead to cellular overload of dysfunctional proteins. Such injuries accumulate with time and may lead to mitochondrial dysfunction and exacerbated inflammatory responses, culminating in neuronal cell death. Here, we will discuss how PD-linked protein mutations, aging, impaired quality control mechanisms and sugar metabolism lead to up-regulated abnormal post-translational modifications in proteins. Abnormal glycation and glycosylation seem to be more common than previously thought in PD and may underlie mitochondria-induced oxidative stress and inflammation in a feed-forward mechanism. Moreover, the stress-induced post-translational modifications that directly affect parkin and/or its substrates, deeply impairing its ability to regulate mitochondrial dynamics or to suppress inflammation will also be discussed. Together, these represent still unexplored deleterious mechanisms implicated in neurodegeneration in PD, which may be used for a more in-depth knowledge of the pathogenic mechanisms, or as biomarkers of the disease.
Collapse
Affiliation(s)
- Paula A Q Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Margarida Castro-Caldas
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Borysiuk K, Ostaszewska-Bugajska M, Vaultier MN, Hasenfratz-Sauder MP, Szal B. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2018; 9:667. [PMID: 29881392 PMCID: PMC5976750 DOI: 10.3389/fpls.2018.00667] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Nitrate (NO3-) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| | - Marie-Noëlle Vaultier
- UMR 1137, INRA, Ecologie et Ecophysiologie Forestières, Université de Lorraine, Nancy, France
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| |
Collapse
|
14
|
Aslam K, Tsai CJ, Hazbun TR. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation. Prion 2017; 10:444-465. [PMID: 27690738 DOI: 10.1080/19336896.2016.1234574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI+] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI+] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI+] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI+] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI+] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI+] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI+] status by the chaperone action of Hsp31. The delineation of Hsp31's role in the chaperone cycle has implications for understanding the role of the DJ-1 superfamily in controlling misfolded proteins in neurodegenerative disease and cancer.
Collapse
Affiliation(s)
- Kiran Aslam
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| | - Chai-Jui Tsai
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| | - Tony R Hazbun
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
15
|
Aslam K, Hazbun TR. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity. Prion 2017; 10:103-11. [PMID: 27097320 PMCID: PMC4981205 DOI: 10.1080/19336896.2016.1141858] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses.
Collapse
Affiliation(s)
- Kiran Aslam
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| | - Tony R Hazbun
- a Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
16
|
Vicente Miranda H, Szego ÉM, Oliveira LMA, Breda C, Darendelioglu E, de Oliveira RM, Ferreira DG, Gomes MA, Rott R, Oliveira M, Munari F, Enguita FJ, Simões T, Rodrigues EF, Heinrich M, Martins IC, Zamolo I, Riess O, Cordeiro C, Ponces-Freire A, Lashuel HA, Santos NC, Lopes LV, Xiang W, Jovin TM, Penque D, Engelender S, Zweckstetter M, Klucken J, Giorgini F, Quintas A, Outeiro TF. Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain 2017; 140:1399-1419. [PMID: 28398476 DOI: 10.1093/brain/awx056] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/20/2017] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions.
Collapse
Affiliation(s)
- Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Éva M Szego
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Luís M A Oliveira
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Monte de Caparica, Caparica, Portugal.,Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Carlo Breda
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Ekrem Darendelioglu
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.,Bingol University, Science and Letters Faculty, Molecular Biology and Genetics Department, 12000, Bingol, Turkey
| | - Rita M de Oliveira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Marcos A Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ruth Rott
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Márcia Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Francesca Munari
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Simões
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Eva F Rodrigues
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Michael Heinrich
- Department of Molecular Neurology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Irina Zamolo
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72074 Tuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72074 Tuebingen, Germany
| | - Carlos Cordeiro
- Enzymology Group, Departamento de Quimica e Bioquimica, Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Edificio C8, 1749-016, Lisboa, Portugal
| | - Ana Ponces-Freire
- Enzymology Group, Departamento de Quimica e Bioquimica, Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Edificio C8, 1749-016, Lisboa, Portugal
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Swiss Federal Institute of Technology Lausanne (EPFL), FSV-BMI AI 2137.1, Station 15, CH-1015 Lausanne, Switzerland
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Luisa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Wei Xiang
- Institute for Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas M Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Deborah Penque
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, 37075 Göttingen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Alexandre Quintas
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Monte de Caparica, Caparica, Portugal
| | - Tiago F Outeiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.,Max Plank Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
17
|
Kim J, Choi D, Park C, Ryu KS. Backbone resonance assignments of the Escherichia coli 62 kDa protein, Hsp31. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:159-163. [PMID: 28258548 DOI: 10.1007/s12104-017-9739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Dimeric Hsp31 protein was first characterized as a holding chaperone of Escherichia coli (E. coli), and has been suggested as having protease activity due to the presence of a potential catalytic triad, Cys185, His186, and Asp214. However, it has recently been reported that Hsp31 displays a relatively strong glyoxalase III activity that can decompose reactive carbonyl species (methylglyoxal and glyoxal) in the absence of additional cofactor. Hsp31 is a representative member of the DJ-1/ThiJ/PfpI protein superfamily, and the importance of DJ-1 protein in Parkinson's disease has been well known. The structural flexibility of the long loop region, which encompasses from the P- to the A-domain, is important for the chaperone activity of Hsp31. The backbone chemical shifts (CSs) would be useful for studying the structural changes of Hsp31 that are critical for the holding chaperone activity, and also for deciphering the switching mechanism between the glyoxalase III and the chaperone. Here, we report the backbone CSs (HN, N, CO, Cα, and Cβ) of the deuterated Hsp31 protein (62 kDa). The CS analysis showed that the predicted regions of secondary structures are in good agreement with those observed in the previous crystal structure of Hsp31.
Collapse
Affiliation(s)
- Jihong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Dongwook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea
- New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-Ro, Osong-Eup, Heungdeok-Gu, Cheongju-Si, Chungcheongbuk-Do, 28160, Republic of Korea
| | - Chankyu Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea.
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejon, 34113, Republic of Korea.
| |
Collapse
|
18
|
Biosa A, Sandrelli F, Beltramini M, Greggio E, Bubacco L, Bisaglia M. Recent findings on the physiological function of DJ-1: Beyond Parkinson's disease. Neurobiol Dis 2017; 108:65-72. [PMID: 28823929 DOI: 10.1016/j.nbd.2017.08.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/26/2017] [Accepted: 08/16/2017] [Indexed: 01/16/2023] Open
Abstract
Several mutations in the gene coding for DJ-1 have been associated with early onset forms of parkinsonism. In spite of the massive effort spent by the scientific community in understanding the physiological role of DJ-1, a consensus on what DJ-1 actually does within the cells has not been reached, with several diverse functions proposed. At present, the most accepted function for DJ-1 is a neuronal protective role against oxidative stress. However, how exactly this function is exerted by DJ-1 is not clear. In recent years, novel molecular mechanisms have been suggested that may account for the antioxidant properties of DJ-1. In this review, we critically analyse the experimental evidence, including some very recent findings, supporting the purported neuroprotective role of DJ-1 through different mechanisms linked to oxidative stress handling, as well as the relevance of these processes in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Alice Biosa
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Federica Sandrelli
- Neurogenetics and Chronobiology Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Mariano Beltramini
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Elisa Greggio
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Luigi Bubacco
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Marco Bisaglia
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
19
|
Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P, Dairou J, Lamouri A. Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science 2017; 357:208-211. [DOI: 10.1126/science.aag1095] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
|
20
|
Hipkiss AR. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson's Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine. Aging Dis 2017; 8:334-345. [PMID: 28580188 PMCID: PMC5440112 DOI: 10.14336/ad.2016.1030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022] Open
Abstract
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms. MG can induce many of the macromolecular modifications (e.g. protein glycation) which characterise the aged-phenotype. MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson's disease (PD) brain and whose effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble changes associated with PD. MG can directly damage the intracellular proteolytic apparatus and modify proteins into non-degradable (cross-linked) forms. It is suggested that increased endogenous MG formation may result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the macromolecular changes associated with PD. Carnosine, a naturally-occurring dipeptide, may ameliorate MG-induced effects due, in part, to its carbonyl-scavenging activity. The possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed.
Collapse
Affiliation(s)
- Alan R. Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
21
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
22
|
Das S, Roy Chowdhury S, Dey S, Sen U. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity. PLoS One 2017; 12:e0172629. [PMID: 28235098 PMCID: PMC5325305 DOI: 10.1371/journal.pone.0172629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/07/2017] [Indexed: 11/23/2022] Open
Abstract
Vibrio cholerae experiences a highly hostile environment at human intestine which triggers the induction of various heat shock genes. The hchA gene product of V. cholerae O395, referred to a hypothetical intracellular protease/amidase VcHsp31, is one such stress-inducible homodimeric protein. Our current study demonstrates that VcHsp31 is endowed with molecular chaperone, amidopeptidase and robust methylglyoxalase activities. Through site directed mutagenesis coupled with biochemical assays on VcHsp31, we have confirmed the role of residues in the vicinity of the active site towards amidopeptidase and methylglyoxalase activities. VcHsp31 suppresses the aggregation of insulin in vitro in a dose dependent manner. Through crystal structures of VcHsp31 and its mutants, grown at various temperatures, we demonstrate that VcHsp31 acquires two (Type-I and Type-II) dimeric forms. Type-I dimer is similar to EcHsp31 where two VcHsp31 monomers associate in eclipsed manner through several intersubunit hydrogen bonds involving their P-domains. Type-II dimer is a novel dimeric organization, where some of the intersubunit hydrogen bonds are abrogated and each monomer swings out in the opposite directions centering at their P-domains, like twisting of wet cloth. Normal mode analysis (NMA) of Type-I dimer shows similar movement of the individual monomers. Upon swinging, a dimeric surface of ~400Å2, mostly hydrophobic in nature, is uncovered which might bind partially unfolded protein substrates. We propose that, in solution, VcHsp31 remains as an equilibrium mixture of both the dimers. With increase in temperature, transformation to Type-II form having more exposed hydrophobic surface, occurs progressively accounting for the temperature dependent increase of chaperone activity of VcHsp31.
Collapse
Affiliation(s)
- Samir Das
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sanghati Roy Chowdhury
- Crystallography and Molecular Biology Division Saha Institute of Nuclear Physics, Kolkata, India
| | - Sanjay Dey
- Department of Biotechnology, St. Xavier’s College, Kolkata
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division Saha Institute of Nuclear Physics, Kolkata, India
- * E-mail:
| |
Collapse
|
23
|
Natkańska U, Skoneczna A, Sieńko M, Skoneczny M. The budding yeast orthologue of Parkinson's disease-associated DJ-1 is a multi-stress response protein protecting cells against toxic glycolytic products. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:39-50. [DOI: 10.1016/j.bbamcr.2016.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022]
|
24
|
Mihoub M, Abdallah J, Richarme G. Protein Repair from Glycation by Glyoxals by the DJ-1 Family Maillard Deglycases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:133-147. [PMID: 29147907 DOI: 10.1007/978-981-10-6583-5_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DJ-1 and its prokaryotic homologs, Hsp31, YhbO and YajL from Escherichia coli and PfpI from Pyrococcus furiosus, repair proteins from glycation by glyoxals (R-CO-CHO), which constitute their major glycating agents. Glycation is a non-enzymatic covalent reaction discovered by Louis Camille Maillard in 1912, between reactive carbonyls (reducing sugars and glyoxals) and amino acids (cysteine, arginine and lysine), which inactivates proteins. By degrading Maillard adducts formed between carbonyls and thiols or amino groups, the DJ-1 family Maillard deglycases prevent the formation of the so-called advanced glycation end products (AGEs) that arise from Maillard adducts after dehydrations, oxidations and rearrangements. Since glycation is involved in ageing, cancer, atherosclerosis and cataracts, as well as post-diabetic, neurovegetatives and renal and autoimmune diseases, the DJ-1 deglycases are likely to play an important role in preventing these diseases. These deglycases, especially those from thermophilic organisms, may also be used to prevent the formation of dietary AGEs during food processing, sterilization and storage. They also prevent acrylamide formation in food, likely by degrading the asparagine/glyoxal Maillard adducts responsible for its formation. Since Maillard adducts are the substrates of the DJ-1 family deglycases, we propose renaming them Maillard deglycases.
Collapse
Affiliation(s)
- Mouadh Mihoub
- Stress Molecules, Institut Jacques Monod, Université Paris 7, UMR 7592, 15 rue Hélène Brion, 75013, Paris, France
| | - Jad Abdallah
- Stress Molecules, Institut Jacques Monod, Université Paris 7, UMR 7592, 15 rue Hélène Brion, 75013, Paris, France.,School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Gilbert Richarme
- Stress Molecules, Institut Jacques Monod, Université Paris 7, UMR 7592, 15 rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
25
|
Richarme G, Dairou J. Parkinsonism-associated protein DJ-1 is a bona fide deglycase. Biochem Biophys Res Commun 2016; 483:387-391. [PMID: 28013050 DOI: 10.1016/j.bbrc.2016.12.134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022]
Abstract
We discovered recently that Parkinsonism-associated DJ-1 and its bacterial homologs function as protein deglycases that repair glyoxal- and methylglyoxal-glycated proteins. Protein glycation levels are 2- to 10-fold increased in deglycase-depleted cells, and deglycase mutants display up to 500-fold loss of viability in methylglyoxal or glucose-containing media, suggesting that these deglycases play important roles in protecting cells against electrophile and carbonyl stress. Although the deglycase activity of DJ-1 is well supported by extensive biochemical work, Pfaff et al. (J. Biol. Chem. in presshttp://dx.doi.org/10.1074/jbc.M116.743823) claimed in a recent study that deglycation of the hemithioacetal formed upon cysteine glycation by methylglyoxal results from a Tris buffer artefact. Here, we show that this is not the case, and that DJ-1 and its homologs are the bona fide deglycases awaited since the Maillard discovery.
Collapse
Affiliation(s)
- Gilbert Richarme
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 Rue Hélène Brion, 75013, Paris, France.
| | - Julien Dairou
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| |
Collapse
|
26
|
Pfaff DH, Fleming T, Nawroth P, Teleman AA. Evidence Against a Role for the Parkinsonism-associated Protein DJ-1 in Methylglyoxal Detoxification. J Biol Chem 2016; 292:685-690. [PMID: 27903648 DOI: 10.1074/jbc.m116.743823] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/24/2016] [Indexed: 02/03/2023] Open
Abstract
Methylglyoxal (MG) is a reactive metabolite that forms adducts on cysteine, lysine and arginine residues of proteins, thereby affecting their function. Methylglyoxal is detoxified by the Glyoxalase system, consisting of two enzymes, Glo1 and Glo2, that act sequentially to convert MG into d-lactate. Recently, the Parkinsonism-associated protein DJ-1 was described in vitro to have glyoxalase activity, thereby detoxifying the MG metabolite, or deglycase activity, thereby removing the adduct formed by MG on proteins. Since Drosophila is an established model system to study signaling, neurodegeneration, and metabolic regulation in vivo, we asked whether DJ-1 contributes to MG detoxification in vivo Using both DJ-1 knockdown in Drosophila cells in culture, and DJ-1β knock-out flies, we could detect no contribution of DJ-1 to survival to MG challenge or to accumulation of MG protein adducts. Furthermore, we provide data suggesting that the previously reported deglycation activity of DJ-1 can be ascribed to a TRIS buffer artifact.
Collapse
Affiliation(s)
- Daniel H Pfaff
- From the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany, .,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany, and.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, 85764 München, Germany
| | - Aurelio A Teleman
- From the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany,
| |
Collapse
|
27
|
Richarme G, Marguet E, Forterre P, Ishino S, Ishino Y. DJ-1 family Maillard deglycases prevent acrylamide formation. Biochem Biophys Res Commun 2016; 478:1111-6. [PMID: 27530919 DOI: 10.1016/j.bbrc.2016.08.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 11/30/2022]
Abstract
The presence of acrylamide in food is a worldwide concern because it is carcinogenic, reprotoxic and neurotoxic. Acrylamide is generated in the Maillard reaction via condensation of reducing sugars and glyoxals arising from their decomposition, with asparagine, the amino acid forming the backbone of the acrylamide molecule. We reported recently the discovery of the Maillard deglycases (DJ-1/Park7 and its prokaryotic homologs) which degrade Maillard adducts formed between glyoxals and lysine or arginine amino groups, and prevent glycation damage in proteins. Here, we show that these deglycases prevent acrylamide formation, likely by degrading asparagine/glyoxal Maillard adducts. We also report the discovery of a deglycase from the hyperthermophilic archaea Pyrococcus furiosus, which prevents acrylamide formation at 100 °C. Thus, Maillard deglycases constitute a unique enzymatic method to prevent acrylamide formation in food without depleting the components (asparagine and sugars) responsible for its formation.
Collapse
Affiliation(s)
- Gilbert Richarme
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France.
| | - Evelyne Marguet
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F-75015, Paris, France
| | - Patrick Forterre
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F-75015, Paris, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte. Biochem Biophys Res Commun 2016; 473:87-91. [PMID: 26995087 DOI: 10.1016/j.bbrc.2016.03.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 11/24/2022]
Abstract
Reducing sugars and dicarbonyls form covalent adducts with proteins through a nonenzymatic process known as glycation, which inactivates proteins, is increased in diabetic patients and is associated with diabetic complications, including retinopathy, cataracts, nephropathy, neuropathy, cardiomyopathy and skin defects. We recently characterized DJ-1/Park7 as a protein deglycase that repairs proteins from glycation by glyoxal and methylglyoxal, two major glycating agents which are responsible for up to 65% of glycation events. In this study, we investigated the ability of DJ-1 to prevent protein glycation in keratinocytes. Glycation of collagen and keratinocyte proteins was tested by measuring ultraviolet absorption and fluorescence emission. Protein glycation in HaCaT keratinocytes was investigated by immunodetection with anti-advanced glycation endproduct antibodies, after DJ-1 depletion or overexpression. In vitro, DJ-1 prevented glycation of collagen and keratinocyte protein extracts. In cell culture, DJ-1 depletion by small interfering RNAs resulted in a 3-fold increase in protein glycation levels. Moreover, protein glycation levels were decreased several-fold in cells overexpressing DJ-1 after addition of the Nrf2 inducer sulforaphane or after transfection with a DJ-1 plasmid. Thus, the DJ-1 deglycase plays a major role in preventing protein glycation in eukaryotic cells and might be important for preventing skin glycation.
Collapse
|
29
|
Abdallah J, Mihoub M, Gautier V, Richarme G. The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal. Biochem Biophys Res Commun 2016; 470:282-286. [PMID: 26774339 DOI: 10.1016/j.bbrc.2016.01.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022]
Abstract
YhbO and YajL belong to the PfpI/Hsp31/DJ-1 superfamily. Both proteins are involved in protection against environmental stresses. Here, we show that, like DJ-1 and Hsp31, they repair glyoxal- and methylglyoxal-glycated proteins. YhbO and YajL repair glycated serum albumin, collagen, glyceraldehyde-3-phosphate dehydrogenase, and fructose biphosphate aldolase. Bacterial extracts from deglycase mutants display increased glycation levels, whereas deglycase overexpression decreases protein glycation. Moreover, yhbO and yajL mutants display decreased viability in methylglyoxal- or glucose-containing media. Finally, the apparent glyoxalase activities of YhbO and YajL reflect their deglycase activities.
Collapse
Affiliation(s)
- Jad Abdallah
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France; Lebanese American University, School of Pharmacy, Byblos, Lebanon
| | - Mouadh Mihoub
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France
| | - Valérie Gautier
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France
| | - Gilbert Richarme
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France.
| |
Collapse
|
30
|
Su Y, Chen C, Huang L, Yan J, Huang Y. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance. PLoS One 2015; 10:e0143888. [PMID: 26624998 PMCID: PMC4666628 DOI: 10.1371/journal.pone.0143888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
The Parkinson′s disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1). Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2) whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells.
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Caiping Chen
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Linting Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
31
|
Bankapalli K, Saladi S, Awadia SS, Goswami AV, Samaddar M, D'Silva P. Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J Biol Chem 2015; 290:26491-507. [PMID: 26370081 DOI: 10.1074/jbc.m115.673624] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.
Collapse
Affiliation(s)
- Kondalarao Bankapalli
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - SreeDivya Saladi
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sahezeel S Awadia
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Arvind Vittal Goswami
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Madhuja Samaddar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|