1
|
Yin J, Huang J, Zhou P, Li L, Zheng Q, Fu H. The role of TLR4/NF-kB signaling axis in pneumonia: from molecular mechanisms to regulation by phytochemicals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04130-x. [PMID: 40377682 DOI: 10.1007/s00210-025-04130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025]
Abstract
Pneumonia, a leading global health challenge, is characterized by inflammation driven by dysregulated immune responses. Central to its pathogenesis is the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling axis, which orchestrates the recognition of pathogen-associated molecular patterns (PAMPs) and initiates cascades that mediate innate immunity. While this pathway is essential for bacterial clearance, its overactivation can lead to excessive inflammation, tissue damage, and severe complications, including acute respiratory distress syndrome (ARDS) and sepsis. This review examines the role of the TLR4/NF-κB axis in pneumonia caused by various pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, and SARS-CoV- 2, and highlights its dual role in immune defense and pathological inflammation. Furthermore, we explore molecular regulators and phytochemicals that modulate this axis, including baicalin, resveratrol, and sodium houttuyfonate, which exhibit promising therapeutic potential. By elucidating these mechanisms, this study provides insights into targeted interventions to balance immune responses and mitigate inflammation, paving the way for innovative treatments in pneumonia management.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Jiangjin, Chongqing, 402260, China
| | - Jianxiang Huang
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Jiangjin, Chongqing, 402260, China
| | - Ping Zhou
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Jiangjin, Chongqing, 402260, China
| | - Linwei Li
- Department of Pediatrics, Chongqing University Jiangjin Hospital, Jiangjin, Chongqing, 402260, China
| | - Qin Zheng
- Department of Pediatrics, Chongqing University Jiangjin Hospital, Jiangjin, Chongqing, 402260, China
| | - Hong Fu
- Department of Pediatrics, Chongqing University Jiangjin Hospital, Jiangjin, Chongqing, 402260, China.
| |
Collapse
|
2
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and cell specific HMGB1 secretion and subepithelial infiltrate formation in adenovirus keratitis. PLoS Pathog 2025; 21:e1013184. [PMID: 40367285 PMCID: PMC12101768 DOI: 10.1371/journal.ppat.1013184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/23/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rahul Kumar
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emanuel Garcia
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rama R. Gullapali
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
3
|
Liang Y, Wei J, Shen J, Liang Z, Ma X, Du Y, Qian W, Dong H, Huang P, Chen A, Yi C. Immunological pathogenesis and treatment progress of adenovirus pneumonia in children. Ital J Pediatr 2025; 51:4. [PMID: 39789604 PMCID: PMC11715079 DOI: 10.1186/s13052-024-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Human adenovirus is an infectious agent that causes respiratory infections in adults and children. It has been found that immunocompromised children are highly susceptible to this pathogen, as it can swiftly evolve into severe pneumonia with multiple sequelae. Due to the lack of immunity in children, the body's response mechanisms to innate and acquired immunity are specialized. We first examined the infection classification and clinical characteristics associated with adenovirus in children. Subsequently, we explored the in-depth understanding of the pathogenic mechanism of adenovirus pneumonia in children, focusing on immunological and cellular biological aspects. Adenovirus infection in children can disrupt the balance of the innate immune response, inducing immune cells to secrete an abundance of pro-inflammatory cytokines. This cascade results in a cytokine storm, which triggers an inflammatory response and causes lung tissue damage. As a result, the infection may progress to a severe state, potentially leading to multi-organ failure. Immunocompromised children exhibit impaired immune cell numbers and functions, which affects both the secretion of antibodies to humoral immunity and the immune response of cellular immunity to adenovirus. Lastly, we reviewed the progress in treating adenovirus pneumonia in children. There are many treatments for adenovirus pneumonia in children, which must be personalized based on a thorough assessment to optimize treatment outcomes. Recent advancements in pharmaceutical development have provided new treatment options for children. Immunomodulatory therapy can reduce inflammation in children, while adjuvant therapy can improve respiratory function; however, it can also lead to complications. Further, co-infections increased the complexity of diagnosis and treatment, necessitating dynamic adjustments to treatment regimens. This review could serve as the basis for identifying potential therapeutic approaches to alleviate the symptoms associated with adenovirus infections in children.
Collapse
Affiliation(s)
- Yaowen Liang
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Wei
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjun Shen
- Department of Chinese Medicine, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihao Liang
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiuchang Ma
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuchen Du
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxian Qian
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Dong
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Huang
- Department of Hepatology, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China.
| | - Apeng Chen
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Changhua Yi
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Hidalgo P, Torres A, Jean Beltran PM, López-Leal G, Bertzbach LD, Dobner T, Flint SJ, Cristea IM, González RA. The protein composition of human adenovirus replication compartments. mBio 2025; 16:e0214424. [PMID: 39611842 PMCID: PMC11708036 DOI: 10.1128/mbio.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored. In this study, we isolated adenovirus RC-enriched fractions from infected cells at different times post-infection and employed a tandem mass tag-based quantitative mass spectrometry approach to identify proteins associated with RCs (data available via ProteomeXchange identifier PXD051745). These findings reveal an elaborate network of host and viral proteins potentially relevant for RC formation and function. To validate the RC-protein components identified by mass spectrometry, we employed immunofluorescence and immunoblotting techniques. Proteins previously described to colocalize in RCs in infected cells were identified in the isolated subnuclear fractions. In addition, we validated newly identified proteins associated with RCs, including the high mobility group box 1 (HMGB1), the SET nuclear proto-oncogene, the structure-specific recognition protein 1 (SSRP1), the CCCTC-binding protein (CTCF), and sirtuin 6 (SIRT6). We identified HMGB1 as a protein that binds to the viral DNA binding protein (DBP). Using shRNA knockdowns and inhibitors, we demonstrated that HMGB1 acts as a proviral factor, promoting efficient viral DNA synthesis and progeny production. Our data further suggest potential candidate targets for therapeutic intervention and provide mechanistic insights into the molecular basis of virus-host interactions.IMPORTANCEHuman adenoviruses serve as models for studying respiratory viruses and have provided critical insights into viral genome replication and gene expression, as well as the control of virus-host interactions. These processes are coordinated within virus-induced subnuclear microenvironments known as RCs. We conducted quantitative proteome analyses of RC-enriched subnuclear fractions at different times post-infection with human adenovirus species C type 5, revealing a multifaceted network of proteins that participate in the regulation of gene expression, DNA damage response, RNA metabolism, innate immunity, and other cellular antiviral defense mechanisms. Furthermore, we validated the localization of several host proteins to viral RCs using immunofluorescence microscopy and immunoblotting and identified cellular HMGB1 as a proviral factor late during infection. These findings represent the first analysis of the proteomes of isolated RCs and not only enhance our understanding of nuclear organization during infection but also shed light on the complex interplay between viral and host factors within RCs.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Amada Torres
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Gamaliel López-Leal
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
5
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and Cell Specific HMGB1 Secretion and Subepithelial Infiltrate Formation in Adenovirus Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631509. [PMID: 39829903 PMCID: PMC11741304 DOI: 10.1101/2025.01.07.631509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
|
6
|
Parker D, Muhkopadyay S, Sivaraman V. Alcohol activates cannabinoid receptor 1 and 2 in a model of pathogen induced pulmonary inflammation. Toxicol Lett 2024; 401:24-34. [PMID: 39251147 PMCID: PMC11527581 DOI: 10.1016/j.toxlet.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Alcohol use disorder (AUD) is defined as patterns of alcohol misuse and affects over 30 million people in the US. AUD is a systemic disease with the epidemiology of acute lung injury and excessive alcohol use established in the literature. However, the distinct mechanisms by which alcohol induces the risk of pulmonary inflammation are less clear. A compelling body of evidence shows that cannabinoid receptors (CB1R and CB2R) play a relevant role in AUD. For this study, we investigated the role of CBR signaling in pulmonary immune activation. Using a human macrophage cell line, we evaluated the expression of CBR1 and CBR2 after cells were exposed to EtOH, +/- cannabinoid agonists and antagonists by flow cytometry. We also evaluated the expression of cannabinoid receptors from the lungs of adolescent mice exposed to acute binge EtOH +/- cannabinoid agonists and antagonists at both resting state and after microbial challenge via western blot, rt-PCR, cytokine analysis, and histology. Our results suggest that EtOH exposure modulates the expression of CBR1 and CBR2. Second, EtOH may contribute to the release of DAMPs and other proinflammatory cytokines, Finally, microbial challenge induces pulmonary inflammation in acute binge EtOH-exposed mice, and this observed immune activation may be CBR-dependent. We have shown that adolescent binge drinking primes the lung to subsequent microbial infection in adulthood and this response can be mitigated with cannabinoid antagonists. These novel findings may provide a framework for developing potential novel therapeutics in AUD research.
Collapse
MESH Headings
- Animals
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Humans
- Ethanol/toxicity
- Lung/drug effects
- Lung/metabolism
- Lung/immunology
- Lung/pathology
- Mice, Inbred C57BL
- Pneumonia/chemically induced
- Pneumonia/metabolism
- Male
- Mice
- Cytokines/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Disease Models, Animal
- Cannabinoid Receptor Agonists/pharmacology
- Binge Drinking/complications
- Binge Drinking/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- De'Jana Parker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Somnath Muhkopadyay
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
7
|
Lin L, Tang M, Li D, Fei H, Zhang H. Combined intravenous ribavirin and recombinant human interferon α1b aerosol inhalation for adenovirus pneumonia with plastic bronchitis in children: a case report and review of literature. Front Pediatr 2024; 12:1295133. [PMID: 38379910 PMCID: PMC10876891 DOI: 10.3389/fped.2024.1295133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Background Human adenovirus (HAdV) infections in children can lead to profound pulmonary injury and are frequently associated with severe complications, particularly in cases concomitant with plastic bronchitis. Managing this condition presents significant challenges and carries an exceptionally high fatality rate. Regrettably, there are currently no specific antiviral agents that have demonstrated efficacy in treating severe adenovirus pneumonia in children. Case presentation We report a 10-month-old infant suffering from severe adenovirus pneumonia combined with plastic bronchitis (PB). He received intravenous ribavirin combined with recombinant human interferon α1b (INFα1b) aerosol inhalation and his condition eventually improved. No side effects occurred during the treatment, and the long-term prognosis was favorable. Conclusion In this case, the combination therapy of intravenous ribavirin and INFα1b seems to have contributed to the resolution of illness and may be considered for similar cases until stronger evidence is generated.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Maoting Tang
- Department of Pediatrics, West China Second UniversityHospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second UniversityHospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Sichuan University, Ministry of Education, Chengdu, China
| | - Haotian Fei
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second UniversityHospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
8
|
Yang Z, Wei J, He Y, Ren L, Chen S, Deng Y, Zang N, Liu E. Identification of functional pathways and potential genes associated with interferon signaling during human adenovirus type 7 infection by weighted gene coexpression network analysis. Arch Virol 2023; 168:130. [PMID: 37017816 PMCID: PMC10076410 DOI: 10.1007/s00705-023-05707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/15/2022] [Indexed: 04/06/2023]
Abstract
Human adenovirus type 7 (HAdV-7) can cause severe pneumonia and complications in children. However, the mechanism of pathogenesis and the genes involved remain largely unknown. We collected HAdV-7-infected and mock-infected A549 cells at 24, 48, and 72 hours postinfection (hpi) for RNA sequencing (RNA-Seq) and identified potential genes and functional pathways associated with HAdV-7 infection using weighted gene coexpression network analysis (WGCNA). Based on bioinformatics analysis, 12 coexpression modules were constructed by WGCNA, with the blue, tan, and brown modules significantly positively correlated with adenovirus infection at 24, 48, and 72 hpi, respectively. Functional enrichment analysis indicated that the blue module was mainly enriched in DNA replication and viral processes, the tan module was largely enriched in metabolic pathways and regulation of superoxide radical removal, and the brown module was predominantly enriched in regulation of cell death. qPCR was used to determine transcript abundance of some identified hub genes, and the results were consistent with those from RNA-Seq. Comprehensively analyzing hub genes and differentially expressed genes in the GSE68004 dataset, we identified SOCS3, OASL, ISG15, and IFIT1 as potential candidate genes for use as biomarkers or drug targets in HAdV-7 infection. We propose a multi-target inhibition of the interferon signaling mechanism to explain the association of HAdV-7 infection with the severity of clinical consequences. This study has allowed us to construct a framework of coexpression gene modules in A549 cells infected with HAdV-7, thus providing a basis for identifying potential genes and pathways involved in adenovirus infection and for investigating the pathogenesis of adenovirus-associated diseases.
Collapse
Affiliation(s)
- Zhongying Yang
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jianhua Wei
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu He
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Luo Ren
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shiyi Chen
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Na Zang
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Enmei Liu
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
9
|
Xu W, Wu CJ, Jiao YM, Mei XL, Huang L, Qin EQ, Tu B, Zhao P, Wang LF, Chen WW. Soluble Receptor for Advanced Glycation End Product Is Involved in the Inflammatory Response of Human Adenovirus-Infected Patients. Front Microbiol 2022; 13:923215. [PMID: 35875560 PMCID: PMC9301492 DOI: 10.3389/fmicb.2022.923215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenovirus (HAdV) infection causes excessive inflammation associated with severe tissue injury, such as pneumonia. The molecules involved in the underlying inflammatory mechanisms remain to be elucidated. Receptor for advanced glycation end product (RAGE) is mainly expressed on immune cells and lung tissues, and it is a key factor in the initiation and development of inflammation. RAGE can be cleaved by metalloprotease 9 (MMP9) to release the extracellular segment, which is named soluble RAGE (sRAGE), into the intercellular space, where it can bind to RAGE ligands and block RAGE activation and subsequent inflammation. In our study, we enrolled HAdV-infected patients and their contacts to examine the relationship between sRAGE and inflammation induced by HAdV infection. The results showed that HAdV infection stimulated inflammatory cytokine secretion, increased such as high mobility group box 1 (HMGB1) levels, and suppressed sRAGE expression. sRAGE levels were significantly different between patients with or without pneumonia. We also found that MMP9 was significantly lower in patients with pneumonia, and it was positively correlated with sRAGE levels over 7 days after disease onset. The mitogen-activated protein kinase (MAPK) pathway is an important immune activation signaling pathway that is regulated by RAGE. We observed the activation of the MAPK pathway in the peripheral blood mononuclear cells (PBMCs) of patients. Negative correlations between sRAGE and phosphorylated JNK and p38 were observed. These results suggest that sRAGE is involved in HAdV-induced inflammatory responses, and might be a potential therapeutic target to alleviate the HAdV-induced excessive inflammation.
Collapse
Affiliation(s)
- Wen Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng-Jun Wu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- IC Technology Key Lab of Liaoning, School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Le Mei
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - En-Qiang Qin
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peng Zhao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Li-Feng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wei-Wei Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Wei-Wei Chen,
| |
Collapse
|
10
|
Nie Z, Li Y, Li X, Xu Y, Yang G, Ke M, Qu X, Qin Y, Tan J, Fan Y, Zhu C. Layer-by-Layer Assembly of a Polysaccharide "Armor" on the Cell Surface Enabling the Prophylaxis of Virus Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:acsami.2c03442. [PMID: 35639584 PMCID: PMC9173675 DOI: 10.1021/acsami.2c03442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Airborne pathogens, such as the world-spreading severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause global epidemics via transmission through the respiratory pathway. It is of great urgency to develop adequate interventions that can protect individuals against future pandemics. This study presents a nasal spray that forms a polysaccharide "armor" on the cell surface through the layer-by-layer self-assembly (LBL) method to minimize the risk of virus infection. The nasal spray has two separate components: chitosan and alginate. Harnessing the electrostatic interaction, inhaling the two polysaccharides alternatively enables the assembly of a barrier that reduces virus uptake into the cells. The results showed that this approach has no obvious cellular injury and endows cells with the ability to resist the infection of adenovirus and SARS-CoV-2 pseudovirus. Such a method can be a potential preventive strategy for protecting the respiratory tract against multiple viruses, especially the upcoming SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Zhiqiang Nie
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Yinghao Li
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
- Chongqing Institute of Zhong Zhi Yi
Gu, Shapingba District, Chongqing 400030, China
| | - Xinxin Li
- State Key Laboratory of Primate Biomedical Research,
Institute of Primate Translational Medicine, Kunming University of Science
and Technology, Kunming 650500, China
| | - Youqian Xu
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Guanyuan Yang
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Ming Ke
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Xiaohang Qu
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Yinhua Qin
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Ju Tan
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Yonghong Fan
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Chuhong Zhu
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
- State Key Laboratory of Primate Biomedical Research,
Institute of Primate Translational Medicine, Kunming University of Science
and Technology, Kunming 650500, China
- State Key Laboratory of Trauma, Burn and
Combined Injury, Chongqing 400038, China
| |
Collapse
|
11
|
Zheng N, Wang Y, Rong H, Wang K, Huang X. Human Adenovirus Associated Hepatic Injury. Front Public Health 2022; 10:878161. [PMID: 35570934 PMCID: PMC9095934 DOI: 10.3389/fpubh.2022.878161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Human adenovirus (HAdV) is a common virus, but the infections it causes are relatively uncommon. At the same time, the methods for the detection of HAdV are varied, among which viral culture is still the gold standard. HAdV infection is usually self-limited but can also cause clinically symptomatic in lots of organs and tissues, of which human adenovirus pneumonia is the most common. In contrast, human adenovirus hepatitis is rarely reported. However, HAdV hepatitis has a high fatality rate once it occurs, especially in immunocompromised patients. Although human adenovirus hepatitis has some pathological and imaging features, its clinical symptoms are not typical. Therefore, HAdV hepatitis is not easy to be found in the clinic. There are kinds of treatments to treat this disease, but few are absolutely effective. In view of the above reasons, HAdV hepatitis is a disease that is difficult to be found in time. We reviewed and summarized the previously reported cases, hoping to bring some relatively common characteristics to clinicians, so as to facilitate early detection, early diagnosis, and early treatment of patients.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hechen Rong
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Huang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Chiappalupi S, Salvadori L, Donato R, Riuzzi F, Sorci G. Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19-The Role of RAGE-RAS Crosstalk. Biomolecules 2021; 11:biom11060876. [PMID: 34204735 PMCID: PMC8231494 DOI: 10.3390/biom11060876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation-end products (RAGE) is a multiligand receptor with a role in inflammatory and pulmonary pathologies. Hyperactivation of RAGE by its ligands has been reported to sustain inflammation and oxidative stress in common comorbidities of severe COVID-19. RAGE is essential to the deleterious effects of the renin-angiotensin system (RAS), which participates in infection and multiorgan injury in COVID-19 patients. Thus, RAGE might be a major player in severe COVID-19, and appears to be a useful therapeutic molecular target in infections by SARS-CoV-2. The role of RAGE gene polymorphisms in predisposing patients to severe COVID-19 is discussed. .
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Correspondence: (R.D.); (G.S.); Tel.: +39-075-585-8258 (G.S.)
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Universitario di Ricerca Sulla Genomica Funzionale (CURGeF), University of Perugia, 06132 Perugia, Italy
- Correspondence: (R.D.); (G.S.); Tel.: +39-075-585-8258 (G.S.)
| |
Collapse
|
13
|
Perkins TN, Donnell ML, Oury TD. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy 2021; 76:1350-1366. [PMID: 32976640 DOI: 10.1111/all.14600] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Asthma is a generalized term that describes a scope of distinct pathologic phenotypes of variable severity, which share a common complication of reversible airflow obstruction. Asthma is estimated to affect almost 400 million people worldwide, and nearly ten percent of asthmatics have what is considered "severe" disease. The majority of moderate to severe asthmatics present with a "type 2-high" (T2-hi) phenotypic signature, which pathologically is driven by the type 2 cytokines Interleukin-(IL)-4, IL-5, and IL-13. However, "type 2-low" (T2-lo) phenotypic signatures are often associated with more severe, steroid-refractory neutrophilic asthma. A wide range of clinical and experimental studies have found that the receptor for advanced glycation endproducts (RAGE) plays a significant role in the pathogenesis of asthma and allergic airway disease (AAD). Current experimental data indicates that RAGE is a critical mediator of the type 2 inflammatory reactions which drive the development of T2-hi AAD. However, clinical studies demonstrate that increased RAGE ligands and signaling strongly correlate with asthma severity, especially in severe neutrophilic asthma. This review presents an overview of the current understandings of RAGE in asthma pathogenesis, its role as a biomarker of disease, and future implications for mechanistic studies, and potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mason L Donnell
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Li B, Peng X, Li H, Chen F, Chen Y, Zhang Y, Le K. The performance of the alarmin HMGB1 in pediatric diseases: From lab to clinic. Immun Inflamm Dis 2021; 9:8-30. [PMID: 33140586 PMCID: PMC7860603 DOI: 10.1002/iid3.370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The ubiquitously expressed nonhistone nuclear protein high-mobility group box protein 1 (HMGB1) has different functions related to posttranslational modifications and cellular localization. In the nucleus, HMGB1 modulates gene transcription, replication and DNA repair as well as determines chromosomal architecture. When the post-transcriptional modified HMGB1 is released into the extracellular space, it triggers several physiological and pathological responses and initiates innate immunity through interacting with its reciprocal receptors (i.e., TLR4/2 and RAGE). The effect of HMGB1-mediated inflammatory activation on different systems has received increasing attention. HMGB1 is now considered to be an alarmin and participates in multiple inflammation-related diseases. In addition, HMGB1 also affects the occurrence and progression of tumors. However, most studies involving HMGB1 have been focused on adults or mature animals. Due to differences in disease characteristics between children and adults, it is necessary to clarify the role of HMGB1 in pediatric diseases. METHODS AND RESULTS Through systematic database retrieval, this review aimed to first elaborate the characteristics of HMGB1 under physiological and pathological conditions and then discuss the clinical significance of HMGB1 in the pediatric diseases according to different systems. CONCLUSIONS HMGB1 plays an important role in a variety of pediatric diseases and may be used as a diagnostic biomarker and therapeutic target for new strategies for the prevention and treatment of pediatric diseases.
Collapse
Affiliation(s)
- Bo Li
- Department of CardiologyChildren's Hospital of Hebei Province Affiliated to Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xin Peng
- Department of OtolaryngologyThe Affiliated Children's Hospital of Nanchang UniversityNanchangJiangxiChina
| | - He Li
- Department of Urology SurgeryQilu Children's Hospital of Shandong UniversityJinanShandongChina
| | - Fei Chen
- Department of Child Health CareQilu Children's Hospital of Shandong UniversityJinanShandongChina
| | - Yuxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Rehabilitation Centre, Children's HospitalChongqing Medical UniversityChongqingYuzhongChina
| | - Yingqian Zhang
- Department of CardiologyChildren's Hospital of Hebei Province Affiliated to Hebei Medical UniversityShijiazhuangHebeiChina
| | - Kai Le
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
15
|
Wang X, He S, Zhou Z, Bo X, Qi D, Fu X, Wang Z, Yang J, Wang S. LINCS dataset-based repositioning of rosiglitazone as a potential anti-human adenovirus drug. Antiviral Res 2020; 179:104789. [DOI: 10.1016/j.antiviral.2020.104789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
|
16
|
Wang F, Ji S, Wang M, Liu L, Li Q, Jiang F, Cen J, Ji B. HMGB1 promoted P-glycoprotein at the blood-brain barrier in MCAO rats via TLR4/NF-κB signaling pathway. Eur J Pharmacol 2020; 880:173189. [PMID: 32417325 DOI: 10.1016/j.ejphar.2020.173189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/28/2023]
Abstract
P-glycoprotein (P-gp) is located on the luminal surface of brain vascular endothelium and its status may determine the delivery of the agents into the brain tissues. Previous study showed that upregulation of P-gp at the blood-brain barrier (BBB) after ischemic stroke were mediated by nuclear factor-B (NF-kB) and tumour necrosis factor-α (TNF-α). Based on middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) in co-culture of rat brain microvessel endothelial cells (rBMECs) and astrocytes system, the present data indicated that potentiated P-gp expression and activity in brain microvessels or rBMECs were associated with the increase in high-mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4) and activation of NF-kB and that HMGB1 can release from nucleus to the cytoplasm in activated astrocytes, then into the medium. Moreover, changes in TLR4, TIR domain-containing adaptor protein (TIRAP), NF-kB and P-gp in rBMECs were attenuated by addition of 1 mM ethyl pyruvate (EP), 10 μM TAK-242 and 10 μM pyrrolidine dithiocarbamate (PDTC), respectively. These results demonstrated that HMGB1 promoted P-gp at the BBB after cerebral ischemia via TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cerebral Surgery, The Second People's Hospital of Zhengzhou, Zhengzhou, 450000, People's Republic of China; Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Shenglan Ji
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Muxi Wang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Qiaoling Li
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Fuxia Jiang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Biansheng Ji
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
17
|
Shi X, Yu L, Zhang Y, Liu Z, Zhang H, Zhang Y, Liu P, Du P. Glycyrrhetinic acid alleviates hepatic inflammation injury in viral hepatitis disease via a HMGB1-TLR4 signaling pathway. Int Immunopharmacol 2020; 84:106578. [PMID: 32416454 PMCID: PMC7205693 DOI: 10.1016/j.intimp.2020.106578] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
Abstract
Licorice defect in TCM recipes leads to the hepatotoxicity in administrated mice. GA inhibits viral hepatitis by suppressing HMGB1 release and cytokine activity. GA treatment effect on infected mice is similar with HMGB1 neutralizing antibody. HMGB1-TLR4 axis is involved in murine hepatic injury during MHV infection.
Various human disorders are cured by the use of licorice, a key ingredient of herbal remedies. Glycyrrhizic acid (GL), a triterpenoid glycoside, is the aqueous extract from licorice root. Glycyrrhetinic acid (GA) has been reported to be a major bioactive hydrolysis product of GL and has been regarded as an anti-inflammatory agent for the treatment of a variety of inflammatory diseases, including hepatitis. However, the mechanism by which GA inhibits viral hepatic inflammatory injury is not completely understood. In this study, we found that, by consecutively treating mice with a traditional herbal recipe, licorice plays an important role in the detoxification of mice. We also employed a murine hepatitis virus (MHV) infection model to illustrate that GA treatment inhibited activation of hepatic inflammatory responses by blocking high-mobility group box 1 (HMGB1) cytokine activity. Furthermore, decreased HMGB1 levels and downstream signaling triggered by injection of a neutralizing HMGB1 antibody or TLR4 gene deficiency, also significantly protected against MHV-induced severe hepatic injury. Thus, our findings characterize GA as a hepatoprotective therapy agent in hepatic infectious disease not only by suppressing HMGB1 release and blocking HMGB1 cytokine activity, but also via an underlying viral-induced HMGB1-TLR4 immunological regulation axis that occurs during the cytokine storm. The present study provides a new therapy strategy for the treatment of acute viral hepatitis in the clinical setting.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cell Line
- Cytokines/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Glycyrrhetinic Acid/pharmacology
- Glycyrrhetinic Acid/therapeutic use
- Glycyrrhiza
- HMGB1 Protein/immunology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/immunology
- Liver/drug effects
- Liver/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus
- Signal Transduction/drug effects
- Toll-Like Receptor 4/genetics
Collapse
Affiliation(s)
- Xiaodong Shi
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China.
| | - Lijia Yu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Yinglin Zhang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Zequan Liu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Huawei Zhang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Yansong Zhang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Ping Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peishuang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Wei Y, Wang H, Xi C, Li N, Li D, Yao C, Sun G, Ge H, Hu K, Zhang Q. Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives. Molecules 2020; 25:E1409. [PMID: 32204528 PMCID: PMC7144376 DOI: 10.3390/molecules25061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is the most common cause of acute and chronic viral myocarditis, primarily in children, while human adenovirus infections represent a significant cause of morbidity and mortality worldwide, in people of all ages. A series of novel 2-benzoxyl-phenylpyridine derivatives were evaluated for their potential antiviral activities against CVB3 and adenovirus type 7 (ADV7). Preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on both CVB3 and ADV7 viruses; they could effectively inhibit virus-induced cytopathic effects, reduce viral progeny yields, and had similar or superior antiviral activities compared with the control drug, ribavirin. Further, these compounds targeted the early stages of CVB3 replication in cells, including viral RNA replication and protein synthesis, rather than inactivating the virus directly, inhibiting virus adsorption/entry, or affecting viral release from cells. Our data demonstrate that the tested 2-benzoxyl-phenylpyridine derivatives are effective inhibitors of CVB3 and ADV7, raising the possibility that these compounds might be feasible candidates for anti-viral agents.
Collapse
Affiliation(s)
- Yanhong Wei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Haijie Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Caili Xi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Ni Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Dong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Chenguang Yao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Ge Sun
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Hongmei Ge
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Kanghong Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Qian Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| |
Collapse
|
19
|
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: lessons from mice. FEBS Lett 2019; 593:3461-3483. [PMID: 31769012 PMCID: PMC6928416 DOI: 10.1002/1873-3468.13696] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Adenovirus is a highly evolutionary successful pathogen, as it is widely prevalent across the animal kingdom, infecting hosts ranging from lizards and frogs to dolphins, birds, and humans. Although natural adenovirus infections in humans rarely cause severe pathology, intravenous injection of high doses of adenovirus-based vectors triggers rapid activation of the innate immune system, leading to cytokine storm syndrome, disseminated intravascular coagulation, thrombocytopenia, and hepatotoxicity, which individually or in combination may cause morbidity and mortality. Much of the information on exactly how adenovirus activates the innate immune system has been gathered from mouse experimental systems. Intravenous administration of adenovirus to mice revealed mechanistic insights into cellular and molecular components of the innate immunity that detect adenovirus particles, activate pro-inflammatory signaling pathways and cytokine production, sequester adenovirus particles from the bloodstream, and eliminate adenovirus-infected cells. Collectively, this information greatly improved our understanding of mechanisms of activation of innate immunity to adenovirus and may pave the way for designing safer adenovirus-based vectors for therapy of genetic and acquired human diseases.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Children’s Center for Transplantation and Immuno-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
21
|
Fu Y, Tang Z, Ye Z, Mo S, Tian X, Ni K, Ren L, Liu E, Zang N. Human adenovirus type 7 infection causes a more severe disease than type 3. BMC Infect Dis 2019; 19:36. [PMID: 30626350 PMCID: PMC6327436 DOI: 10.1186/s12879-018-3651-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Background Human adenovirus type 3 (HAdV-3) and 7 (HAdV-7) cause significant morbidity and develop severe complications and long-term pulmonary sequelae in children. However, epidemiologic reports have suggested that nearly all highly severe or fatal adenoviral diseases in children are associated with HAdV-7 rather than HAdV-3. Here, we conduct in-depth investigations to confirm and extend these findings through a comprehensive series of assays in vitro and in vivo as well as clinical correlates. Methods A total of 8248 nasopharyngeal aspirate (NPA) samples were collected from hospitalized children with acute respiratory infections in Children’s Hospital of Chongqing Medical University from June 2009 to May 2015. Among 289 samples that tested positive for HAdVs, clinical data of 258 cases of HAdV-3 (127) and HAdV-7 (131) infections were analyzed. All HAdV-positive samples were classified by sequencing the hexon and fiber genes, and compared with clinical data and virological assays. We also performed in vitro assays of virus quantification, viral growth kinetics, competitive fitness, cytotoxicity and C3a assay of the two strains. Mouse adenovirus model was used to evaluate acute inflammatory responses. Results Clinical characteristics revealed that HAdV-7 infection caused more severe pneumonia, toxic encephalopathy, respiratory failure, longer mean hospitalization, significantly lower white blood cell (WBC) and platelet counts, compared to those of HAdV-3. In cell culture, HAdV-7 replicated at a higher level than HAdV-3, and viral fitness showed significant differences as well. HAdV-7 also exhibited higher C3a production and cytotoxic effects, and HAdV-7-infected mice showed aggravated pathology and higher pulmonary virus loads, compared to HAdV-3-infected mice. Macrophages in BALF remained markedly high during infection, with concomitant increase in pro-inflammatory cytokines (TNF-α, IL-1β, IFN-γ, and IL-6), compared HAdV-3 infection. Conclusions These results document that HAdV-7 replicates more robustly than HAdV-3, and promotes an exacerbated cytokine response, causing a more severe airway inflammation. The findings merit further mechanistic studies that offer the pediatricians an informed decision to proceed with early diagnosis and treatment of HAdV-7 infection.
Collapse
Affiliation(s)
- Yangxi Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhengzhen Tang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhixu Ye
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shi Mo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180, China
| | - Ke Ni
- Institute of Biology, Westlake institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Luo Ren
- Pediatric Research Institute of Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|