1
|
Shishparenok AN, Petryaev ER, Koroleva SA, Dobryakova NV, Zlotnikov ID, Komedchikova EN, Kolesnikova OA, Kudryashova EV, Zhdanov DD. Bacterial Cellulose-Chitosan Composite for Prolonged-Action L-Asparaginase in Treatment of Melanoma Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1727-1743. [PMID: 39523112 DOI: 10.1134/s0006297924100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
A significant challenge associated with the therapeutic use of L-ASP for treatment of tumors is its rapid clearance from plasma. Effectiveness of L-ASP is limited by the dose-dependent toxicity. Therefore, new approaches are being developed for L-ASP to improve its therapeutic properties. One of the approaches to improve properties of the enzymes, including L-ASP, is immobilization on various types of biocompatible polymers. Immobilization of enzymes on a carrier could improve stability of the enzyme and change duration of its enzymatic activity. Bacterial cellulose (BC) is a promising carrier for various drugs due to its biocompatibility, non-toxicity, high porosity, and high drug loading capacity. Therefore, this material has high potential for application in biomedicine. Native BC is known to have a number of disadvantages related to structural stability, which has led to consideration of the modified BC as a potential carrier for immobilization of various proteins, including L-ASP. In our study, a BC-chitosan composite in which chitosan is cross-linked with glutaraldehyde was proposed for immobilization of L-ASP. Physicochemical characteristics of the BC-chitosan films were found to be superior to those of native BC films, resulting in increase in the release time of L-ASP in vitro from 8 to 24 h. These films exhibited prolonged toxicity (up to 10 h) against the melanoma cell line. The suggested strategy for A-ASP immobilization on the BC-chitosan films could be potentially used for developing therapeutics for treatment of surface types of cancers including melanomas.
Collapse
Affiliation(s)
| | | | - Svetlana A Koroleva
- Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | | | - Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena N Komedchikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga A Kolesnikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
2
|
Shishparenok AN, Koroleva SA, Dobryakova NV, Gladilina YA, Gromovykh TI, Solopov AB, Kudryashova EV, Zhdanov DD. Bacterial cellulose films for L-asparaginase delivery to melanoma cells. Int J Biol Macromol 2024; 276:133932. [PMID: 39025173 DOI: 10.1016/j.ijbiomac.2024.133932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
L-asparaginase (L-ASNase) is an enzyme that catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia and is used to treat acute lymphoblastic leukemia. It is also toxic to the cells of some solid tumors, including melanoma cells. Immobilization of this enzyme can improve its activity against melanoma tumor cells. In this work, the properties of bacterial cellulose (BC) and feasibility of BC films as a new carrier for immobilized L-ASNase were investigated. Different values of growth time were used to obtain BC films with different thicknesses and porosities, which determine the water content and the ability to adsorb and release L-ASNase. Fourier transform infrared spectroscopy confirmed the adsorption of the enzyme on the BC films. The total activity of adsorbed L-ASNase and its release were investigated for films grown for 48, 72 or 96 h. BC films grown for 96 h showed the most pronounced release as described by zero-order and Korsmayer-Peppas models. The release was characterized by controlled diffusion where the drug was released at a constant rate. BC films with immobilized L-ASNase could induce cytotoxicity in A875 human melanoma cells. With further development, immobilization of L-ASNase on BC may become a potent strategy for anticancer drug delivery to superficial tumors.
Collapse
Affiliation(s)
- Anastasiya N Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Svetlana A Koroleva
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia; Institute of Biochemical Technology and Nanotechnology, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; ChemBioTech Department, Moscow Polytechnic University, 38 Bolshaya Semenovskaya st., Moscow 107023, Russia
| | - Natalya V Dobryakova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Yulia A Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Tatiana I Gromovykh
- ChemBioTech Department, Moscow Polytechnic University, 38 Bolshaya Semenovskaya st., Moscow 107023, Russia
| | - Alexey B Solopov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia
| | - Dmitry D Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
3
|
Zhang Y, Chu J, Hou Q, Qian S, Wang Z, Yang Q, Song W, Dong L, Shi Z, Gao Y, Meng M, Zhang M, Zhang X, Chen Q. Ageing microenvironment mediates lymphocyte carcinogenesis and lymphoma drug resistance: From mechanisms to clinical therapy (Review). Int J Oncol 2024; 64:65. [PMID: 38757347 PMCID: PMC11095602 DOI: 10.3892/ijo.2024.5653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Cellular senescence has a complex role in lymphocyte carcinogenesis and drug resistance of lymphomas. Senescent lymphoma cells combine with immunocytes to create an ageing environment that can be reprogrammed with a senescence‑associated secretory phenotype, which gradually promotes therapeutic resistance. Certain signalling pathways, such as the NF‑κB, Wnt and PI3K/AKT/mTOR pathways, regulate the tumour ageing microenvironment and induce the proliferation and progression of lymphoma cells. Therefore, targeting senescence‑related enzymes or their signal transduction pathways may overcome radiotherapy or chemotherapy resistance and enhance the efficacy of relapsed/refractory lymphoma treatments. Mechanisms underlying drug resistance in lymphomas are complex. The ageing microenvironment is a novel factor that contributes to drug resistance in lymphomas. In terms of clinical translation, some senolytics have been used in clinical trials on patients with relapsed or refractory lymphoma. Combining immunotherapy with epigenetic drugs may achieve better therapeutic effects; however, senescent cells exhibit considerable heterogeneity and lymphoma has several subtypes. Extensive research is necessary to achieve the practical application of senolytics in relapsed or refractory lymphomas. This review summarises the mechanisms of senescence‑associated drug resistance in lymphoma, as well as emerging strategies using senolytics, to overcome therapeutic resistance in lymphoma.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingwen Chu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qi Hou
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Siyu Qian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zeyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qing Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuyang Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Miaomiao Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
4
|
Tao HY, Zhao CY, Wang Y, Sheng WJ, Zhen YS. Targeting Telomere Dynamics as an Effective Approach for the Development of Cancer Therapeutics. Int J Nanomedicine 2024; 19:3805-3825. [PMID: 38708177 PMCID: PMC11069074 DOI: 10.2147/ijn.s448556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.
Collapse
Affiliation(s)
- Hong-yu Tao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chun-yan Zhao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Wang
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei-jin Sheng
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-su Zhen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Zhang D, Czapinska H, Bochtler M, Wlodawer A, Lubkowski J. RrA, an enzyme from Rhodospirillum rubrum, is a prototype of a new family of short-chain L-asparaginases. Protein Sci 2024; 33:e4920. [PMID: 38501449 PMCID: PMC10949315 DOI: 10.1002/pro.4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/20/2024]
Abstract
L-Asparaginases (ASNases) catalyze the hydrolysis of L-Asn to L-Asp and ammonia. Members of the ASNase family are used as drugs in the treatment of leukemia, as well as in the food industry. The protomers of bacterial ASNases typically contain 300-400 amino acids (typical class 1 ASNases). In contrast, the chain of ASNase from Rhodospirillum rubrum, reported here and referred to as RrA, consists of only 172 amino acid residues. RrA is homologous to the N-terminal domain of typical bacterial class 1 ASNases and exhibits millimolar affinity for L-Asn. In this study, we demonstrate that RrA belongs to a unique family of cytoplasmic, short-chain ASNases (scASNases). These proteins occupy a distinct region in the sequence space, separate from the regions typically assigned to class 1 ASNases. The scASNases are present in approximately 7% of eubacterial species, spanning diverse bacterial lineages. They seem to be significantly enriched in species that encode for more than one class 1 ASNase. Here, we report biochemical, biophysical, and structural properties of RrA, a member of scASNases family. Crystal structures of the wild-type RrA, both with and without bound L-Asp, as well as structures of several RrA mutants, reveal topologically unique tetramers. Moreover, the active site of one protomer is complemented by two residues (Tyr21 and Asn26) from another protomer. Upon closer inspection, these findings clearly outline scASNases as a stand-alone subfamily of ASNases that can catalyze the hydrolysis of L-Asn to L-Asp despite the lack of the C-terminal domain that is present in all ASNases described structurally to date.
Collapse
Affiliation(s)
- Di Zhang
- Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| | - Honorata Czapinska
- Laboratory of Structural BiologyInternational Institute of Molecular and Cell BiologyWarsawPoland
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Matthias Bochtler
- Laboratory of Structural BiologyInternational Institute of Molecular and Cell BiologyWarsawPoland
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Alexander Wlodawer
- Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| | - Jacek Lubkowski
- Center for Structural BiologyNational Cancer InstituteFrederickMarylandUSA
| |
Collapse
|
6
|
Dumina M, Zhdanov D, Zhgun A, Pokrovskaya M, Aleksandrova S, Veselovsky A, El’darov M. Enhancing the Catalytic Activity of Thermo-Asparaginase from Thermococcus sibiricus by a Double Mesophilic-like Mutation in the Substrate-Binding Region. Int J Mol Sci 2023; 24:9632. [PMID: 37298582 PMCID: PMC10253665 DOI: 10.3390/ijms24119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
L-asparaginases (L-ASNases) of microbial origin are the mainstay of blood cancer treatment. Numerous attempts have been performed for genetic improvement of the main properties of these enzymes. The substrate-binding Ser residue is highly conserved in L-ASNases regardless of their origin or type. However, the residues adjacent to the substrate-binding Ser differ between mesophilic and thermophilic L-ASNases. Based on our suggestion that the triad, including substrate-binding Ser, either GSQ for meso-ASNase or DST for thermo-ASNase, is tuned for efficient substrate binding, we constructed a double mutant of thermophilic L-ASNase from Thermococcus sibiricus (TsA) with a mesophilic-like GSQ combination. In this study, the conjoint substitution of two residues adjacent to the substrate-binding Ser55 resulted in a significant increase in the activity of the double mutant, reaching 240% of the wild-type enzyme activity at the optimum temperature of 90 °C. The mesophilic-like GSQ combination in the rigid structure of the thermophilic L-ASNase appears to be more efficient in balancing substrate binding and conformational flexibility of the enzyme. Along with increased activity, the TsA D54G/T56Q double mutant exhibited enhanced cytotoxic activity against cancer cell lines with IC90 values from 2.8- to 7.4-fold lower than that of the wild-type enzyme.
Collapse
Affiliation(s)
- Maria Dumina
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
| | - Dmitry Zhdanov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia (A.V.)
| | - Alexander Zhgun
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
| | | | | | | | - Michael El’darov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
| |
Collapse
|
7
|
Gladilina YA, Shishparenok AN, Zhdanov DD. [Approaches for improving L-asparaginase expression in heterologous systems]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:19-38. [PMID: 36857424 DOI: 10.18097/pbmc20236901019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.
Collapse
Affiliation(s)
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Pokrovsky VS, Abo Qoura L, Morozova E, Bunik VI. Predictive markers for efficiency of the amino-acid deprivation therapies in cancer. Front Med (Lausanne) 2022; 9:1035356. [PMID: 36405587 PMCID: PMC9669297 DOI: 10.3389/fmed.2022.1035356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Amino acid deprivation therapy (AADT) is a promising strategy for developing novel anticancer treatments, based on variations in metabolism of healthy and malignant cells. L-asparaginase was the first amino acid-degrading enzyme that received FDA approval for the treatment of acute lymphoblastic leukemia (ALL). Arginase and arginine deiminase were effective in clinical trials for the treatment of metastatic melanomas and hepatocellular carcinomas. Essential dependence of certain cancer cells on methionine explains the anticancer efficacy of methionine-g-lyase. Along with significant progress in identification of metabolic vulnerabilities of cancer cells, new amino acid-cleaving enzymes appear as promising agents for cancer treatment: lysine oxidase, tyrosine phenol-lyase, cysteinase, and phenylalanine ammonia-lyase. However, sensitivity of specific cancer cell types to these enzymes differs. Hence, search for prognostic and predictive markers for AADT and introduction of the markers into clinical practice are of great importance for translational medicine. As specific metabolic pathways in cancer cells are determined by the enzyme expression, some of these enzymes may define the sensitivity to AADT. This review considers the known predictors for efficiency of AADT, emphasizing the importance of knowledge on cancer-specific amino acid significance for such predictions.
Collapse
Affiliation(s)
- Vadim S. Pokrovsky
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Vadim S. Pokrovsky,
| | - Louay Abo Qoura
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Shen X, Jain A, Aladelokun O, Yan H, Gilbride A, Ferrucci LM, Lu L, Khan SA, Johnson CH. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review. Front Mol Biosci 2022; 9:958666. [PMID: 36090030 PMCID: PMC9453556 DOI: 10.3389/fmolb.2022.958666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Asparagine (Asn) and enzymes that catalyze the metabolism of Asn have been linked to the regulation and propagation of colorectal cancer (CRC). Increased Asn and asparagine synthetase (ASNS) expression, both contribute to CRC progression and metastasis. In contradistinction, L-asparaginase (ASNase) which breaks down Asn, exhibits an anti-tumor effect. Metabolic pathways such as KRAS/PI3K/AKT/mTORC1 signaling and high SOX12 expression can positively regulate endogenous Asn production. Conversely, the tumor suppressor, TP53, negatively impacts ASNS, thus limiting Asn synthesis and reducing tumor burden. Asn abundance can be altered by factors extrinsic to the cancer cell such as diet, the microbiome, and therapeutic use of ASNase. Recent studies have shown that sex-related factors can also influence the regulation of Asn, and high Asn production results in poorer prognosis for female CRC patients but not males. In this narrative review, we critically review studies that have examined endogenous and exogenous modulators of Asn bioavailability and summarize the key metabolic networks that regulate Asn metabolism. We also provide new hypotheses regarding sex-related influences on Asn, including the involvement of the sex-steroid hormone estrogen and estrogen receptors. Further, we hypothesize that sex-specific factors that influence Asn metabolism can influence clinical outcomes in CRC patients.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Austin Gilbride
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Leah M. Ferrucci
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Sajid A. Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Alexandrova SS, Gladilina YA, Pokrovskaya MV, Sokolov NN, Zhdanov DD. [Mechanisms of development of side effects and drug resistance to asparaginase and ways to overcome them]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:104-116. [PMID: 35485484 DOI: 10.18097/pbmc20226802104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Asparaginase is one of the most important chemotherapeutic agents against acute lymphoblastic leukemia, the most common form of blood cancer. To date, both asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi), used in hematology, induce chemoresistance in cancer cells and side effects in the form of hypersensitivity of immune reactions. Leukemic cells may be resistant to asparaginase due to the increased activity of asparagine synthetase and other mechanisms associated with resistance to asparaginase. Therefore, the search for new sources of L-asparaginases with improved pharmacological properties remains a promising and prospective study. This article discusses the mechanisms of development of resistance and drug resistance to L-asparaginase, as well as possible ways to overcome them.
Collapse
Affiliation(s)
| | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Dobryakova NV, Zhdanov DD, Sokolov NN, Aleksandrova SS, Pokrovskaya MV, Kudryashova EV. Improvement of Biocatalytic Properties and Cytotoxic Activity of L-Asparaginase from Rhodospirillum rubrum by Conjugation with Chitosan-Based Cationic Polyelectrolytes. Pharmaceuticals (Basel) 2022; 15:ph15040406. [PMID: 35455403 PMCID: PMC9029710 DOI: 10.3390/ph15040406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
L-asparaginases (L-ASNases, EC 3.5.1.1) are a family of enzymes that are widely used for the treatment of lymphoblastic leukemias. L-ASNase from Rhodospirillum rubrum (RrA) has a low molecular weight, low glutaminase activity, and low immunogenicity, making it a promising enzyme for antitumor drug development. In our work, the complex formation and covalent conjugation of the enzyme with synthetic or natural polycationic polymers was studied. Among non-covalent polyelectrolyte complexes (PEC), polyethyleneimine (PEI) yielded the highest effect on RrA, increasing its activity by 30%. The RrA-PEI complex had increased stability to trypsinolysis, with an inactivation constant decrease up to 10-fold compared to that of the native enzyme. The covalent conjugation of RrA with chitosan-PEI, chitosan-polyethylene glycol (chitosan-PEG), and chitosan-glycol resulted in an increase in the specific activity of L-asparagine (up to 30%). RrA-chitosan-PEG demonstrated dramatically (by 60%) increased cytotoxic activity for human chronic myeloma leukemia K562 cells in comparison to the native enzyme. The antiproliferative activity of RrA and its conjugates was significantly higher (up to 50%) than for that of the commercially available EcA at the same concentration. The results of this study demonstrated that RrA conjugates with polycations can become a promising strategy for antitumor drug development.
Collapse
Affiliation(s)
- Natalia V. Dobryakova
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia;
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (D.D.Z.); (E.V.K.)
| | - Nikolay N. Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Svetlana S. Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Marina V. Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Elena V. Kudryashova
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia;
- Correspondence: (D.D.Z.); (E.V.K.)
| |
Collapse
|
12
|
Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, Sokolov NN, Zhdanov DD. Molecular Analysis of L-Asparaginases for Clarification of the Mechanism of Action and Optimization of Pharmacological Functions. Pharmaceutics 2022; 14:pharmaceutics14030599. [PMID: 35335974 PMCID: PMC8948990 DOI: 10.3390/pharmaceutics14030599] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
L-asparaginases (EC 3.5.1.1) are a family of enzymes that catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. These proteins with different biochemical, physicochemical and pharmacological properties are found in many organisms, including bacteria, fungi, algae, plants and mammals. To date, asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi) are widely used in hematology for the treatment of lymphoblastic leukemias. However, their medical use is limited by side effects associated with the ability of these enzymes to hydrolyze L-glutamine, as well as the development of immune reactions. To solve these issues, gene-editing methods to introduce amino-acid substitutions of the enzyme are implemented. In this review, we focused on molecular analysis of the mechanism of enzyme action and to optimize the antitumor activity.
Collapse
Affiliation(s)
- Marina V. Pokrovskaya
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpiisky Prospect 1, 354340 Sochi, Russia
| | - Svetlana S. Aleksandrova
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Nikolay N. Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Correspondence:
| |
Collapse
|
13
|
Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14040902. [PMID: 35205650 PMCID: PMC8870365 DOI: 10.3390/cancers14040902] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary L-asparaginase (L-ASNase) therapy is key for achieving the very high cure rate of pediatric acute lymphoblastic leukemia (ALL), yet its use is mostly confined to this indication. One main reason preventing the expansion of today’s FDA-approved L-ASNases to solid cancers is their high toxicity and side effects, which become especially challenging in adult patients. The design of optimized L-ASNase molecules provides opportunities to overcome these unwanted toxicities. An additional challenge to broader application of L-ASNases is how cells can counter the pharmacological effect of this drug and the identification of L-ASNases resistance mechanisms. In this review, we discuss recent insights into L-ASNase adverse effects, resistance mechanisms, and how novel L-ASNase variants and drug combinations can expand its clinical applicability, with a focus on both hematological and solid tumors. Abstract L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yanti De Visser
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Amanda M. Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
| | - Veerle Mondelaers
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
- The Jesse Brown VA Medical Center, Chicago, IL 60607, USA
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
14
|
Dumina M, Zhgun A, Pokrovskaya M, Aleksandrova S, Zhdanov D, Sokolov N, El’darov M. Highly Active Thermophilic L-Asparaginase from Melioribacter roseus Represents a Novel Large Group of Type II Bacterial L-Asparaginases from Chlorobi-Ignavibacteriae-Bacteroidetes Clade. Int J Mol Sci 2021; 22:13632. [PMID: 34948436 PMCID: PMC8709496 DOI: 10.3390/ijms222413632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
L-asparaginase (L-ASNase) is a biotechnologically relevant enzyme for the pharmaceutical, biosensor and food industries. Efforts to discover new promising L-ASNases for different fields of biotechnology have turned this group of enzymes into a growing family with amazing diversity. Here, we report that thermophile Melioribacter roseus from Ignavibacteriae of the Bacteroidetes/Chlorobi group possesses two L-ASNases-bacterial type II (MrAII) and plant-type (MrAIII). The current study is focused on a novel L-ASNase MrAII that was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 70 °C and pH 9.3, with a high L-asparaginase activity of 1530 U/mg and L-glutaminase activity ~19% of the activity compared with L-asparagine. The kinetic parameters KM and Vmax for the enzyme were 1.4 mM and 5573 µM/min, respectively. The change in MrAII activity was not significant in the presence of 10 mM Ni2+, Mg2+ or EDTA, but increased with the addition of Cu2+ and Ca2+ by 56% and 77%, respectively, and was completely inhibited by Zn2+, Fe3+ or urea solutions 2-8 M. MrAII displays differential cytotoxic activity: cancer cell lines K562, Jurkat, LnCap, and SCOV-3 were more sensitive to MrAII treatment, compared with normal cells. MrAII represents the first described enzyme of a large group of uncharacterized counterparts from the Chlorobi-Ignavibacteriae-Bacteroidetes clade.
Collapse
Affiliation(s)
- Maria Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexander Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Marina Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Svetlana Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Dmitry Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Nikolay Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Michael El’darov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| |
Collapse
|
15
|
Dumina M, Zhgun A, Pokrovskaya M, Aleksandrova S, Zhdanov D, Sokolov N, El’darov M. A Novel L-Asparaginase from Hyperthermophilic Archaeon Thermococcus sibiricus: Heterologous Expression and Characterization for Biotechnology Application. Int J Mol Sci 2021; 22:9894. [PMID: 34576056 PMCID: PMC8470970 DOI: 10.3390/ijms22189894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon Thermococcus sibiricus (TsA) was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters KM and Vmax for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni2+, Cu2+, Mg2+, Zn2+ and Ca2+ and EDTA added in concentrations 1 and 10 mmol/L except for Fe3+. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.
Collapse
Affiliation(s)
- Maria Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexander Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Marina Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Svetlana Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Dmitry Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Nikolay Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Michael El’darov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| |
Collapse
|
16
|
Plyasova AA, Berrino E, Khan II, Veselovsky AV, Pokrovsky VS, Angeli A, Ferraroni M, Supuran CT, Pokrovskaya MV, Alexandrova SS, Gladilina YA, Sokolov NN, Hilal A, Carta F, Zhdanov DD. Mechanisms of the Antiproliferative and Antitumor Activity of Novel Telomerase-Carbonic Anhydrase Dual-Hybrid Inhibitors. J Med Chem 2021; 64:11432-11444. [PMID: 34283610 DOI: 10.1021/acs.jmedchem.1c00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human (h) telomerase (TL; EC 2.7.7.49) plays a key role in sustaining cancer cells by means of elongating telomeric repeats at the 3' ends of chromosomes. Since TL-inhibitor (TI) stand-alone cancer therapy has been proven to be remarkably challenging, a polypharmacological approach represents a valid alternative. Here we consider a series of compounds able to inhibit both hTL and the tumor-associated carbonic anhydrases (CAs; EC 4.2.1.1) IX and XII. Compounds 7 and 9 suppressed hTL activity in both cell lysates and human colon cancer cell lines, and prolonged incubation with either 7 or 9 resulted in telomere shortening, cell cycle arrest, replicative senescence, and apoptosis. Enzyme kinetics showed that 7 and 9 are mixed-type inhibitors of the binding of DNA primers and deoxynucleoside triphosphate (dNTP) to the TL catalytic subunit hTERT, which is in agreement with docking experiments. Compound 9 showed antitumor activity in Colo-205 mouse xenografts and suppressed telomerase activity by telomere reduction.
Collapse
Affiliation(s)
- Anna A Plyasova
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, Moscow 119121, Russia
| | - Emanuela Berrino
- Dipartimento di Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Irina I Khan
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow 117198, Russia.,N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, Moscow 115478, Russia
| | | | - Vadim S Pokrovsky
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow 117198, Russia.,N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Andrea Angeli
- Dipartimento di Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Florence, Italy
| | - Claudiu T Supuran
- Dipartimento di Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Marina V Pokrovskaya
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, Moscow 119121, Russia
| | | | - Yulia A Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, Moscow 119121, Russia
| | - Nikolay N Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, Moscow 119121, Russia
| | - Abdullah Hilal
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, Moscow 119121, Russia
| | - Fabrizio Carta
- Dipartimento di Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, Moscow 119121, Russia
| |
Collapse
|
17
|
Uriarte-Navarrete I, Hernández-Lemus E, de Anda-Jáuregui G. Gene-Microbiome Co-expression Networks in Colon Cancer. Front Genet 2021; 12:617505. [PMID: 33659025 PMCID: PMC7917223 DOI: 10.3389/fgene.2021.617505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that cancer onset and development arise from complex, multi-factorial phenomena spanning from the molecular, functional, micro-environmental, and cellular up to the tissular and organismal levels. Important advances have been made in the systematic analysis of the molecular (mostly genomic and transcriptomic) within large studies of high throughput data such as The Cancer Genome Atlas collaboration. However, the role of the microbiome in the induction of biological changes needed to reach these pathological states remains to be explored, largely because of scarce experimental data. In recent work a non-standard bioinformatics strategy was used to indirectly quantify microbial abundance from TCGA RNA-seq data, allowing the evaluation of the microbiome in well-characterized cancer patients, thus opening the way to studies incorporating the molecular and microbiome dimensions altogether. In this work, we used such recently described approaches for the quantification of microbial species alongside with gene expression. With this, we will reconstruct bipartite networks linking microbial abundance and gene expression in the context of colon cancer, by resorting to network reconstruction based on measures from information theory. The rationale is that microbial communities may induce biological changes important for the cancerous state. We analyzed changes in microbiome-gene interactions in the context of early (stages I and II) and late (stages III and IV) colon cancer, studied changes in network descriptors, and identify key discriminating features for early and late stage colon cancer. We found that early stage bipartite network is associated with the establishment of structural features in the tumor cells, whereas late stage is related to more advance signaling and metabolic features. This functional divergence thus arise as a consequence of changes in the organization of the corresponding gene-microorganism co-expression networks.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Conacyt Research Chairs, National Council on Science and Technology, Mexico City, Mexico
| |
Collapse
|
18
|
Plyasova AA, Pokrovskaya MV, Lisitsyna OM, Pokrovsky VS, Alexandrova SS, Hilal A, Sokolov NN, Zhdanov DD. Penetration into Cancer Cells via Clathrin-Dependent Mechanism Allows L-Asparaginase from Rhodospirillum rubrum to Inhibit Telomerase. Pharmaceuticals (Basel) 2020; 13:E286. [PMID: 33008089 PMCID: PMC7650658 DOI: 10.3390/ph13100286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023] Open
Abstract
The anticancer effect of L-asparaginases (L-ASNases) is attributable to their ability to hydrolyze L-asparagine in the bloodstream and cancer cell microenvironment. Rhodospirillum rubrum (RrA) has dual mechanism of action and plays a role in the suppression of telomerase activity. The aim of this work was to investigate the possible mechanism of RrA penetration into human cancer cells. Labeling of widely used L-ASNases by fluorescein isothiocyanate followed by flow cytometry and fluorescent microscopy demonstrated that only RrA can interact with cell membranes. The screening of inhibitors of receptor-mediated endocytosis demonstrated the involvement of clathrin receptors in RrA penetration into cells. Confocal microscopy confirmed the cytoplasmic and nuclear localization of RrA in human breast cancer SKBR3 cells. Two predicted nuclear localization motifs allow RrA to penetrate into the cell nucleus and inhibit telomerase. Chromatin relaxation promoted by different agents can increase the ability of RrA to suppress the expression of telomerase main catalytic subunit. Our study demonstrated for the first time the ability of RrA to penetrate into human cancer cells and the involvement of clathrin receptors in this process.
Collapse
Affiliation(s)
- Anna A. Plyasova
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (A.A.P.); (M.V.P.); (S.S.A.); (A.H.); (N.N.S.)
| | - Marina V. Pokrovskaya
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (A.A.P.); (M.V.P.); (S.S.A.); (A.H.); (N.N.S.)
| | - Olga M. Lisitsyna
- International Biotechnology Center “Generium” LLC, Vladimirskaya st. 14, 601125 Volginsky, Russia;
| | - Vadim S. Pokrovsky
- N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
- Department of Biochemistry, Рeoples Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| | - Svetlana S. Alexandrova
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (A.A.P.); (M.V.P.); (S.S.A.); (A.H.); (N.N.S.)
| | - Abdullah Hilal
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (A.A.P.); (M.V.P.); (S.S.A.); (A.H.); (N.N.S.)
| | - Nikolay N. Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (A.A.P.); (M.V.P.); (S.S.A.); (A.H.); (N.N.S.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (A.A.P.); (M.V.P.); (S.S.A.); (A.H.); (N.N.S.)
- Department of Biochemistry, Рeoples Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
19
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
20
|
Grishin DV, Zhdanov DD, Gladilina YA, Podobed OV, Pokrovsky VS, Pokrovskaya MV, Aleksandrova SS, Sokolov NN. Thermostable Recombinant Polypeptides as the Source of L-Amino Acids for Culture Media. Bull Exp Biol Med 2018; 165:461-464. [PMID: 30121908 DOI: 10.1007/s10517-018-4194-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 01/20/2023]
Abstract
Mutant homologues of small chemotactic and DNA-binding proteins from thermophilic bacteria Thermotoga petrophila RKU-1 and Thermotoga naphthophila were obtained. These proteins can be expressed in the recombinant form in E. coli cells. A wide range of properties and parameters that are important for isolation of these proteins were revealed: stability in a wide temperature and pH range, high level of expression, solubility, and the possibility of using simple purification schemes with low number of successive steps. The positive effect of proteins on in vitro fibroblasts growth was demonstrated. The described properties of the target proteins indicate the possibility of their use in different biotechnology industries as an inexpensive source of L-amino acids.
Collapse
Affiliation(s)
- D V Grishin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - D D Zhdanov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu A Gladilina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - O V Podobed
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V S Pokrovsky
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - M V Pokrovskaya
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - S S Aleksandrova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - N N Sokolov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|