1
|
Giovanini L, Wanionok N, Perello M, Cornejo MP. Brain-acting hepatokines: its impact on energy balance and metabolism. Front Neurosci 2025; 19:1589110. [PMID: 40443802 PMCID: PMC12119552 DOI: 10.3389/fnins.2025.1589110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/01/2025] [Indexed: 06/02/2025] Open
Abstract
The liver is recognized for its central role in energy metabolism, yet emerging evidence highlights its function as an endocrine organ, secreting a variety of proteins-hepatokines-that influence distant tissues. Hepatokines not only regulate metabolic processes by acting on peripheral tissues but also exert direct effects on brain function. In this mini-review, we discuss the existing literature on the role of "brain-acting" hepatokines including IGF-1, FGF21, LEAP2, GDF15, and ANGPTLs, and their impact on energy balance and metabolism. We review the existing evidence regarding their roles in metabolism through their action in the brain, and their potential implications in metabolic disturbances. By integrating insights from recent studies, we aim to provide a comprehensive understanding of how liver-derived signals can modulate energy balance and metabolism.
Collapse
Affiliation(s)
- Lucía Giovanini
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Nahuel Wanionok
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Maria Paula Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| |
Collapse
|
2
|
Roh E, Hwang SY, Kim M, Won CW, Choi KM. Plasma Leukocyte Cell-Derived Chemotaxin-2 as a Risk Factor of Sarcopenia: Korean Frailty and Aging Cohort Study. Nutrients 2025; 17:1342. [PMID: 40284206 PMCID: PMC12029840 DOI: 10.3390/nu17081342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/29/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objective: Leukocyte cell-derived chemotaxin-2 (LECT2), a hepatokine, is implicated in non-alcoholic fatty liver disease (NAFLD). Although NAFLD and sarcopenia are closely linked, the relationship between plasma LECT2 levels and sarcopenia remains unclear. Methods: We analyzed plasma LECT2 levels in 400 older adults aged 70-84 years old living in the community enrolled in the Korean Frailty and Aging Cohort Study. The appendicular skeletal muscle mass (ASM) and handgrip strength (HGS), both adjusted for the BMI, were used to evaluate the muscle mass and strength. A low muscle mass (LMM) was defined using the sex-specific lowest quintile of ASM/BMI as the cutoff value, while a low muscle strength (LMS) was determined based on the lowest quintile of the HGS/BMI. Sarcopenia was defined by the coexistence of an LMM and LMS. Results: NAFLD was identified using a fatty liver index > 30. The participants with NAFLD had significantly higher plasma LECT2 levels compared to their non-NAFLD counterparts (34.4 [29.3-41.1] vs. 29.0 [24.7-36.7] ng/mL, p < 0.001). Circulating LECT2 levels were inversely correlated with ASM/BMI (r = -0.506, p < 0.001) and HGS/BMI (r = -0.474, p < 0.001), as determined by Spearman correlation analysis. Among the study participants, 79 (19.8%) were categorized as having either an LMM or LMS, and 31 (7.8%) were identified as having sarcopenia. In multivariate logistic regression, the highest LECT2 quartile had markedly greater odds of an LMM (OR 3.31, 95% CI 1.41-7.75), LMS (OR 2.85, 95% CI 1.29-6.26), and sarcopenia (OR 5.48, 95% CI 1.57-19.05) relative to the lowest quartile. Conclusions: Our results indicate that elevated plasma LECT2, a hepatokine increased in NAFLD, contributes to an increased risk of sarcopenia in older adults.
Collapse
Affiliation(s)
- Eun Roh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Soon Young Hwang
- Department of Biostatistics, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| |
Collapse
|
3
|
Suzuki K, Tsujiguchi H, Hara A, Takeshita Y, Goto H, Nakano Y, Yamamoto R, Takayama H, Tajima A, Yamashita T, Honda M, Nakamura H, Takamura T. Hepatokine leukocyte cell-derived chemotaxin 2 as a biomarker of insulin resistance, liver enzymes, and metabolic dysfunction-associated steatotic liver disease in the general population. J Diabetes Investig 2025; 16:298-308. [PMID: 39570764 PMCID: PMC11786172 DOI: 10.1111/jdi.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 02/02/2025] Open
Abstract
AIMS/INTRODUCTION Leukocyte cell-derived chemotaxin 2 (LECT2) is an obesity-associated hepatokine that causes skeletal muscle insulin resistance. Since LECT2 is up-regulated by the inactivation of the energy sensor AMPK in the liver, we hypothesized that LECT2 has potential as a biomarker for metabolic dysfunction-associated steatotic liver disease (MASLD). Therefore, we investigated whether circulating LECT2 levels are associated with insulin sensitivity, liver enzymes, and MASLD. MATERIALS AND METHODS This cross-sectional study included 138 Japanese individuals. Plasma LECT2 levels were measured using fasting blood samples. B-mode ultrasonography was used to assess hepatic steatosis. RESULTS The mean age and body mass index (BMI) of participants were 63.5 ± 10.2 years and 23.0 ± 3.1 kg/m2, respectively. Higher LECT2 levels positively correlated with homeostatic model assessment for insulin resistance (HOMA-IR) values and negatively correlated with the quantitative insulin sensitivity check index (QUICKI) among all participants (HOMA-IR; non-standardized β (B) = 6.38, P < 0.01: QUICKI; B = -161, P < 0.01). These correlations were stronger in the low BMI group (HOMA-IR; B = 13.85, P < 0.01: QUICKI; B = -180, P < 0.01). LECT2 levels also positively correlated with gamma-glutamyl transferase levels (B = 0.01, P = 0.01) and alanine aminotransferase levels (B = 0.33, P = 0.02). Higher LECT2 levels correlated with the prevalence of MASLD (odds ratio = 1.14, P = 0.02). CONCLUSIONS The present results suggest the potential of plasma LECT2 levels as a biomarker for insulin resistance in individuals who are not overweight and the prevalence of MASLD in the general population.
Collapse
Affiliation(s)
- Keita Suzuki
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
| | - Hiromasa Tsujiguchi
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Department of Public Health, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Akinori Hara
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Department of Public Health, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Yumie Takeshita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hisanori Goto
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Yujiro Nakano
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Reina Yamamoto
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hiroaki Takayama
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Atsushi Tajima
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Faculty of Medicine, Department of Bioinformatics and Genomics, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Tatsuya Yamashita
- Department of GastroenterologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Masao Honda
- Department of GastroenterologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hiroyuki Nakamura
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Department of Public Health, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Toshinari Takamura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| |
Collapse
|
4
|
Umemura A, Sasaki A, Takamura T, Takayama H, Takeshita Y, Toya Y, Kakisaka K, Hasegawa Y, Ishigaki Y. Relationship between the changes in hepatokine levels and metabolic effects after laparoscopic sleeve gastrectomy in severely obese patients. Surg Today 2024; 54:581-590. [PMID: 37957316 PMCID: PMC11102872 DOI: 10.1007/s00595-023-02767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE To clarify the relationships between the changes in hepatokines and weight loss, and between these changes and the metabolic effects, and the roles played by these changes, after laparoscopic sleeve gastrectomy (LSG). METHODS We recruited 25 Japanese patients with severe obesity, who underwent LSG. We measured two hepatokines: selenoprotein P (SeP) and leukocyte cell-derived chemotaxin 2 (LECT2), at the baseline, and then 6 months and 1 year after LSG. Finally, we compared the changes in the hepatokines with the parameters of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). RESULTS Changes in LECT2 were correlated with the percentage of total weight loss (ρ = - 0.499, P = 0.024) and the decrease in total fat area (ρ = 0.559, P = 0.003). The changes in SeP were correlated with those in hemoglobin A1c (ρ = 0.526, P = 0.043) and the insulinogenic index (ρ = 0.638, P = 0.010) in T2D patients. In patients with NASH, the LECT2 levels were correlated with liver steatosis (ρ = 0.601). CONCLUSIONS SeP levels decrease in association with HbA1c reduction, whereas LECT2 levels are associated with reductions in fat mass and NASH scores after LSG. Hepatokines may be involved in the pathology of obesity and its complications.
Collapse
Affiliation(s)
- Akira Umemura
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan.
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate, 028-3695, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| | - Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, 028-3695, Japan
| |
Collapse
|
5
|
Tanida R, Goto H, Takayama H, Nakano Y, Oo HK, Galicia-Medina CM, Takahashi K, Ishii KA, Goli AS, Matsuzaka T, Harada K, Takamura T. LECT2 Deletion Exacerbates Liver Steatosis and Macrophage Infiltration in a Male Mouse Model of LPS-mediated NASH. Endocrinology 2024; 165:bqae059. [PMID: 38781447 DOI: 10.1210/endocr/bqae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/19/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a protein initially isolated as a neutrophil chemotactic factor. We previously found that LECT2 is an obesity-associated hepatokine that senses liver fat and induces skeletal muscle insulin resistance. In addition, hepatocyte-derived LECT2 activates macrophage proinflammatory activity by reinforcing the lipopolysaccharide (LPS)-induced c-Jun N-terminal kinase signaling. Based on these findings, we examined the effect of LECT2 deletion on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) caused by bacterial translocation. We created the bacterial translocation-mediated NAFLD/NASH model using LECT2 knockout mice (LECT2 KO) with 28 times a low-dose LPS injection under high-fat diet feeding conditions. LECT2 deletion exacerbated steatosis and significantly reduced p38 phosphorylation in the liver. In addition, LECT2 deletion increased macrophage infiltration with decreased M1/M2 ratios. LECT2 might contribute to protecting against lipid accumulation and macrophage activation in the liver under pathological conditions, which might be accomplished via p38 phosphorylation. This study provides novel aspects of LECT2 in the bacterial translocation-mediated NAFLD/NASH model.
Collapse
Affiliation(s)
- Ryota Tanida
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu 474-8651, Japan
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroaki Takayama
- Life Sciences Division, Engineering and Technology Department, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Cynthia Monserrat Galicia-Medina
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Kenta Takahashi
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Kiyo-Aki Ishii
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Arman Syah Goli
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
6
|
Inia JA, de Jong JCBC, Keijzer N, Menke AL, Princen HMG, Jukema JW, van den Hoek AM. Effects of repeated weight cycling on non-alcoholic steatohepatitis in diet-induced obese mice. FASEB J 2024; 38:e23579. [PMID: 38568838 DOI: 10.1096/fj.202400167r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
7
|
Hirako S, Wada N, Iizuka Y, Hirabayashi T, Kageyama H, Kim H, Kaibara N, Yanagisawa N, Takenoya F, Shioda S. Effect of Intracerebroventricular Administration of Galanin-Like Peptide on Hepatokines in C57BL/6 J Mice. J Mol Neurosci 2024; 74:25. [PMID: 38386221 DOI: 10.1007/s12031-024-02200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Galanin-like peptide (GALP) is a neuropeptide that was first isolated and identified from the porcine hypothalamus. Studies have described an anti-obesity effect of GALP. We previously found that intracerebroventricular administration of GALP in mice resulted in an increase in respiratory exchange rate 12 to 16 h later. GALP may also affect glucose metabolism, but the detailed mechanism has not been elucidated. In this study, we investigated the effects of GALP on glucose and lipid metabolism in the liver. Nine-week-old male C57BL / 6 J mice were administered a single intracerebroventricular dose of saline or GALP and dissected 16 h later. There were no significant between-group differences in body weight and blood glucose levels. With regard to gene and protein expression, G6Pase associated with hepatic gluconeogenesis was significantly reduced in the GALP group. In addition, the hepatokines selenoprotein P and fetuin-A, which induce insulin resistance in the liver, were significantly decreased in the GALP group. These results suggest that intracerebroventricular administration of GALP decreases the expression of key hepatokines, thereby enhancing glucose metabolism.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, 1288 Magome, Iwatsuki-ku, Saitama-shi, Saitama, 339-8539, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0806, Japan
| | - Haruaki Kageyama
- Department of Nutrition and Dietetics, Faculty of Family and Consumer Sciences, Kamakura Women's University, 6-1-3 Ofuna, Kamakura-shi, Kanagawa, 247-8512, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Naoko Kaibara
- Department of Health and Nutrition, University of Human Arts and Sciences, 1288 Magome, Iwatsuki-ku, Saitama-shi, Saitama, 339-8539, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Fumiko Takenoya
- Department of Sport Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10, Kamishinano, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0806, Japan
| |
Collapse
|
8
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
10
|
Zhu MH, Liu YJ, Li CY, Tao F, Yang GJ, Chen J. The emerging roles of leukocyte cell-derived chemotaxin-2 in immune diseases: From mechanisms to therapeutic potential. Front Immunol 2023; 14:1158083. [PMID: 36969200 PMCID: PMC10034042 DOI: 10.3389/fimmu.2023.1158083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the “double-edged sword” function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| |
Collapse
|
11
|
Yu B, Zhang Y, Wang T, Guo J, Kong C, Chen Z, Ma X, Qiu T. MAPK Signaling Pathways in Hepatic Ischemia/Reperfusion Injury. J Inflamm Res 2023; 16:1405-1418. [PMID: 37012971 PMCID: PMC10065871 DOI: 10.2147/jir.s396604] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The mitogen-activated protein kinase signaling pathway can be activated by a variety of growth factors, cytokines, and hormones, and mediates numerous intracellular signals related to cellular activities, including cell proliferation, motility, and differentiation. It has been widely studied in the occurrence and development of inflammation and tumor. Hepatic ischemia-reperfusion injury (HIRI) is a common pathophysiological phenomenon that occurs in surgical procedures such as lobectomy and liver transplantation, which is characterized by severe inflammatory reaction after ischemia and reperfusion. In this review, we mainly discuss the role of p38, ERK1/2, JNK in MAPK family and TAK1 and ASK1 in MAPKKK family in HIRI, and try to find an effective treatment for HIRI.
Collapse
Affiliation(s)
- Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Yalong Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Chenyang Kong
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Correspondence: Tao Qiu, Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China, Tel +86-13995632367, Email
| |
Collapse
|
12
|
Suzuki K, Hekmatikar AHA, Jalalian S, Abbasi S, Ahmadi E, Kazemi A, Ruhee RT, Khoramipour K. The Potential of Exerkines in Women's COVID-19: A New Idea for a Better and More Accurate Understanding of the Mechanisms behind Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315645. [PMID: 36497720 PMCID: PMC9737724 DOI: 10.3390/ijerph192315645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The benefits of physical exercise are well-known, but there are still many questions regarding COVID-19. Chow et al.'s 2022 study, titled Exerkines and Disease, showed that a special focus on exerkines can help to better understand the underlying mechanisms of physical exercise and disease. Exerkines are a group of promising molecules that may underlie the beneficial effects of physical exercise in diseases. The idea of exerkines is to understand the effects of physical exercise on diseases better. Exerkines have a high potential for the treatment of diseases and, considering that, there is still no study of the importance of exerkines on the most dangerous disease in the world in recent years, COVID-19. This raises the fundamental question of whether exerkines have the potential to manage COVID-19. Most of the studies focused on the general changes in physical exercise in patients with COVID-19, both during the illness and after discharge from the hospital, and did not investigate the basic differences. A unique look at the management of COVID-19 by exerkines, especially in obese and overweight women who experience high severity of COVID-19 and whose recovery period is long after discharge from the hospital, can help to understand the basic mechanisms. In this review, we explore the potential of exerkines in COVID-19 by practicing physical exercise to provide compelling practice recommendations with new insights.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Amir Hossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Shadi Jalalian
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran 10600, Iran
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran 10600, Iran
| | - Elmira Ahmadi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Abdolreza Kazemi
- Department of Sports Science, Faculty of Literature and Humanities, Vali-e-Asr University, Rafsanjan 7718897111, Iran
| | | | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| |
Collapse
|
13
|
Xu H, Jia Y, Wang X, Wang H, Yu J, Hao W. Renal amyloidogenic leukocyte chemotactic factor 2 combined with IgA nephropathy: A case report. Medicine (Baltimore) 2022; 101:e29638. [PMID: 35866785 PMCID: PMC9302286 DOI: 10.1097/md.0000000000029638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Amyloidogenic leukocyte chemotactic factor 2 (ALECT2) was recently considered as a new clinicopathologic type of amyloid, which frequently affects kidney in adults and results in different degrees of renal insufficiency and failure with or without proteinuria. Here, we present a case of combining LECT2-associated renal amyloidosis with immunoglobulin (Ig)A nephropathy. PATIENT CONCERNS A 71-year-old Chinese man presented with edema of both lower extremities. DIAGNOSES There was pale eosinophilic material strongly positive for the Congo red stain in interstitium with demonstrated apple green birefringence under polarized light. Immunofluorescent stain was positive for IgA deposits (4+), IgG deposits (2+), C3 deposits (3+) within the mesangium and capillary wall. Immunohistochemistry was positive for κ (+), λ (2+) in mesangial area, and LECT2 (2+) in the interstitium. On electron microscopy, there were electron-dense deposits within mesangial area and subendothelial and randomly orientated and nonbranching fibrils 10 nm in size found in the interstitium areas. Liquid chromatography tandem mass spectrometry was performed on peptides extracted from Congo red-positive, microdissected areas of the paraffin-embedded kidney specimen. LECT 2-associated renal amyloidosis with IgA nephropathy was pathologically confirmed by renal biopsy. INTERVENTIONS Steroids (60 mg/d) were used to treat IgA nephropathy daily. Antihypertensive treatment was switched to an angiotensin-converting enzyme inhibitor. OUTCOMES One year after diagnosis, creatine remained stable in the normal range, and 24-hour proteinuria decreased to 2.9 g. LESSONS To date, ALECT2 has still not been comprehensively investigated. The findings of this research provide insights for concurrent IgA nephropathy with ALECT2.
Collapse
Affiliation(s)
- Hongzhao Xu
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Ye Jia
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Xueyao Wang
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Hui Wang
- Laboratory of Electron Microscopy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jinyu Yu
- Department of Pathology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Wu Hao
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
- *Correspondence: Wu Hao, Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China (e-mail: )
| |
Collapse
|
14
|
Du H, Yu J, Li Q, Zhang M. New Evidence of Tiger Subspecies Differentiation and Environmental Adaptation: Comparison of the Whole Genomes of the Amur Tiger and the South China Tiger. Animals (Basel) 2022; 12:ani12141817. [PMID: 35883364 PMCID: PMC9312029 DOI: 10.3390/ani12141817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tigers are top predators and umbrella protectors, vital to the stability of ecosystems. The South China tiger has been declared extinct in the wild and only exists in captivity. The Chinese government is actively promoting the reintroduction of the South China tiger into the wild. The future of the wild population of the Amur tiger in China is not optimistic, and the recovery of the population is an essential task for the conservation of the Amur tiger. The recovery of the population is not only a macroscopic problem but also a significant study of molecular ecology. We used high-throughput sequencing technology to study the differences in adaptive selection between Amur tigers and South China tigers. Significant genetic differences were found between the Amur tiger and the South China tiger based on a principal component analysis and phylogenetic tree. We identified functional genes and regulatory pathways related to reproduction, disease, predation, and metabolism and characterized functional genes related to survival in the wild, such as smell, vision, muscle, and predatory ability. The data also provide new evidence for the adaptation of Amur tigers to cold environments. PRKG1 is involved in temperature regulation in a cold climate. FOXO1 and TPM4 regulate body temperature to keep it constant. The research also provides a molecular basis for future tiger conservation. Abstract Panthera tigris is a top predator that maintains the integrity of forest ecosystems and is an integral part of biodiversity. No more than 400 Amur tigers (P. t. altaica) are left in the wild, whereas the South China tiger (P. t. amoyensis) is thought to be extinct in the wild, and molecular biology has been widely used in conservation and management. In this study, the genetic information of Amur tigers and South China tigers was studied by whole-genome sequencing (WGS). A total of 647 Gb of high-quality clean data was obtained. There were 6.3 million high-quality single-nucleotide polymorphisms (SNPs), among which most (66.3%) were located in intergenic regions, with an average of 31.72% located in coding sequences. There were 1.73 million insertion-deletions (InDels), among which there were 2438 InDels (0.10%) in the coding region, and 270 thousand copy number variations (CNVs). Significant genetic differences were found between the Amur tiger and the South China tiger based on a principal component analysis and phylogenetic tree. The linkage disequilibrium analysis showed that the linkage disequilibrium attenuation distance of the South China tiger and the Amur tiger was almost the same, whereas the r2 of the South China tiger was 0.6, and the r2 of the Amur tiger was 0.4. We identified functional genes and regulatory pathways related to reproduction, disease, predation, and metabolism and characterized functional genes related to survival in the wild, such as smell, vision, muscle, and predatory ability. The data also provide new evidence for the adaptation of Amur tigers to cold environments. PRKG1 is involved in temperature regulation in a cold climate. FOXO1 and TPM4 regulate body temperature to keep it constant. Our results can provide genetic support for precise interspecies conservation and management planning in the future.
Collapse
Affiliation(s)
- Hairong Du
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
| | - Jingjing Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
- Resources & Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Qian Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Correspondence: (Q.L.); (M.Z.)
| | - Minghai Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
- Correspondence: (Q.L.); (M.Z.)
| |
Collapse
|
15
|
Xie Y, Fan K, Guan S, Hu Y, Gao Y, Zhou W. LECT2: A pleiotropic and promising hepatokine, from bench to bedside. J Cell Mol Med 2022; 26:3598-3607. [PMID: 35656863 PMCID: PMC9258709 DOI: 10.1111/jcmm.17407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/12/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
LECT2 (leucocyte cell-derived chemotaxin 2) is a 16-kDa protein mainly produced by hepatocytes. It was first isolated in PHA-activated human T-cell leukaemia SKW-3 cells and originally identified as a novel neutrophil chemotactic factor. However, many lines of studies suggested that LECT2 was a pleiotropic protein, it not only functioned as a cytokine to exhibit chemotactic property, but also played multifunctional roles in some physiological conditions and pathological abnormalities, involving liver regeneration, neuronal development, HSC(haematopoietic stem cells) homeostasis, liver injury, liver fibrosis, hepatocellular carcinoma, metabolic disorders, inflammatory arthritides, systemic sepsis and systemic amyloidosis. Among the above studies, it was discovered that LECT2 could be a promising molecular biomarker and therapeutic target. This review summarizes LECT2-related receptors and pathways, basic and clinical researches, primarily in mice and human, for a better comprehension and management of these diseases in the future.
Collapse
Affiliation(s)
- Yuan Xie
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of General Surgery IIThe First People's Hospital of ZhaoqingZhaoqingChina
| | - Kai‐Wei Fan
- Department of Cerebrovascular DiseaseThe First People's Hospital of ZhaoqingZhaoqingChina
| | - Shi‐Xing Guan
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yang Hu
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei‐Jie Zhou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Thillainadesan S, Madsen S, James DE, Hocking SL. The impact of weight cycling on health outcomes in animal models: A systematic review and meta-analysis. Obes Rev 2022; 23:e13416. [PMID: 35075766 DOI: 10.1111/obr.13416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
The pattern of weight loss and regain, termed "weight cycling," is common in overweight individuals. It is unclear whether the well-established benefits of weight loss persist following weight regain or whether weight cycling is harmful. Human studies of weight cycling have conflicting results reflecting limitations of the observational designs of these studies. By controlling the macronutrient content of diets in animal studies, weight cycling can be studied in a highly controlled manner, thereby overcoming the limitations of human studies. We conducted a systematic review and meta-analysis of animal studies which assessed the health consequences of weight cycling. Studies were classified into those which compared weight cycling to lifelong obesity and those which compared weight cycling to later onset obesity. There were no differences in health outcomes between weight cycled animals and those with lifelong obesity, highlighting that weight regain reverses health benefits achieved by weight loss. In comparison with animals with later onset obesity, weight cycled animals had higher fasting glucose levels and more impaired glucose tolerance following weight regain. Our review of animal studies suggests that health benefits of diet-induced weight loss do not persist after weight regain and weight cycling results in adverse metabolic outcomes.
Collapse
Affiliation(s)
- Senthil Thillainadesan
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.,Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Søren Madsen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.,Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha L Hocking
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
17
|
Park CY, Lee SK, Kim J, Kim D, Choe H, Jeong JH, Choi KC, Park HS, Han SN, Jang YJ. Endoplasmic reticulum stress increases LECT2 expression via ATF4. Biochem Biophys Res Commun 2021; 585:169-176. [PMID: 34808500 DOI: 10.1016/j.bbrc.2021.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently associated with obesity, insulin resistance, and endoplasmic reticulum (ER) stress. Elevated circulating levels of the hepatokine leukocyte cell-derived chemotaxin-2 (LECT2) have also been noted in NAFLD; however, the mechanism underlying this association is unclear. To investigate a possible link between ER stress/unfolded protein response (UPR) signaling and LECT2 secretion, HepG2 cells were incubated with ER stress inducers with or without an ER stress-reducing chemical chaperone. Additionally, UPR pathway genes were knocked down and overexpressed, and a ChIP assay was performed. In diet-induced obese mice, hepatic expression of LECT2 and activating transcription factor 4 (ATF4) was measured. In HepG2 cells, LECT2 expression was increased by ER stressors, an effect blocked by the chemical chaperone. Among UPR pathway proteins, only knockdown of ATF4 suppressed ER stress-induced LECT2 expression, while overexpression of ATF4 enhanced LECT2 expression. The ChIP assay revealed that ATF4 binds to three putative binding sites on the LECT2 promoter and binding is promoted by an ER stress inducer. In steatotic livers of obese mice, LECT2 and ATF4 expression was concomitantly elevated. Our data indicate that activation of ER stress/UPR signaling induces LECT2 expression in steatotic liver; specifically, ATF4 appears to mediate upregulation of LECT2 transcription.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea; Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong-si, Gyeonggi-do, South Korea
| | - Seul Ki Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jimin Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Donguk Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Hoon Jeong
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Soon Park
- Department of Family Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Nim Han
- Department of Food and Nutrition & Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, South Korea
| | - Yeon Jin Jang
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
18
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
19
|
Zhu S, Bennett S, Li Y, Liu M, Xu J. The molecular structure and role of LECT2 or CHM-II in arthritis, cancer, and other diseases. J Cell Physiol 2021; 237:480-488. [PMID: 34550600 DOI: 10.1002/jcp.30593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2 or LECT-2), also called chondromodulin II (ChM-II or CHM2) plays a versatile role in various tissues. It was first identified as a chemotactic factor to promote the migration of neutrophils. It was also reported as a hepatokine to regulate glucose metabolism, obesity, and nonalcoholic fatty liver disease. As a secreted factor, LECT2 binds to several cell surface receptors CD209a, Tie1, and Met to regulate inflammatory reaction, fibrogenesis, vascular invasion, and tumor metastasis in various cell types. As an intracellular molecule, it is associated with LECT2-mediated amyloidosis, in which LECT2 misfolding results in insoluble fibrils in multiple tissues such as the kidney, liver, and lung. Recently, LECT2 was found to be associated with the development of rheumatoid arthritis and osteoarthritis, involving the dysregulation of osteoclasts, mesenchymal stem cells, osteoblasts, chondrocytes, and endothelial cells in the bone microenvironment. LECT2 is implicated in the development of cancers, such as hepatocellular carcinoma via MET-mediated PTP1B/Raf1/ERK signaling pathways and is proposed as a biomarker. The mechanisms by which LECT2 regulates diverse pathogenic conditions in various tissues remain to be fully elucidated. Further research to understand the role of LECT2 in a tissue tropism-dependent manner would facilitate the development of LECT2 as a biomarker for diagnosis and therapeutic target.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yihe Li
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mei Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
de Oliveira dos Santos AR, de Oliveira Zanuso B, Miola VFB, Barbalho SM, Santos Bueno PC, Flato UAP, Detregiachi CRP, Buchaim DV, Buchaim RL, Tofano RJ, Mendes CG, Tofano VAC, dos Santos Haber JF. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int J Mol Sci 2021; 22:2639. [PMID: 33807959 PMCID: PMC7961600 DOI: 10.3390/ijms22052639] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. This study aims to review the crosstalk between adipokines, myokines, and hepatokines. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.
Collapse
Affiliation(s)
- Ana Rita de Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília 17500-000, São Paulo, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil
| | - Uri Adrian Prync Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Daniela Vieira Buchaim
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB–USP), Alameda Doutor Octávio Pinheiro Brisolla 9-75, Bauru 17040, São Paulo, Brazil;
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Jesselina F. dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| |
Collapse
|
21
|
Takata N, Ishii KA, Takayama H, Nagashimada M, Kamoshita K, Tanaka T, Kikuchi A, Takeshita Y, Matsumoto Y, Ota T, Yamamoto Y, Yamagoe S, Seki A, Sakai Y, Kaneko S, Takamura T. LECT2 as a hepatokine links liver steatosis to inflammation via activating tissue macrophages in NASH. Sci Rep 2021; 11:555. [PMID: 33436955 PMCID: PMC7804418 DOI: 10.1038/s41598-020-80689-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
It remains unclear how hepatic steatosis links to inflammation. Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that senses fat in the liver and is upregulated prior to weight gain. The aim of this study was to investigate the significance of LECT2 in the development of nonalcoholic steatohepatitis (NASH). In human liver biopsy samples, elevated LECT2 mRNA levels were positively correlated with body mass index (BMI) and increased in patients who have steatosis and inflammation in the liver. LECT2 mRNA levels were also positively correlated with the mRNA levels of the inflammatory genes CCR2 and TLR4. In C57BL/6J mice fed with a high-fat diet, mRNA levels of the inflammatory cytokines Tnfa and Nos2 were significantly lower in Lect2 KO mice. In flow cytometry analyses, the number of M1-like macrophages and M1/M2 ratio were significantly lower in Lect2 KO mice than in WT mice. In KUP5, mouse kupffer cell line, LECT2 selectively enhanced the LPS-induced phosphorylation of JNK, but not that of ERK and p38. Consistently, LECT2 enhanced the LPS-induced phosphorylation of MKK4 and TAB2, upstream activators of JNK. Hepatic expression of LECT2 is upregulated in association with the inflammatory signature in human liver tissues. The elevation of LECT2 shifts liver residual macrophage to the M1-like phenotype, and contributes to the development of liver inflammation. These findings shed light on the hepatokine LECT2 as a potential therapeutic target that can dissociate liver steatosis from inflammation.
Collapse
Affiliation(s)
- Noboru Takata
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kiyo-Aki Ishii
- Department of Integrative Medicine for Longevity, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
- Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Mayumi Nagashimada
- Technology Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science and Technology, Kanazawa, Ishikawa, 920-0942, Japan
| | - Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takeo Tanaka
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yukako Matsumoto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tsuguhito Ota
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, 920-8640, Japan
| | - Satoshi Yamagoe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akihiro Seki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
22
|
Camargo TF, Zanesco AM, Pacher KAS, Andrade TAM, Alves AA, do Amaral MEC. Physiological profile regulation during weight gain and loss by ovariectomized females: importance of SIRT1 and SIRT4. Am J Physiol Endocrinol Metab 2020; 319:E769-E778. [PMID: 32865007 DOI: 10.1152/ajpendo.00465.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity in menopausal women occurs because of the systemic effects of loss of ovarian function, resulting in increased body weight and oxidative stress. Caloric restriction (CR) is essential for weight loss, since it provides benefits associated with metabolic normalization resulting from the action of sirtuins. The aim of this work was to evaluate the physiological effects of weight cycling in ovariectomized females. Females aged 2 mo (n = 8/group) were submitted to simulated surgery, ovariectomy (OVX group), and ovariectomy with weight fluctuation (WF group). In the WF group, weight cycling was performed two times, using 21 days of ad libitum commercial feed and 21 days of caloric restriction with 40% of the feed consumed by the OVX group. After 17 wk, the animals were evaluated experimentally. Weight fluctuations reduced triacylglycerol and the adipose tissue index of the WF animals, while increasing the expression of antioxidant proteins. In addition to causing fluctuations in the physiological parameters, the weight cycling led to increases of adipocyte number and serum fatty acids. These effects were reflected in increased expression of the sirtuin (SIRT) 1 and SIRT4 proteins, as well as protein complexes of the mitochondrial electron transport chain, especially in the liver and adipose tissues. The weight-cycling results suggested that mitochondrial and nuclear sirtuins were active in cellular signaling for the control of lipid metabolism, oxidative phosphorylation, and redox status. Weight cycling was able to restore the health characteristics of lean animals.
Collapse
Affiliation(s)
- Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | - Ariane Maria Zanesco
- College of Biomedicine, Centro Universitário Hermínio Ometto, Araras, Sãu Paulo, Brazil
| | - Kayo Augusto Salandin Pacher
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | | | | | | |
Collapse
|
23
|
Sougiannis AT, VanderVeen BN, Cranford TL, Enos RT, Velazquez KT, McDonald S, Bader JE, Chatzistamou I, Fan D, Murphy EA. Impact of weight loss and partial weight regain on immune cell and inflammatory markers in adipose tissue in male mice. J Appl Physiol (1985) 2020; 129:909-919. [PMID: 32853106 DOI: 10.1152/japplphysiol.00356.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Weight fluctuations are common among individuals with obesity and are associated with increased morbidity. We examined adipose tissue immune and inflammatory markers in mice following weight loss and partial weight regain. Male C57BL/6 mice were randomized into four groups (n = 8-10/group): low-fat diet for 32 wk (LFD), high-fat diet for 32 wk (HFD), LFD for 28 wk and then changed to a HFD for 4 wk (LFD→H), and HFD for 21 wk and then changed to LFD for 7 wk and then changed to HFD for 4 wk (HFD→L→H). LFD→H and HFD→L→H mice did not differ in body weight, fat mass, or fat percentage; however, these parameters were greater than in LFD (P < 0.05) but lower than in HFD (P < 0.05). HFD→L→H mice had smaller adipocytes than HFD and LFD→H (P < 0.05) but not LFD mice. Expressions of CD11c and CD8a genes were elevated in epididymal fat of HFD→L→H compared with LFD→H and LFD (P < 0.05)mice. However, CD11c was lower in HFD→L→H than in HFD mice (P < 0.05), but there was no difference in CD8a between these groups. TNFα and IFNγ expressions were increased in HFD→L→H compared with LFD and LFD→H mice (P < 0.05), although HFD→L→H had lower expression of these cytokines than HFD (P < 0.05). IL-1β was greater in HFD→L→H compared with LFD (P < 0.05) but was not different from LFD→H or HFD mice. Monocyte chemoattractant protein-1 was lower (P < 0.05) in HFD→L→H than in LFD→H. These data reinforce the importance of maintaining a body weight in the range that is recommended for optimal health to reduce immune and inflammatory perturbations associated with obesity.NEW & NOTEWORTHY We examined the immune and inflammatory status of adipose tissue in mice after they underwent weight loss followed by partial weight regain. We show an increase in selected immune cells and inflammatory mediators, in high-fat diet-fed mice that had prior exposure to a high-fat diet. Although weight fluctuations appear to exacerbate immune cell abundance and inflammation in adipose tissue, severity is less than in mice that were exposed to sustained high-fat diet feedings.
Collapse
Affiliation(s)
- Alexander T Sougiannis
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Taryn L Cranford
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Reilly T Enos
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Kandy T Velazquez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Sierra McDonald
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Jackie E Bader
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
24
|
Kikuchi A, Takayama H, Tsugane H, Shiba K, Chikamoto K, Yamamoto T, Matsugo S, Ishii KA, Misu H, Takamura T. Plasma half-life and tissue distribution of leukocyte cell-derived chemotaxin 2 in mice. Sci Rep 2020; 10:13260. [PMID: 32764719 PMCID: PMC7411055 DOI: 10.1038/s41598-020-70192-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a hepatokine that causes skeletal muscle insulin resistance. The circulating levels of LECT2 are a possible biomarker that can predict weight cycling because they reflect liver fat and precede the onset of weight loss or gain. Herein, to clarify the dynamics of this rapid change in serum LECT2 levels, we investigated the in vivo kinetics of LECT2, including its plasma half-life and tissue distribution, by injecting 125I-labelled LECT2 into ICR mice and radioactivity tracing. The injected LECT2 was eliminated from the bloodstream within 10 min (approximate half-life, 5 min). In the kidneys, the radioactivity accumulated within 10 min after injection and declined thereafter. Conversely, the radioactivity in urine increased after 30 min of injection, indicating that LECT2 is mainly excreted by the kidneys into the urine. Finally, LECT2 accumulated in the skeletal muscle and liver until 30 min and 2 min after injection, respectively. LECT2 accumulation was not observed in the adipose tissue. These findings are in agreement with LECT2 action on the skeletal muscle. The present study indicates that LECT2 is a rapid-turnover protein, which renders the circulating level of LECT2 a useful rapid-response biomarker to predict body weight alterations.
Collapse
Affiliation(s)
- Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan. .,Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, 444-8585, Japan.
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirohiko Tsugane
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuhiro Shiba
- Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Keita Chikamoto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Tatsuya Yamamoto
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, 619-0284, Japan
| | - Seiichi Matsugo
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kiyo-Aki Ishii
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| |
Collapse
|
25
|
Willis SA, Sargeant JA, Yates T, Takamura T, Takayama H, Gupta V, Brittain E, Crawford J, Parry SA, Thackray AE, Varela-Mato V, Stensel DJ, Woods RM, Hulston CJ, Aithal GP, King JA. Acute Hyperenergetic, High-Fat Feeding Increases Circulating FGF21, LECT2, and Fetuin-A in Healthy Men. J Nutr 2020; 150:1076-1085. [PMID: 31919514 DOI: 10.1093/jn/nxz333] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/08/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatokines such as fibroblast growth factor 21 (FGF21), leukocyte cell-derived chemotaxin 2 (LECT2), fetuin-A, fetuin-B, and selenoprotein P (SeP) are liver-derived proteins that are modulated by chronic energy status and metabolic disease. Emerging data from rodent and cell models indicate that hepatokines may be sensitive to acute nutritional manipulation; however, data in humans are lacking. OBJECTIVE The aim was to investigate the influence of hyperenergetic, high-fat feeding on circulating hepatokine concentrations, including the time course of responses. METHODS In a randomized, crossover design, 12 healthy men [mean ± SD: age, 24 ± 4 y; BMI (kg/m2), 24.1 ± 1.5] consumed a 7-d hyperenergetic, high-fat diet [HE-HFD; +50% energy, 65% total energy as fat (32% saturated, 26% monounsaturated, 8% polyunsaturated)] and control diet (36% total energy as fat), separated by 3 wk. Whole-body insulin sensitivity was assessed before and after each diet using oral-glucose-tolerance tests. Fasting plasma concentrations of FGF21 (primary outcome), LECT2, fetuin-A, fetuin-B, SeP, and related metabolites were measured after 1, 3, and 7 d of each diet. Hepatokine responses were analyzed using 2-factor repeated-measures ANOVA and subsequent pairwise comparisons. RESULTS Compared with the control, the HE-HFD increased circulating FGF21 at 1 d (105%) and 3 d (121%; P ≤ 0.040), LECT2 at 3 d (17%) and 7 d (32%; P ≤ 0.004), and fetuin-A at 7 d (7%; P = 0.028). Plasma fetuin-B and SeP did not respond to the HE-HFD. Whole-body insulin sensitivity was reduced after the HE-HFD by 31% (P = 0.021). CONCLUSIONS Acute high-fat overfeeding augments circulating concentrations of FGF21, LECT2, and fetuin-A in healthy men. Notably, the time course of response varies between proteins and is transient for FGF21. These findings provide further insight into the nutritional regulation of hepatokines in humans and their interaction with metabolic homeostasis. This study was registered at clinicaltrials.gov as NCT03369145.
Collapse
Affiliation(s)
- Scott A Willis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Jack A Sargeant
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thomas Yates
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
| | - Toshinari Takamura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroaki Takayama
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Vinay Gupta
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emily Brittain
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Joe Crawford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Siôn A Parry
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice E Thackray
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Veronica Varela-Mato
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - David J Stensel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Rachel M Woods
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Carl J Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - James A King
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- National Institute for Health Research(NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester, United Kingdom
| |
Collapse
|
26
|
Sun Y, Geng M, Yuan Y, Guo P, Chen Y, Yang D, Petersen RB, Huang K, Zheng L. Lmo4‐resistin signaling contributes to adipose tissue‐liver crosstalk upon weight cycling. FASEB J 2020; 34:4732-4748. [DOI: 10.1096/fj.201902708r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Sun
- Hubei Key Laboratory of Cell Homeostasis College of Life Sciences Wuhan University Wuhan China
| | - Mengyuan Geng
- Hubei Key Laboratory of Cell Homeostasis College of Life Sciences Wuhan University Wuhan China
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis College of Life Sciences Wuhan University Wuhan China
| | - Peilian Guo
- Hubei Key Laboratory of Cell Homeostasis College of Life Sciences Wuhan University Wuhan China
| | - Yuchen Chen
- Tongji School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dong Yang
- Tongji School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Robert B. Petersen
- Foundational Sciences Central Michigan University College of Medicine Mt. Pleasant MI USA
| | - Kun Huang
- Tongji School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis College of Life Sciences Wuhan University Wuhan China
- Frontier Science Center for Immunology and Metabolism Wuhan University Wuhan China
| |
Collapse
|
27
|
Tao L, He XY, Pan LX, Wang JW, Gan SQ, Chu MX. Genome-wide association study of body weight and conformation traits in neonatal sheep. Anim Genet 2020; 51:336-340. [PMID: 31960458 DOI: 10.1111/age.12904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Sheep, an important source of meat, dairy products and wool, play an essential part in the global agricultural economy. Body weight and body conformation are key traits in the sheep industry; however, their underlying genetic mechanisms are poorly understood. In this study, a GWAS was implemented to identify promising genes possibly linked to birth weight (BW) and body conformation traits in neonatal sheep, using a high-throughput chip (630 K). After quality control, 277 individuals and 518 203 variants were analyzed using gemma software in a mixed linear model. A total of 48 genome-wide suggestive SNPs were obtained, of which four were associated with BW, four with withers height (WH), 11 with body length (BL) and 29 with chest girth (CG). In total, 39 genes associated with BW and body conformation traits were identified by aligning to the sheep genome (Ovis aries_v4.0), and most of them were involved in the cell cycle and body development. Promising candidate genes found included the following: FOS like 2 or AP-1 transcription factor subunit (FOSL2) for BW; potassium voltage-gated channel subfamily D member 2 (KCND2) for WH; transmembrane protein 117 (TMEM117), transforming growth factor beta induced (TGFBI), and leukocyte cell-derived chemotaxin 2 (LECT2) for BL; and trafficking kinesin protein 1 (TRAK1) and LOC101102529 for CG. These results provide cues for similar studies aiming at uncovering the genetic mechanisms underlying body development, and marker-assisted selection programs focusing on BW and body conformation traits in sheep.
Collapse
Affiliation(s)
- L Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - X Y He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L X Pan
- Ji'nan Laiwu Yingtai Agriculture and Animal Husbandry Technology Co., Ltd., Ji'nan, Shandong, 271114, China
| | - J W Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, China
| | - S Q Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - M X Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
28
|
Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr Rev 2019; 40:1367-1393. [PMID: 31098621 DOI: 10.1210/er.2019-00034] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The liver is a dynamic organ that plays critical roles in many physiological processes, including the regulation of systemic glucose and lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. Through the use of advanced mass spectrometry "omics" approaches and detailed experimentation in cells, mice, and humans, we now understand that the liver secretes a wide array of proteins, metabolites, and noncoding RNAs (miRNAs) and that many of these secreted factors exert powerful effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the rapidly evolving field of "hepatokine" biology with a particular focus on delineating previously unappreciated communication between the liver and other tissues in the body. We describe the NAFLD-induced changes in secretion of liver proteins, lipids, other metabolites, and miRNAs, and how these molecules alter metabolism in liver, muscle, adipose tissue, and pancreas to induce insulin resistance. We also synthesize the limited information that indicates that extracellular vesicles, and in particular exosomes, may be an important mechanism for intertissue communication in normal physiology and in promoting metabolic dysregulation in NAFLD.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paula M Miotto
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Mohri K, Misu H, Takayama H, Ishii KA, Kikuchi A, Lan F, Enyama Y, Takeshita Y, Saito Y, Kaneko S, Takamura T. Circulating Concentrations of Insulin Resistance-Associated Hepatokines, Selenoprotein P and Leukocyte Cell-Derived Chemotaxin 2, during an Oral Glucose Tolerance Test in Humans. Biol Pharm Bull 2019; 42:373-378. [PMID: 30606895 DOI: 10.1248/bpb.b18-00549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A hepatokine is a collective term for liver-derived secretory factors whose previously-unrecognized functions have been recently elucidated. We have rediscovered selenoprotein P (SeP) and leukocyte cell-derived chemotaxin 2 (LECT2) as hepatokines that are involved in the development of insulin resistance and hyperglycemia. The aim of this study was to determine whether and, if so, how oral glucose loading alters the two hepatokines in humans. We measured concentrations of serum SeP and plasma LECT2 during 75 g oral glucose tolerance test (OGTT) (n = 20) in people with various degrees of glucose tolerance. In OGTT, concentrations of both serum SeP and plasma LECT2 decreased at 120 min compared with the baseline values, irrespective of the severity of glucose intolerance. Decrement of serum SeP during OGTT showed no correlations to the clinical parameters associated with insulin resistance or insulin secretion. In multiple stepwise regression analyses, plasma cortisol was selected as the variable to explain the changes in plasma concentrations of LECT2. The current data reveal the acute inhibitory actions of oral intake of glucose on circulating SeP and LECT2 in humans, irrespective of the severity of glucose intolerance. This study suggests that circulating SeP is regulated by the unknown clinical factors other than insulin and glucose during OGTT.
Collapse
Affiliation(s)
- Kensuke Mohri
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences
- PRESTO, Japan Science and Technology Agency
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences
| | - Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences
| | - Fei Lan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital
| | - Yasufumi Enyama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences
| | - Yumie Takeshita
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences
| | - Yoshiro Saito
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences
| |
Collapse
|
30
|
RNA-seq analysis of the kidneys of broiler chickens fed diets containing different concentrations of calcium. Sci Rep 2017; 7:11740. [PMID: 28924246 PMCID: PMC5603577 DOI: 10.1038/s41598-017-11379-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/23/2017] [Indexed: 01/13/2023] Open
Abstract
Calcium (Ca) is required for normal growth and is involved in cellular physiology, signal transduction, and bone mineralization. In humans, inadequate Ca intake causes hypocalcaemia, and excessive Ca intake causes hypercalcemia. In chicken, Ca is also required for body weight gain and eggshell formation. However, transcriptomic responses to low/high Ca intake, and mechanisms affecting body weight have not been explored. In this study, we performed comparative RNA sequencing (RNA-seq) using the kidney of broiler chickens fed diets containing 0.8, 1.0, and 1.2% Ca. Annotation of RNA-seq data revealed a significant number of differentially expressed genes (DEGs) in the kidney via pairwise comparison using Cufflinks and edgeR. Using edgeR, we identified 12 DEGs; seven overlapped with those found by cufflinks. Seven DEGs were validated by real-time quantitative-PCR (qRT-PCR) in Ca-supplemented kidneys, and the results correlated with the RNA-seq data. DEGs identified by cufflinks/edgeR were subjected to pathway enrichment, protein/protein interaction, and co-occurrence analyses to determine their involvement in disease. The National Research Council (NRC) recommended Ca intake for 21-day post-hatch broilers is about 1.0%. Our findings suggest that higher-than-recommended Ca intake (1.2%) could reduce body weight gain in broilers, and that affected DEGs are related to stress-induced diseases, such as hypertension.
Collapse
|
31
|
Abstract
Hepatic steatosis is an underlying feature of nonalcoholic fatty liver disease (NAFLD), which is the most common form of liver disease and is present in up to ∼70% of individuals who are overweight. NAFLD is also associated with hypertriglyceridaemia and low levels of HDL, glucose intolerance, insulin resistance and type 2 diabetes mellitus. Hepatic steatosis is a strong predictor of the development of insulin resistance and often precedes the onset of other known mediators of insulin resistance. This sequence of events suggests that hepatic steatosis has a causal role in the development of insulin resistance in other tissues, such as skeletal muscle. Hepatokines are proteins that are secreted by hepatocytes, and many hepatokines have been linked to the induction of metabolic dysfunction, including fetuin A, fetuin B, retinol-binding protein 4 (RBP4) and selenoprotein P. In this Review, we describe the factors that influence the development of hepatic steatosis, provide evidence of strong links between hepatic steatosis and insulin resistance in non-hepatic tissues, and discuss recent advances in our understanding of how steatosis alters hepatokine secretion to influence metabolic phenotypes through inter-organ communication.
Collapse
Affiliation(s)
- Ruth C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
32
|
Up-regulation of selenoprotein P and HIP/PAP mRNAs in hepatocytes by intermittent hypoxia via down-regulation of miR-203. Biochem Biophys Rep 2017; 11:130-137. [PMID: 28955777 PMCID: PMC5614699 DOI: 10.1016/j.bbrep.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and insulin resistance remain elusive. We exposed human hepatocytes (JHH5, JHH7, and HepG2) to experimental IH or normoxia for 24 h, measured mRNA levels by real-time reverse transcription polymerase chain reaction (RT-PCR), and found that IH significantly increased the mRNA levels of selenoprotein P (SELENOP) — a hepatokine — and hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) — one of REG (Regenerating gene) family. We next investigated promoter activities of both genes and discovered that they were not increased by IH. On the other hand, a target mRNA search of micro RNA (miRNA) revealed that both mRNAs have a potential target sequence for miR-203. The miR-203 level of IH-treated cells was significantly lower than that of normoxia-treated cells. Thus, we introduced miR-203 inhibitor and a non-specific control RNA (miR-203 inhibitor NC) into HepG2 cells and measured the mRNA levels of SELENOP and HIP/PAP. The IH-induced expression of SELENOP and HIP/PAP was abolished by the introduction of miR-203 inhibitor but not by miR-203 inhibitor NC. These results demonstrate that IH stress up-regulates the levels of SELENOP in human hepatocytes to accelerate insulin resistance and up-regulates the levels of HIP/PAP mRNAs to proliferate such hepatocytes, via the miR-203 mediated mechanism.
Collapse
Key Words
- AHSG, α2 HS-glycoprotein
- ANGPTL6, angiopoietin-related growth factor
- DICER, endoribonuclease Dicer
- DROSHA, ribonuclease type III
- ELISA, enzyme-linked immunosorbent assay
- FCS, fetal calf serum
- FGF21, fibroblast growth factor 21
- HIP/PAP
- HIP/PAP, hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein
- Hepatokine
- IH, intermittent hypoxia
- Intermittent hypoxia
- LECT2, leukocyte cell-derived chemotaxin 2
- MCPIP1, monocyte chemotactic protein-induced protein 1
- REG family gene
- Reg, regenerating gene
- Rig, rat insulinoma gene
- RpS15, ribosomal protein S15
- SAS, sleep apnea syndrome
- SELENOP
- SELENOP, selenoprotein P
- SHBG, sex hormone-binding globulin
- TP63, transformation-related protein 63
- WST-8, 2-(2-methoxy-4-nitrophenyl)−3-(4-nitrophenyl)−5-(2,4-disulfophenyl)−2H-tetrazolium monosodium salt
- miR-203
- miRNA, micro RNA
- siRNA, small interfering RNA
Collapse
|