1
|
Jiang Y, Zhao X, Fang Y, Yang X. Upregulation of microRNA-3687 promotes gestational diabetes mellitus by inhibiting Follistatin-like 3. J Perinat Med 2025:jpm-2024-0509. [PMID: 40219801 DOI: 10.1515/jpm-2024-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/21/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVES Pregnancy-related medical complications such as gestational diabetes mellitus (GDM) are common and associated with several obstetric and neonatal problems. There is growing evidence that microRNAs (miRNAs) are essential players in the pathophysiology of GDM. This study aimed to assess how particular miRNAs and the genes they target are expressed in GDM. METHODS A GDM cell model was created using BeWo cells cultured in hyperglycemic (HG) conditions (25 mM glucose). Low-glucose (LG) conditions (5.5 mM glucose) were used for the BeWo cells in the control group. Differentially expressed genes (DEGs) in BeWo cells were identified by high-throughput sequencing and their levels verified in placental samples from GDM patients and controls using RT-PCR. Furthermore, the target genes of the DEGs were verified using dual-luciferase reporter assays. RESULTS High-throughput sequencing revealed 220 DEGs in BeWo cells. Among these, miR-3687 was significantly upregulated, while Follistatin-like 3 (FSTL3) was downregulated in BeWo cells under HG conditions. The high-throughput sequencing results were corroborated by RT-PCR, which showed that placental samples from GDM patients had significantly lower levels of FSTL3 expression and substantially higher amounts of miR-3687 expression compared to control samples. FSTL3 was established as a direct target of miR-3687 as shown by dual-luciferase reporter assays. CONCLUSIONS The increase of miR-3687 might facilitate the onset and advancement of GDM by suppressing FSTL3. This discovery offered a new perspective on the molecular underpinnings of GDM and indicated possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Maternal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xuehan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ying Fang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
2
|
Rodriguez M, Xu H, Hernandez A, Ingraham J, Canizales J, Arce FT, Camp SM, Briggs S, Ooi A, Burke JM, Song JH, Garcia JGN. NEDD4 E3 ligase-catalyzed NAMPT ubiquitination and autophagy activation are essential for pyroptosis-independent NAMPT secretion in human monocytes. Cell Commun Signal 2025; 23:157. [PMID: 40159488 PMCID: PMC11956250 DOI: 10.1186/s12964-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
NAMPT is an important intracellular metabolic enzyme (iNAMPT) regulating the NAD+ salvage pathway. However, increased cellular stress (infection, inflammation, hypoxia) promotes the secretion of extracellular NAMPT (eNAMPT), a TLR4 ligand and damage-associated molecular pattern protein (DAMP) that directly drives amplification of innate immune-mediated inflammatory, fibrotic, and neoplastic responses to influence disease severity. We sought to examine the mechanisms underlying pyroptotic eNAMPT release from human monocytic THP-1 cells, evoked by Nigericin, and non-pyroptotic eNAMPT secretion elicited by lipopolysaccharide (LPS). Our data indicate eNAMPT secretion/release requires NLRP3 inflammasome activation with substantial attenuation by either NLRP3 inhibition (MCC-950) or targeted genetic deletion of key inflammasome components, including NLRP3, caspase-1, or gasdermin D (GSDMD). Pyroptosis-associated eNAMPT release involved cleavage of the pore-forming GSDMD protein resulting in plasma membrane rupture (PMR) whereas non-pyroptotic LPS-induced eNAMPT secretion involved neither GSDMD cleavage nor PMR, verified utilizing non-cleavable GSDMD mutant constructs. LPS-induced eNAMPT secretion, however, was highly dependent upon NAMPT ubiquitination catalyzed by a complex containing the NEDD4 E3 ligase, Hsp90 (a selective chaperone), and intact GSDMD verified by enzymatic inhibition or silencing of NEDD4, GSDMD, or Hsp90. NAMPT ubiquitination and secretion involves autophagy activation as super-resolution microscopy analyses demonstrate NAMPT co-localization with autophagosome marker LC3B and eNAMPT secretion was significantly reduced by targeted ATG5 and ATG7 inhibition, critical components of the autophagy E3-like complex. These studies provide key insights into eNAMPT secretion that may accelerate the development of therapeutic strategies that address unmet therapeutic needs in inflammatory, fibrotic and neoplastic disorders.
Collapse
Affiliation(s)
- Marisela Rodriguez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Haifei Xu
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Annie Hernandez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Julia Ingraham
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jason Canizales
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Fernando Teran Arce
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sara M Camp
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Skyler Briggs
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Aikseng Ooi
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - James M Burke
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Jin H Song
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Joe G N Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
3
|
Lee J, Woo H, Kang H, Park YK, Lee JY. Nicotinamide riboside targets mitochondrial unfolded protein response to reduce alcohol-induced damage in Kupffer cells. J Pathol 2025; 265:110-122. [PMID: 39624887 DOI: 10.1002/path.6372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The pathogenesis of alcohol-related liver disease (ALD) is closely linked to mitochondrial dysfunction and impaired cellular energy metabolism. In this study, we explored how ethanol triggers inflammation, oxidative stress, and mitochondrial dysfunction in Kupffer cells, i.e.hepatic resident macrophages, primarily focusing on the mitochondrial unfolded protein response (UPRmt) using immortalized mouse Kupffer cells (ImKCs) and mouse primary KCs. The UPRmt is a cellular defense mechanism activated in response to the perturbation of mitochondrial proteostasis to maintain mitochondrial integrity and function by upregulating the expression of mitochondrial chaperones and proteases. We also determined whether nicotinamide riboside (NR), a NAD+ precursor, could mitigate ethanol-triggered cellular damage. When ImKCs were exposed to 80 mm ethanol for 72 h, they displayed inflammation, oxidative stress, and impaired mitochondrial function with decreased mitochondrial content and deformed mitochondrial crista structure. NR, however, counteracted the effects of ethanol. Furthermore, ethanol increased mRNA and protein levels of UPRmt genes, such as mitochondrial chaperones and proteases, which were attenuated by NR. Notably, the ethanol-induced shift in the entry of activating transcription factor 5 (ATF5), a putative transcriptional regulator of UPRmt, to the nucleus from the mitochondria was abolished by NR. The induction of UPRmt genes by ethanol was significantly repressed when Atf5 was knocked down, indicating the role of ATF5 in the induction of UPRmt genes in ImKCs exposed to ethanol. We also confirmed the induction of UPRmt gene expression in mouse and human livers exposed to alcohol. Our findings demonstrate the ability of NR to alleviate ethanol-induced oxidative stress, inflammation, and mitochondrial dysfunction, partly by modulating the ATF5-dependent UPRmt pathway in ImKCs, suggesting its potential for ALD therapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Cabulong RB, Kafle SR, Singh A, Sharma M, Kim BS. Biological production of nicotinamide mononucleotide: a review. Crit Rev Biotechnol 2024:1-18. [PMID: 39675885 DOI: 10.1080/07388551.2024.2433993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 12/17/2024]
Abstract
Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: Escherichia coli, Bacillus subtilis, and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Saroj Raj Kafle
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Anju Singh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Huffaker TB, Ekiz HA, Barba C, Lee SH, Runtsch MC, Nelson MC, Bauer KM, Tang WW, Mosbruger TL, Cox JE, Round JL, Voth WP, O'Connell RM. A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nat Commun 2021; 12:2620. [PMID: 33976173 PMCID: PMC8113251 DOI: 10.1038/s41467-021-22923-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor associated macrophage responses are regulated by distinct metabolic states that affect their function. However, the ability of specific signals in the local tumor microenvironment to program macrophage metabolism remains under investigation. Here, we identify NAMPT, the rate limiting enzyme in NAD salvage synthesis, as a target of STAT1 during cellular activation by interferon gamma, an important driver of macrophage polarization and antitumor responses. We demonstrate that STAT1 occupies a conserved element within the first intron of Nampt, termed Nampt-Regulatory Element-1 (NRE1). Through disruption of NRE1 or pharmacological inhibition, a subset of M1 genes is sensitive to NAMPT activity through its impact on glycolytic processes. scRNAseq is used to profile in vivo responses by NRE1-deficient, tumor-associated leukocytes in melanoma tumors through the creation of a unique mouse strain. Reduced Nampt and inflammatory gene expression are present in specific myeloid and APC populations; moreover, targeted ablation of NRE1 in macrophage lineages results in greater tumor burden. Finally, elevated NAMPT expression correlates with IFNγ responses and melanoma patient survival. This study identifies IFN and STAT1-inducible Nampt as an important factor that shapes the metabolic program and function of tumor associated macrophages.
Collapse
Affiliation(s)
- Thomas B Huffaker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - H Atakan Ekiz
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Cindy Barba
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Soh-Hyun Lee
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Marah C Runtsch
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Morgan C Nelson
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kaylyn M Bauer
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - William W Tang
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Warren P Voth
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Mitani T, Watanabe S, Wada K, Fujii H, Nakamura S, Katayama S. Intracellular cAMP contents regulate NAMPT expression via induction of C/EBPβ in adipocytes. Biochem Biophys Res Commun 2019; 522:770-775. [PMID: 31791580 DOI: 10.1016/j.bbrc.2019.11.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022]
Abstract
A decline in intracellular nicotinamide adenine mononucleotide (NAD+) causes adipose tissue dysfunction. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in the NAD+ biosynthesis pathway. However, the molecular mechanism that mediates regulation of NAMPT expression in adipocytes is yet to be elucidated. This study found that intracellular cAMP regulates NAMPT expression and promoter activity in 3T3-L1 adipocytes. cAMP-mediated Nampt promoter activity was suppressed by protein kinase A inhibitor H89, whereas AMP-activated protein kinase inhibitor compound C did not affect cAMP-mediated Nampt promoter activity. Intracellular cAMP induced CCAAT/enhancer-binding protein β (C/EBPβ) expression. Knockdown of C/EBPβ suppressed NAMPT expression and promoter activity. Furthermore, the Nampt promoter was activated by C/EBPβ, while LIP activated the dominant-negative form of C/EBPβ. Promoter sequence analysis revealed that the region from -96 to -76 on Nampt was required for C/EBPβ-mediated promoter activity. Additionally, chromatin immunoprecipitation assay demonstrated that C/EBPβ was bound to the promoter sequences of Nampt. Finally, NAMPT inhibitor FK866 suppressed adipogenesis in 3T3-L1 cells, and this suppressive effect was restored by nicotinamide mononucleotide treatment. These findings showed that intracellular cAMP increased NAMPT levels by induction of C/EBPβ expression and indicated that the induction of NAMPT expression was important for adipogenesis.
Collapse
Affiliation(s)
- Takakazu Mitani
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan.
| | - Shun Watanabe
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan
| | - Kenjiro Wada
- Department of Bioscience and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan
| | - Hiroshi Fujii
- Graduate School of Science and Technology, Department of Biomedical Engineering, Shinshu University, Kami-ina, Nagano, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Kami-ina, Nagano, Japan
| | - Soichiro Nakamura
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan
| | - Shigeru Katayama
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Kami-ina, Nagano, Japan
| |
Collapse
|
7
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|