1
|
Rodrigo N, Chen H, Pollock CA, Glastras SJ. Kidney outcomes are altered by preconception weight modulation in rodent mothers with obesity. Sci Rep 2024; 14:17363. [PMID: 39075112 PMCID: PMC11286933 DOI: 10.1038/s41598-024-68234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Obesity increases the risk of chronic kidney disease. We have previously demonstrated the benefits of preconception maternal weight loss on fertility and pregnancy outcomes in a mouse model of maternal obesity. Here, we elucidate if preconception weight loss, either by diet modification or the glucose-like peptide 1 agonist liraglutide, used in the treatment of diabetes and obesity, improves maternal kidney outcomes in late gestation. C57BL/6 female mice were fed either a high-fat-diet (HFD) or a chow (control) diet for 8 weeks. To induce pre-pregnancy weight loss, HFD-fed dams were switched to chow diet (HFD-C) or administered liraglutide (0.3 mg/kg subcutaneous) whilst continuing on HFD (HFD-L). Liraglutide was discontinued one week prior to mating. HFD-V mice continued on HFD, with saline injections. A group of HFD-fed dams were 'diet switched' to chow after conception (post-conception, HFD-PC). Maternal body weight and glucose tolerance were measured: (1) preconception and (2) during late gestation followed by blood, urine and kidney collection. Serum creatinine, urinary creatinine and albumin, kidney tissue gene expression and protein were measured. In the preconception period, HFD-L and HFD-C mothers have lower urine albumin:creatinine ratios (UACR) and fatty acid synthase (FAS) protein expression (P < 0.005 vs. HFD-V). At late gestation, kidneys of HFD-V and HFD-PC dams have increased gene expression of insulin receptor and FAS (P < 0.05) and higher UACR compared to controls (P < 0.01). In the HFD-PC group, kidneys show increased mRNA and protein expression of metabolic and oxidative stress markers (FAS, 8-OHdG vs. control, P < 0.05, P < 0.0001 respectively). The preconception intervention groups with liraglutide, or diet change show reduced oxidative stress (protein expression of 8-OHdG, P < 0.05 vs. HFD), mRNA and protein expression of FAS (P < 0.05 vs. HFD), protein expression of fibrosis markers (collagen IV, fibronectin vs. HFD, P < 0.05), and UACR (P < 0.05 vs. HFD). This study suggests that preconception weight loss benefits maternal kidney health during pregnancy, superior to diet intervention once already pregnant.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Renal Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW, Australia.
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, Australia.
- Department of Diabetes and Endocrinology, Nepean Hospital, Kingswood, NSW, Australia.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sarah J Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, Australia
| |
Collapse
|
2
|
Li W, Li Z, Yan Y, Zhang J, Zhou Q, Wang R, He M. Association of urinary arsenic metabolism with type 2 diabetes and glucose homeostasis: Cross-sectional and longitudinal associations. ENVIRONMENTAL RESEARCH 2023; 239:117410. [PMID: 37858693 DOI: 10.1016/j.envres.2023.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Previous researches have assessed the relationships of urinary arsenic metabolism with type 2 diabetes (T2D) and glucose-insulin homeostasis, but the results were controversial, and potential mechanisms remain largely unclear. OBJECTIVES This study aimed to investigate the cross-sectional and longitudinal associations of urinary arsenic metabolism with T2D prevalence and glucose changes in relatively higher arsenic exposure, and further to evaluate the underlying roles of oxidative damage in these relationships. METHODS We included 796 participants at baseline, among them 509 participants were followed up after 2 years. Logistic regression model and leave-one-out approach were applied to evaluate the associations of arsenic metabolism with T2D prevalence. Linear mixed model was conducted to estimate the relationship of arsenic metabolism with glycemic changes over two years. The associations between arsenic metabolism and indicators of oxidative stress were assessed with a linear regression model. We further performed mediation analysis to investigate the role of oxidative stress in the associations of arsenic metabolism with 2-year change of glucose levels. RESULTS Higher urinary MMA% increased T2D prevalence and baseline glucose levels. MMA% was positively associated with 2-year change of glucose levels. Moreover, we observed significant dose-response relationship between MMA% and 8-hydroxy-2-deoxyguanosine (8-OHdG). However, the mediating role of 8-OHdG in the association of MMA% and 2-year change of glucose levels was not observed in this population. CONCLUSIONS In this population exposure to relatively higher arsenic levels, higher MMA% contributed to increased T2D prevalence and glucose homeostasis disorder. Arsenic metabolism also affected oxidative stress levels, especially 8-OHdG. Further studies are required to investigate the potential mechanisms.
Collapse
Affiliation(s)
- Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, Esa NM. Stingless Bee ( Heterotrigona Itama) Honey and Its Phenolic-Rich Extract Ameliorate Oxidant-Antioxidant Balance via KEAP1-NRF2 Signalling Pathway. Nutrients 2023; 15:2835. [PMID: 37447162 DOI: 10.3390/nu15132835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
Collapse
Affiliation(s)
| | - Fatin Aina Zulkhairi Amin
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Akmal Ishak
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Center of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Bati B, Celik I, Turan A, Eray N, Alkan EE, Zirek AK. Effect of isgin ( Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet. Arch Physiol Biochem 2023; 129:298-306. [PMID: 32924615 DOI: 10.1080/13813455.2020.1819338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of Rheum ribes L. plant root extracts on DNA damage, biochemical and antioxidant parameters in rats with experimental obesity induced with a high-calorie diet. The study groups were divided as "normal control(NC)", "obese control(OC)", "obese + Rheum ribes(OR1)(200 mg/kg)" and "obese + Rheum ribes (OR2)(400 mg/kg)". At the end of the application, rats were sacrificed and blood and tissue samples were obtained. According to the results obtained, the marker of DNA damage in tissues of 8-OHdG was determined to be significantly reduced in brain tissue of the OR1 and OR2 groups compared to the NC group. However, fluctuations were identified in the MDA activity, antioxidant defense system elements and serum biomarkers in tissues. In conclusion, Rheum ribes plant root extract ensured improvements in DNA damage in brain tissues and MDA levels and showed positive effects on antioxidant parameter activities in different tissues.
Collapse
Affiliation(s)
- Bedia Bati
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ismail Celik
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Abdullah Turan
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Nese Eray
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Elif Ebru Alkan
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ali Kemal Zirek
- Institute of Sciences, Medical Services and Techniques, Hakkari University, Hakkari, Turkey
| |
Collapse
|
5
|
Liu W, Wang B, Yang S, Xu T, Yu L, Wang X, Cheng M, Zhou M, Chen W. Associations of propylene oxide exposure with fasting plasma glucose and diabetes: Roles of oxidative DNA damage and lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118453. [PMID: 34737025 DOI: 10.1016/j.envpol.2021.118453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Whether propylene oxide (PO) exposure is associated with hyperglycemia were rarely explored. We aimed to determine the relationship between PO exposure and glucose metabolism, and potential role of oxidative stress. Among 3294 Chinese urban adults, urinary PO metabolite (N-Acetyl-S-(2-hydroxypropyl)-L-cysteine, 2HPMA), biomarkers of oxidative DNA damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) and lipid peroxidation (8-isoprostane, 8-iso-PGF2α) in urine were determined. The associations of 2HPMA with 8-OHdG, 8-iso-PGF2α, fasting plasma glucose (FPG), and risk of diabetes were explored. The roles of 8-OHdG and 8-iso-PGF2α on association of 2HPMA with FPG and risk of diabetes were detected. After adjusted for potential confounders, each 1-unit increase in log-transformed concentration of 2HPMA was associated with a 0.15-mmol/L increase in FPG level, and the adjusted OR (95% CI) of diabetes by the associations of log-transformed urinary 2HPMA concentrations was 1.47 (95% CI: 1.03-2.11). Combination effects of 2HPMA with 8-OHdG or 8-iso-PGF2α on risk of diabetes were detected, and elevated 8-iso-PGF2α significantly mediated 34.5% of the urinary 2HPMA-associated FPG elevation. PO exposure was positively associated with FPG levels and risk of diabetes. PO exposure combined with DNA oxidative damage or lipid peroxidation may increase the risk of diabetes, and lipid peroxidation may partially mediate the PO exposure-induced FPG elevation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Bati B, Celik I, Vuran NE, Turan A, Alkan EE, Zirek AK. Effects of Gundelia tournefortii L. on biochemical parameters, antioxidant activities and DNA damage in a rat model of experimental obesity. BRAZ J BIOL 2021; 83:e251198. [PMID: 34550296 DOI: 10.1590/1519-6984.251198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to investigate the effects of Gundelia tournefortii L. plant extract on different tissues in terms of DNA damage, biochemical and antioxidant parameter values in rats with high-calorie diets. With this aim, Wistar albino male rats were divided into 4 groups containing 6 rats each and the study was completed over 12 weeks duration. At the end of the implementation process over the 12 weeks, rats were sacrificed and blood and tissue samples were obtained. Analyses were performed on blood and tissue samples. According to results for DNA damage (8-OHdG), in brain tissue the OG2 group was significantly reduced compared to the NC group. For MDA results in liver tissue, OG1 and OG2 groups were determined to increase by a significant degree compared to the control group, while the OG2 group was also increased significantly compared to the obese group. In terms of the other parameters, comparison between the groups linked to consumption of a high calorie diet (HCD) and administration of Gundelia tournefortii L. in terms of antioxidant activities and serum samples obtained statistically significant results. Gundelia tournefortii L. plant extracts had effects that may be counted as positive on antioxidant parameter activity and were especially identified to improve DNA damage and MDA levels in brain tissues. Additionally, consumption of Gundelia tournefortii L. plant extract in the diet may have antiobesity effects; thus, it should be evaluated for use as an effective weight-loss method and as a new therapeutic agent targeting obesity.
Collapse
Affiliation(s)
- B Bati
- Van Yüzüncü Yıl University, Faculty of Education, Department of Mathematics and Science Education, Van, Turkey
| | - I Celik
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - N Eray Vuran
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - A Turan
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - E E Alkan
- Van Yüzüncü Yıl University, Faculty of Education, Department of Mathematics and Science Education, Van, Turkey
| | - A K Zirek
- Hakkari University, Institute of Sciences, Medical Services and Techniques, Hakkari, Turkey
| |
Collapse
|
7
|
Xu T, Wang B, Wang X, Yang S, Cao L, Qiu W, Cheng M, Liu W, Yu L, Zhou M, Wang D, Ma J, Chen W. Associations of urinary carbon disulfide metabolite with oxidative stress, plasma glucose and risk of diabetes among urban adults in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115959. [PMID: 33250290 DOI: 10.1016/j.envpol.2020.115959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Carbon disulfide (CS2) has been reported to induce disorder of glucose metabolism. However, the associations of CS2 exposure with plasma glucose levels and risk of diabetes have not been explored in general population, and the underlying mechanisms remain unclear. We aim to examine the relationships between CS2 exposure and fasting plasma glucose (FPG) levels, as well as diabetes, and assess the potential role of oxidative stress among the abovementioned relationships in Chinese general adults. The concentrations of urinary biomarkers of CS2 exposure (2-thiothiazolidin-4-carboxylic acid, TTCA), and biomarkers for lipid peroxidation (8-isoprostane, 8-iso-PGF2α) and DNA oxidative damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) were measured among 3338 urban adults from the Wuhan-Zhuhai cohort. Additionally, FPG levels were tested promptly. Generalized linear models and logistic regression models were used to quantify the associations among urinary TTCA, oxidative damage markers, FPG levels and diabetes risk. Mediation analysis was employed to estimate the role of oxidative damage markers in the association between urinary TTCA and FPG levels. We discovered a significant relationship between urinary TTCA and FPG levels with regression coefficient of 0.080 (95% CI: 0.002,0.157). Besides, the risk of diabetes was positively related to urinary TTCA (OR:1.282, 95% CI: 1.055,1.558), particularly among those who did not exercise regularly. Each 1% increase of urinary TTCA concentration was associated with a 0.096% and 0.037% increase in urinary 8-iso-PGF2α and 8-OHdG, respectively. Moreover, we found an upward trend of FPG level as urinary 8-iso-PGF2α gradually increased (Ptrend<0.05), and urinary 8-iso-PGF2α mediated 21.12% of the urinary TTCA-associated FPG increment. Our findings indicated that urinary CS2 metabolite was associated with increased FPG levels and diabetes risk in general population. Lipid peroxidation partly mediated the association of urinary CS2 metabolite with FPG levels.
Collapse
Affiliation(s)
- Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
9
|
Wang B, Qiu W, Yang S, Cao L, Zhu C, Ma J, Li W, Zhang Z, Xu T, Wang X, Cheng M, Mu G, Wang D, Zhou Y, Yuan J, Chen W. Acrylamide Exposure and Oxidative DNA Damage, Lipid Peroxidation, and Fasting Plasma Glucose Alteration: Association and Mediation Analyses in Chinese Urban Adults. Diabetes Care 2020; 43:1479-1486. [PMID: 32345652 DOI: 10.2337/dc19-2603] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/31/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Acrylamide exposure from daily-consumed food has raised global concern. We aimed to assess the exposure-response relationships of internal acrylamide exposure with oxidative DNA damage, lipid peroxidation, and fasting plasma glucose (FPG) alteration and investigate the mediating role of oxidative DNA damage and lipid peroxidation in the association of internal acrylamide exposure with FPG. RESEARCH DESIGN AND METHODS FPG and urinary biomarkers of oxidative DNA damage (8-hydroxy-deoxyguanosine [8-OHdG]), lipid peroxidation (8-iso-prostaglandin-F2α [8-iso-PGF2α]), and acrylamide exposure (N-acetyl-S-[2-carbamoylethyl]-l-cysteine [AAMA], N-acetyl-S-[2-carbamoyl-2-hydroxyethyl]-l-cysteine [GAMA]) were measured for 3,270 general adults from the Wuhan-Zhuhai cohort. The associations of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α, and FPG were assessed by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. RESULTS We found significant linear positive dose-response relationships of urinary acrylamide metabolites with 8-OHdG, 8-iso-PGF2α, and FPG (except GAMA with FPG) and 8-iso-PGF2α with FPG. Each 1-unit increase in log-transformed level of AAMA, AAMA + GAMA (ΣUAAM), or 8-iso-PGF2α was associated with a 0.17, 0.15, or 0.23 mmol/L increase in FPG, respectively (P and/or P trend < 0.05). Each 1% increase in AAMA, GAMA, or ΣUAAM was associated with a 0.19%, 0.27%, or 0.22% increase in 8-OHdG, respectively, and a 0.40%, 0.48%, or 0.44% increase in 8-iso-PGF2α, respectively (P and P trend < 0.05). Increased 8-iso-PGF2α rather than 8-OHdG significantly mediated 64.29% and 76.92% of the AAMA- and ΣUAAM-associated FPG increases, respectively. CONCLUSIONS Exposure of the general adult population to acrylamide was associated with FPG elevation, oxidative DNA damage, and lipid peroxidation, which in turn partly mediated acrylamide-associated FPG elevation.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunmei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Shin SK, Kim KO, Kim SH, Kwon OS, Choi CS, Jeong SH, Kim YS, Kim JH, Chung MH. Exogenous 8-hydroxydeoxyguanosine ameliorates liver fibrosis through the inhibition of Rac1-NADPH oxidase signaling. J Gastroenterol Hepatol 2020; 35:1078-1087. [PMID: 31907970 DOI: 10.1111/jgh.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Exogenous 8-hydroxydeoxyguanosine (8-OHdG) was suggested as an inhibitor of Rac1 and NADPH oxidase (NOX). The aim of this study was to evaluate the effects of the exogenous 8-OHdG on hepatic fibrogenesis in vitro and in vivo model of liver fibrosis. METHODS Adult Sprague-Dawley rats were allocated to sham-operated rats (n = 7), rats that underwent bile duct ligation (BDL) (n = 6), and BDL rats treated with 8-OHdG (60 mg/kg/day by gavage, n = 6). All rats were sacrificed on day 21. Double immunofluorescence staining between either NOX1 or NOX2 and α-smooth muscle actin (SMA) in liver was performed. Hepatic fibrotic contents were assessed by hydroxyproline assay and quantified by Sirius red staining. In vitro, hepatic stellate cell (HSC) line LX-2 and HHSteC cells were stimulated by angiotensin II (10 μM). The reactive oxygen species (ROS) production was measured by confocal microscopy. The expressions of NOX1, NOX2, α-SMA, transforming growth factor (TGF)-β1, and collagen Iα were analyzed by quantitative real-time polymerase chain reaction or immunoblotting. RESULTS The 8-OHdG treatment in BDL rats reduced the NOX1 and NOX2 protein expression, which overlapped with α-SMA compared with BDL rats. The 8-OHdG treatment in BDL rats significantly decreased the mRNA expression of NOX1, NOX2, α-SMA, TGF-β1, and collagen Iα, and fibrotic contents. Increases of ROS production, Rac1 activation, NOX1, NOX2, and fibronectin expression induced by angiotensin II in HSCs were attenuated by 8-OHdG. CONCLUSIONS Rac1 activation and NOX-derived ROS are implicated to liver fibrosis. The 8-OHdG ameliorates liver fibrosis through the inhibition of Rac1 activation and NOX-derived ROS.
Collapse
Affiliation(s)
- Seung Kak Shin
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Kyung-Ok Kim
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | - Se-Hee Kim
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | - Oh Sang Kwon
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Cheol Soo Choi
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Sung Hwan Jeong
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Yun Soo Kim
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Ju Hyun Kim
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Myung-Hee Chung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, Korea
| |
Collapse
|
11
|
Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism. Enzyme Microb Technol 2020; 135:109496. [DOI: 10.1016/j.enzmictec.2019.109496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
|
12
|
Kim HS, Moon JH, Kim YM, Huh JY. Epigallocatechin Exerts Anti-Obesity Effect in Brown Adipose Tissue. Chem Biodivers 2019; 16:e1900347. [PMID: 31532890 DOI: 10.1002/cbdv.201900347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022]
Abstract
Catechins in green tea are well-known to be effective in reducing the risk of obesity. The purpose of this study was to elucidate the effects of catechins present in green tea on adipocyte differentiation and mature adipocyte metabolism. Treatment of 3T3-L1 mouse adipocyte during differentiation adipocytes with (-)-epigallocatechin (EGC) and gallic acid (GA) resulted in dose-dependent inhibition of adipogenesis. Specifically, EGC increased adiponectin and uncoupling protein 1 (UCP1) transcription in mature adipocytes. Transcription levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were not significantly impacted by either of the compounds. These results suggest that the EGC is the most effective catechin having anti-obesity activity. Finally, EGC is an attractive candidate component for remodeling obesity.
Collapse
Affiliation(s)
- Hae-Soo Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joo-Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
13
|
Huh JY, Lee S, Ma EB, Eom HJ, Baek J, Ko YJ, Kim KH. The effects of phenolic glycosides from Betula platyphylla var. japonica on adipocyte differentiation and mature adipocyte metabolism. J Enzyme Inhib Med Chem 2018; 33:1167-1173. [PMID: 30126307 PMCID: PMC6104606 DOI: 10.1080/14756366.2018.1491846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Betula platyphylla var. japonica (Betulaceae) has been used traditionally in Asian countries for the treatment of inflammatory diseases. A recent study has reported a phenolic compound, platyphylloside from B. platyphylla, that shows inhibition on adipocyte differentiation and induces lipolysis in 3T3-L1 cells. Based on this finding, we conducted phytochemical analysis of the EtOH extract of the bark of B. platyphylla var. japonica, which resulted in the isolation of phenolic glycosides (1–4). Treatment of the isolated compounds (1–4) during adipocyte differentiation of 3T3-L1 mouse adipocytes resulted in dose-dependent inhibition of adipogenesis. In mature adipocytes, arylbutanoid glycosides (2–4) induced lipolysis related genes HSL and ATGL, whereas catechin glycoside (1) had no effect. Additionally, arylbutanoid glycosides (2–4) also induced GLUT4 and adiponectin mRNA expression, indicating improvement in insulin signaling. This suggests that the isolates from B. platyphylla var. japonica exert benefial effects in regulation of adipocyte differentiation as well as adipocyte metabolism.
Collapse
Affiliation(s)
- Joo Young Huh
- a College of Pharmacy , Chonnam National University , Gwangju , Republic of Korea
| | - Seulah Lee
- b School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Eun-Bi Ma
- a College of Pharmacy , Chonnam National University , Gwangju , Republic of Korea
| | - Hee Jeong Eom
- b School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Jiwon Baek
- b School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Yoon-Joo Ko
- c Laboratory of Nucear Magnetic Resonance , National Center for Inter-University Research Facilities (NCIRF), Seoul National University , Gwanak-gu, Seoul , Republic of Korea
| | - Ki Hyun Kim
- b School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| |
Collapse
|
14
|
Obesity enhances carcinogen 7, 12-Dimethylbenz [a] anthracene -induced tumorigenesis in vitro and in vivo. Food Chem Toxicol 2017; 110:156-164. [DOI: 10.1016/j.fct.2017.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/15/2023]
|