1
|
Saylor LM, Cherukuri R, Kammala AK, Richardson L, Ferrer M, Antich C, Frebert S, Han A, Menon R. Exosomal Delivery of Interleukin-10 Reduces Infection-Associated Inflammation in a 3D-Printed Model of a Humanized Feto-Maternal Interface. FASEB J 2025; 39:e70634. [PMID: 40356417 DOI: 10.1096/fj.202500545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Spontaneous preterm birth (PTB) is associated with fetal inflammatory responses that are due to infections. Effective interventions to minimize these fetal responses are limited as drugs do not usually cross the feto-maternal interface (FMi) barrier, and reliable models to test drug efficacy and other pharmacologic parameters have not been available. We leveraged New Approach Methods (NAMs), including employing extracellular vesicles (exosomes of 30-200 nm) to deliver the anti-inflammatory cytokine interleukin (IL)-10 and using a high-throughput 3D-printed FMi model to test the efficacy of this delivery. IL-10 encapsulated exosomes were prepared by encapsulating recombinant IL-10 (rIL-10) using electroporation (eIL-10) or by transfecting RAW264.7 cells with an IL-10-expression plasmid (tIL-10) that enabled the expression of IL-10 in the cells during exosome biogenesis, which was then collected. Using a biocompatible polymer resin, we 3D printed a two-chambered FMi scaffold to mimic the amnion-decidual (feto-maternal) interface. Microchannels were integrated into the lower portions of the scaffold to facilitate intercellular communication. The device was composed of a mix of cells and gelatin methacrylate hydrogel material (lower part) and cell-specific culture medium (upper part). We showed that empty exosomes and IL-10-loaded exosomes delivered to the maternal side of the scaffold were able to cross to the fetal side of our FMi device. Furthermore, the effectiveness of eIL-10 and tIL-100 (500 ng) in reducing LPS-induced FMi inflammation on both the maternal and fetal sides was demonstrated by measuring pro-inflammatory IL-6 and IL-8 concentrations via multiplex assays at 6 h and 24 h timepoints. We determined that our 3D-printed two-chamber FMi model enabled the propagation of IL-10 encapsulated exosomes between the interconnected chambers. LPS treatment to the maternal decidua induced expression of pro-inflammatory IL-6 (p < 0.001) and IL-8 (p < 0.001) in both decidua and amnion compared with healthy (control) conditions. Co-treatment of LPS along with IL-10-loaded exosomes, regardless of its formulation, significantly reduced levels of the maternal and fetal inflammatory cytokines IL-6 and IL-8 at both 6 and 24 h after delivery. A high-throughput 3D-printed FMi model was used to show that IL-10 encapsulated exosomes can reduce infection-induced FMi inflammation. We describe two NAMs with the potential to significantly improve perinatal medicine: (1) an exosomal drug delivery method that protects the drug and can cross feto-maternal barriers and (2) a 3D-printed device that can be used for high-throughput drug screening.
Collapse
Affiliation(s)
- Leah M Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Ananth K Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland, USA
| | - Shayne Frebert
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
2
|
Rampado R, Naidu GS, Karpov O, Goldsmith M, Sharma P, Ezra A, Stotsky L, Breier D, Peer D. Lipid Nanoparticles With Fine-Tuned Composition Show Enhanced Colon Targeting as a Platform for mRNA Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408744. [PMID: 39585189 PMCID: PMC11744673 DOI: 10.1002/advs.202408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Lipid Nanoparticles (LNPs) recently emerged as an invaluable RNA delivery platform. With many LNP-based therapeutics in the pre-clinical and clinical pipelines, there is extensive research dedicated to improving LNPs. These efforts focus mainly on the tolerability and transfectability of new ionizable lipids and RNAs, or modulating LNPs biodistribution with active targeting strategies. However, most formulations follow the well-established lipid proportions used in clinically approved products. Nevertheless, investigating the effects of LNPs composition on their biodistribution can expand the toolbox for particle design, leading to improved delivery strategies. Herein, a new LNPs (30-n-LNPs) formulation with increasing amounts of phospholipids is investigated as a possible mRNA delivery system for treating Inflammatory Bowel Diseases. Compared to LNPs with benchmark composition (b-LNPs), n-LNPs containing 30% distearoylphosphatidylcholine (DSPC) are well tolerated following intravenous administration and display natural targeting toward the inflamed colon in dextran sodium sulfate (DSS)-colitis bearing mice, while de-targeting clearing organs such as the liver and spleen. Using interleukin-10-encoding mRNA as therapeutic cargo, n-LNPs demonstrated a reduction of pathological burden in colitis-bearing mice. n-LNPs represent a starting point to further investigate the influence of LNPs composition on systemic biodistribution, ultimately opening new therapeutic modalities in different pathologies.
Collapse
Affiliation(s)
- Riccardo Rampado
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Gonna Somu Naidu
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Olga Karpov
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Meir Goldsmith
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Preeti Sharma
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Assaf Ezra
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Lior Stotsky
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Dor Breier
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Dan Peer
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| |
Collapse
|
3
|
Aguayo-Morales H, Cobos-Puc LE, Lopez-Badillo CM, Oyervides-Muñoz E, Ramírez-García G, Claudio-Rizo JA. Collagen-polyurethane-dextran hydrogels enhance wound healing by inhibiting inflammation and promoting collagen fibrillogenesis. J Biomed Mater Res A 2024; 112:1760-1777. [PMID: 38623028 DOI: 10.1002/jbm.a.37724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Diabetic foot ulcers are a serious complication of uncontrolled diabetes, emphasizing the need to develop wound healing strategies that are not only effective but also biocompatible, biodegradable, and safe. We aimed to create biomatrices composed of semi-interpenetrated polymer networks of collagen, polyurethane, and dextran, to enhance the wound healing process. The hydrogels were extensively characterized by various analytical techniques, including analysis of their structure, crystallinity, thermal properties, gelation process, reticulation, degradation, cell proliferation, and healing properties, among others. Semi-interpenetrated hydrogels containing dextran at levels of 10%, 20%, and 30% exhibited porous interconnections between collagen fibers and entrapped dextran granules, with a remarkable crosslinking index of up to 94% promoted by hydrogen bonds. These hydrogels showed significant improvements in mechanical properties, swelling, and resistance to proteolytic and hydrolytic degradation. After 24 h, there was a significant increase in the viability of several cell types, including RAW 264.7 cells, human peripheral blood mononuclear cells, and dermal fibroblasts. In addition, these hydrogels demonstrated an increased release of interleukin-10 and transforming growth factor-beta1 while inhibiting the release of monocyte chemotactic protein-1 and tumor necrosis factor-alpha after 72 h. Furthermore, these hydrogels accelerated the wound healing process in diabetic rats after topical application. Notably, the biomaterial with 20% dextran (D20) facilitated wound closure in only 21 days. These results highlight the potential of the D20 hydrogel, which exhibits physicochemical and biological properties that enhance wound healing by inhibiting inflammation and fibrillogenesis while remaining safe for application to the skin.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Luis E Cobos-Puc
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | | | | | - Gonzalo Ramírez-García
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
4
|
Huang C, Xiong X, Zhang D, Ruan Q, Jiang J, Wang F, Chen G, Cheng L. Targeted screening of multiple anti-inflammatory components from Chrysanthemi indici Flos by ligand fishing with affinity UF-LC/MS. Front Pharmacol 2024; 15:1272087. [PMID: 38694923 PMCID: PMC11062130 DOI: 10.3389/fphar.2024.1272087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Chrysanthemi indic Flos (CIF) has been commonly consumed for the treatment of inflammation and related skin diseases. However, the potential bioactive components responsible for its anti-inflammatory and sensitive skin (SS) improvement activities, and the correlated mechanisms of action still remain unknown. In this work, it was firstly found that the CIF extract (CIFE) displayed arrestive free radical scavenging activity on DPPH and ABTS radicals, with no significant difference with positive control Trolox (p > 0.05). Then, compared to the negative group, CIFE markedly decreased the productions of the pro-inflammatory cytokines (IL-1β, IL-6, PEG2, TNF-α, IFN-γ, NO) in LPS induced RAW264.7 cells in a dose-dependent manner (p < 0.01). Besides, CIFE strongly inhibited the COX-2 and hyaluronidase (HAase) with the IC50 values of 1.06 ± 0.01 μg/mL and 12.22 ± 0.39 μg/mL, indicating higher inhibitory effect than positive control of aspirin of 6.33 ± 0.05 μg/mL (p < 0.01), and comparable inhibitory effect with indometacin of 0.60 ± 0.03 μg/mL, and ascorbic acid of 11.03 ± 0.41 μg/mL (p > 0.05), respectively. Furthermore, kinetic assays with Lineweaver-Burk plot (Michaelis Menten equation) suggested that CIFE reversibly inhibited the COX-2 and HAase, with a mixed characteristics of competitive and non-competitive inhibition. Thereafter, multi-target affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC/MS) method was employed to fast fish out the potential COX-2 and HAase in CIFE. Herein, 13 components showed various affinity binding degrees to the COX-2 and HAase, while those components with relative binding affinity (RBA) value higher than 3.0, such as linarin and chlorogenic acid isomers, were deemed to be the most bioactive components for the anti-inflammatory and SS improvement activities of CIFE. Finally, the interaction mechanism, including binding energy, inhibition constant, docking sites, and the key amino acids involved in hydrogen bonds between the potential ligands and COX-2/HAase were simulated and confirmed with the molecule docking analysis. In summary, this study showcased the prominent anti-inflammatory and SS improvement activities of CIF, which would provide further insights on this functional medicinal plant to be a natural anti-SS remedy.
Collapse
Affiliation(s)
- Chuanqi Huang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Xin Xiong
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Dan Zhang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Qingfeng Ruan
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Jie Jiang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lu Cheng
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
5
|
Zhang B, Liang J, Fan H, Lei K, Li H, Liu D, Zheng F, He M, Chen Y. Study on anti-inflammatory effect of Shangkehuangshui in vitro and in vivo based on TLR4/TLR2-NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117709. [PMID: 38181931 DOI: 10.1016/j.jep.2024.117709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shangkehuangshui (SK) has been traditionally used to treat traumatic injury, soft tissue and bone injury in Foshan hospital of traditional Chinese medicine for more than 60 years, which composed of many Chinese herbs such as Coptis chinensis Franch., Gardenia jasminoides Ellis, Phellodendron chinense Schneid. and etc. SK exhibits heat-clearing and detoxifying, enhancing blood circulation to eliminate blood stasis properties, and demonstrates noteworthy clinical efficacy. Nevertheless, the underlying mechanism remains uncertain. AIM OF THE STUDY The early study found that SK had good anti-inflammatory effects in acute soft tissue injury model. This research is to verify the anti-inflammatory properties of SK both in vitro and in vivo via TLR4/TLR2-NF-κB signaling pathway, to clarify the underlying mechanisms responsible for the curative effect of SK. METHODS The RAW264.7 cells inflammatory model was established with lipopolysaccharide (LPS) in vitro. NO and TNF-α, IL-6, IL-1β were determined with Griess method and ELISA method respectively. The mRNA and protein expression levels of TLR4/TLR2-NF-κB pathway were evaluated by qPCR and Western blot method. In vivo experiment, chronic soft tissue injury rat models were established by tracking gastrocnemius muscle with electrical stimulation, then local appearance and pathological changes were observed and recorded, the contents of inflammatory factors in serum and tissue were performed. Moreover, we also measured and contrasted the expression of TLR4/TLR2-NF-κB related factors. RESULTS SK effectively inhibited the LPS-induced generation of inflammatory cytokines, including NO, TNF-α, IL-6 and IL-1β in RAW264.7 cells, and significantly suppressed the expression of TLR4, TLR2, MyD88, IκB, and NF-κB. In vivo, SK remarkably decreased the damage appearance scores after 4 and 14 days of administration and inhibit the quantity of NO and leukocytes present in the serum. Additionally, the inflammatory infiltration in the pathological section was alleviated, myofibrillar hyperplasia and blood stasis were reduced. SK markedly downregulated NO, TNF-α, IL-6 and IL-1β in injured tissues of rats, also declined the expression of TLR4, TLR2, MyD88, IκB, NF-κB, IL-6, TNF-α and IL-1β. CONCLUSION This study revealed that SK had obvious effects of anti-inflammatory actions in vivo and vitro, effectively reduced acute and chronic soft tissue injury in clinical, this might be attributed to inhibit the TLR4/TLR2-NF-κB pathway, further inhibit the expression of downstream relevant pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Bairong Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jiaxin Liang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Huana Fan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Kaijun Lei
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong, China
| | - Huaiguo Li
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong, China
| | - Dongwen Liu
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong, China
| | - Fanghao Zheng
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong, China.
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong, China.
| | - Yanfen Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
6
|
Kim GY, Kim SA, Kong SY, Seong H, Bae JH, Han NS. Synergistic Antioxidant and Anti-Inflammatory Activities of Kale Juice Fermented with Limosilactobacills reuteri EFEL6901 or Limosilactobacills fermentum EFEL6800. Antioxidants (Basel) 2023; 12:1850. [PMID: 37891929 PMCID: PMC10604225 DOI: 10.3390/antiox12101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates the synergistic impact of fermenting kale juice with Limosilactobacillus strains on its antioxidant and anti-inflammatory properties. Kale's rich nutrient profile, especially its flavonoids, offers potential health benefits. Probiotic lactic acid bacteria are employed in kale fermentation to enhance nutrient bioavailability and generate bioactive compounds. Kale juices fermented with L. reuteri EFEL6901 or L. fermentum EFEL6800 exhibited superior microbial growth. Free sugars and amino acids were converted to alcohols and organic acids, affecting the organoleptic and health-related properties of the product. In addition, fermentation increased quercetin and kaempferol content, indicating improved availability. Furthermore, the fermented juice exhibited notable antioxidant activity and suppressed nitric oxide (NO) production, revealing anti-inflammatory potential. Gene expression analysis confirmed reduced pro-inflammatory markers such as iNOS, COX-2, IL-6, and IL-1β and elevated anti-inflammatory cytokines, including IL-10. This research highlights the promising potential of fermented kale juice, enriched with Limosilactobacillus strains, as a functional food with combined antioxidant and anti-inflammatory benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (G.Y.K.); (S.-A.K.); (S.Y.K.); (H.S.); (J.-H.B.)
| |
Collapse
|
7
|
Kammala AK, Mosebarger A, Radnaa E, Rowlinson E, Vora N, Fortunato SJ, Sharma S, Safarzadeh M, Menon R. Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023; 14:1196453. [PMID: 37600782 PMCID: PMC10437065 DOI: 10.3389/fimmu.2023.1196453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation). Objective To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models. Study design EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (1010CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells. Results Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production). Conclusions eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.
Collapse
Affiliation(s)
- Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Angela Mosebarger
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Emma Rowlinson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Stephen J. Fortunato
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Melody Safarzadeh
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
8
|
Tu D, Velagapudi R, Gao Y, Hong JS, Zhou H, Gao HM. Activation of neuronal NADPH oxidase NOX2 promotes inflammatory neurodegeneration. Free Radic Biol Med 2023; 200:47-58. [PMID: 36870375 PMCID: PMC10164140 DOI: 10.1016/j.freeradbiomed.2023.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Strong evidence indicates critical roles of NADPH oxidase (a key superoxide-producing enzyme complex during inflammation) in activated microglia for mediating neuroinflammation and neurodegeneration. However, little is known about roles of neuronal NADPH oxidase in neurodegenerative diseases. This study aimed to investigate expression patterns, regulatory mechanisms and pathological roles of neuronal NADPH oxidase in inflammation-associated neurodegeneration. The results showed persistent upregulation of NOX2 (gp91phox; the catalytic subunit of NADPH oxidase) in both microglia and neurons in a chronic mouse model of Parkinson's disease (PD) with intraperitoneal LPS injection and LPS-treated midbrain neuron-glia cultures (a cellular model of PD). Notably, NOX2 was found for the first time to exhibit a progressive and persistent upregulation in neurons during chronic neuroinflammation. While primary neurons and N27 neuronal cells displayed basal expression of NOX1, NOX2 and NOX4, significant upregulation only occurred in NOX2 but not NOX1 or NOX4 under inflammatory conditions. Persistent NOX2 upregulation was associated with functional outcomes of oxidative stress including increased ROS production and lipid peroxidation. Neuronal NOX2 activation displayed membrane translocation of cytosolic p47phox subunit and was inhibited by apocynin and diphenyleneiodonium chloride (two widely-used NADPH oxidase inhibitors). Importantly, neuronal ROS production, mitochondrial dysfunction and degeneration induced by inflammatory mediators in microglia-derived conditional medium were blocked by pharmacological inhibition of neuronal NOX2. Furthermore, specific deletion of neuronal NOX2 prevented LPS-elicited dopaminergic neurodegeneration in neuron-microglia co-cultures separately grown in the transwell system. The attenuation of inflammation-elicited upregulation of NOX2 in neuron-enriched and neuron-glia cultures by ROS scavenger N-acetylcysteine indicated a positive feedback mechanism between excessive ROS production and NOX2 upregulation. Collectively, our findings uncovered crucial contribution of neuronal NOX2 upregulation and activation to chronic neuroinflammation and inflammation-related neurodegeneration. This study reinforced the importance of developing NADPH oxidase-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Dezhen Tu
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu Province, 210061, China; Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Ravikanth Velagapudi
- Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yun Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu Province, 210061, China; Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Hui Zhou
- Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA; Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.
| | - Hui-Ming Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu Province, 210061, China.
| |
Collapse
|
9
|
Jin T, Zhang Y, Botchway BOA, Huang M, Lu Q, Liu X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomed Pharmacother 2023; 161:114515. [PMID: 36913894 DOI: 10.1016/j.biopha.2023.114515] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
10
|
Xiao Y, Yan Y, Du J, Feng X, Zhang F, Han X, Hu Y, Liu X. Novel 2-phenyl-4H-chromen derivatives: synthesis and anti-inflammatory activity evaluation in vitro and in vivo. J Enzyme Inhib Med Chem 2022; 37:2589-2597. [PMID: 36128868 PMCID: PMC9518258 DOI: 10.1080/14756366.2022.2124983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
It is significant to design, synthesise and optimise flavonoid derivatives with better anti-inflammatory activity. This study aims to design and synthesise a series of novel 2-phenyl-4H-chromen-4-one compounds with anti-inflammatory; among them, compound 8 was discovered as the best one. And then, the effects of compound 8 on the TLR4/MAPK signalling pathway was carried out in vivo, the results indicated that compound 8 could downregulate NO, IL-6, and TNF-α expression, and suppress LPS-induced inflammation by inhibiting the TLR4/MAPK pathways. Furthermore, compound 8 reduced inflammation by a mouse model of LPS-induced inflammatory disease in vivo. The results suggest that compound 8 has the potential against inflammation through regulating TLR4/MAPK pathway and can be assessed further for drug development.
Collapse
Affiliation(s)
- Yun Xiao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, P. R. China
| | - Yaoyao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, P. R. China
| | - Juncheng Du
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, P. R. China
| | - Xiaoxiao Feng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, P. R. China
| | - Famin Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, P. R. China
| | - Xu Han
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, P. R. China
| | - Yong Hu
- Anhui Academy of Agricultural Sciences, Agricultural Products Processing Institute, Hefei, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
11
|
Thiamine Demonstrates Bio-Preservative and Anti-Microbial Effects in Minced Beef Meat Storage and Lipopolysaccharide (LPS)-Stimulated RAW 264.7 Macrophages. Animals (Basel) 2022; 12:ani12131646. [PMID: 35804544 PMCID: PMC9264808 DOI: 10.3390/ani12131646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/22/2022] Open
Abstract
This study assessed the anti-inflammatory effect of thiamine (TA) in lipopolysaccharide-stimulated RAW264.7 cells and also assessed the preservative properties of TA in minced beef. TA demonstrated a concentration-dependent antimicrobial effect on microbial contaminants. Inhibition zones and MIC from the effect of TA on the tested bacterial strains were respectively within the ranges 15−20 mm and 62.5−700 µg/mL. TA significantly (p < 0.05) decreased all the pro-inflammatory factors [(nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α, IL-6, IL-1β, and nuclear factor-κB (NF-κB)] monitored relative to LPS-stimulated RAW264.7 cells. TA inhibited the expression of both iNOS and COX-2. In minced beef flesh, the growth of Listeria monocytogenes was inhibited by TA. TA improved physicochemical and microbiological parameters of stored minced beef meat compared to control. Principal component analyses and heat maps elucidate the quality of the tested meats.
Collapse
|
12
|
Rivastigmine Reverses the Decrease in Synapsin and Memory Caused by Homocysteine: Is There Relation to Inflammation? Mol Neurobiol 2022; 59:4517-4534. [PMID: 35578101 DOI: 10.1007/s12035-022-02871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
Elevated levels of homocysteine (Hcy) in the blood, called hyperhomocysteinemia (HHcy), is a prevalent risk factor for it has been shown that Hcy induces oxidative stress and increases microglial activation and neuroinflammation, as well as causes cognitive impairment, which have been linked to the neurodegenerative process. This study aimed to evaluate the effect of mild hyperhomocysteinemia with or without ibuprofen and rivastigmine treatments on the behavior and neurochemical parameters in male rats. The chronic mild HHcy model was chemically induced in Wistar rats by subcutaneous administration of Hcy (4055 mg/kg body weight) twice daily for 30 days. Ibuprofen (40 mg/kg) and rivastigmine (0.5 mg/kg) were administered intraperitoneally once daily. Motor damage (open field, balance beam, rotarod, and vertical pole test), cognitive deficits (Y-maze), neurochemical parameters (oxidative status/antioxidant enzymatic defenses, presynaptic protein synapsin 1, inflammatory profile parameters, calcium binding adapter molecule 1 (Iba1), iNOS gene expression), and cholinergic anti-inflammatory pathway were investigated. Results showed that mild HHcy caused cognitive deficits in working memory, and impaired motor coordination reduced the amount of synapsin 1 protein, altered the neuroinflammatory picture, and caused changes in the activity of catalase and acetylcholinesterase enzymes. Both rivastigmine and ibuprofen treatments were able to mitigate this damage caused by mild HHcy. Together, these neurochemical changes may be associated with the mechanisms by which Hcy has been linked to a risk factor for AD. Treatments with rivastigmine and ibuprofen can effectively reduce the damage caused by increased Hcy levels.
Collapse
|
13
|
Chachlioutaki K, Karavasili C, Adamoudi E, Tsitsos A, Economou V, Beltes C, Bouropoulos N, Katsamenis OL, Doherty R, Bakopoulou A, Fatouros DG. Electrospun Nanofiber Films Suppress Inflammation In Vitro and Eradicate Endodontic Bacterial Infection in an E. faecalis-Infected Ex Vivo Human Tooth Culture Model. ACS Biomater Sci Eng 2022; 8:2096-2110. [PMID: 35427110 DOI: 10.1021/acsbiomaterials.2c00150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment failure of endodontic infections and their concurrent inflammations is commonly associated with microbial persistence and reinfection, also stemming from the anatomical restrictions of the root canal system. Aiming to address the shortcomings of current treatment options, a fast-disintegrating nanofibrous film was developed for the intracanal coadministration of an antimicrobial (ZnO nanoparticles) and an anti-inflammatory (ketoprofen) agent. The electrospun films were fabricated based on polymers that dissolve rapidly to constitute the actives readily available at the site of action, aiming to eliminate both microbial infection and inflammation. The anti-inflammatory potency of the nanofiber films was assessed in an in vitro model of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after confirming their biocompatibility in the same cell line. The nanofiber films were found effective against Enterococcus faecalis, one of the most prominent pathogens inside the root canal space, both in vitro and ex vivo using a human tooth model experimentally infected with E. faecalis. The physical properties and antibacterial and anti-inflammatory potency of the proposed electrospun nanofiber films constitute a promising therapeutic module in the endodontic therapy of nonvital infected teeth. All manuscripts must be accompanied by an abstract. The abstract should briefly state the problem or purpose of the research, indicate the theoretical or experimental plan used, summarize the principal findings, and point out major conclusions.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Christina Karavasili
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Elisavet Adamoudi
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Anestis Tsitsos
- Laboratory of Hygiene of Foods of Animal Origin─Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Vangelis Economou
- Laboratory of Hygiene of Foods of Animal Origin─Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Charis Beltes
- Department of Endodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Rio 26504, Patras, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras 26504, Greece
| | - Orestis L Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Regan Doherty
- Biomedical Imaging Unit, University Hospital Southampton NHS Trust, Southampton SO16 6YD, United Kingdom
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| |
Collapse
|
14
|
Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112723. [DOI: 10.1016/j.msec.2022.112723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
|
15
|
Chang WT, Hong MY, Chen CL, Hwang CY, Tsai CC, Chuang CC. Mutant glucocorticoid receptor binding elements on the interleukin-6 promoter regulate dexamethasone effects. BMC Immunol 2021; 22:24. [PMID: 33771121 PMCID: PMC7995394 DOI: 10.1186/s12865-021-00413-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Glucocorticoids (GCs) have been extensively used as essential modulators in clinical infectious and inflammatory diseases. The GC receptor (GR) is a transcription factor belonging to the nuclear receptor family that regulates anti-inflammatory processes and releases pro-inflammatory cytokines, such as interleukin (IL)-6. Results Five putative GR binding sites and other transcriptional factor binding sites were identified on theIL-6 promoter, and dexamethasone (DEX) was noted to reduce the lipopolysaccharide (LPS)-induced IL-6 production. Among mutant transcriptional factor binding sites, nuclear factor-kappa B (NF-κB), activator protein (AP)-1, and specificity protein (Sp)1–2 sites reduced basal and LPS-induced IL-6 promoter activities through various responses. The second GR binding site (GR2) was noted to play a crucial role in both basal and inducible promoter activities in LPS-induced inflammation. Conclusions We concluded that selective GR2 modulator might exert agonistic and antagonistic effects and could activate crucial signaling pathways during the LPS-stimulated inflammatory process. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00413-z.
Collapse
Affiliation(s)
- Wen-Teng Chang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 701, Taiwan
| | - Ming-Yuan Hong
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Liang Chen
- Department of Physical Therapy, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Yuan Hwang
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, 701, Taiwan
| | - Chia-Chang Chuang
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Niculet E, Chioncel V, Elisei AM, Miulescu M, Buzia OD, Nwabudike LC, Craescu M, Draganescu M, Bujoreanu F, Marinescu E, Arbune M, Radaschin DS, Bobeica C, Nechita A, Tatu AL. Multifactorial expression of IL-6 with update on COVID-19 and the therapeutic strategies of its blockade (Review). Exp Ther Med 2021; 21:263. [PMID: 33603870 PMCID: PMC7851683 DOI: 10.3892/etm.2021.9693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Interleukin 6 (IL-6), a cytokine produced by various cells of the human body (macrophages, lymphocytes, astrocytes, ischemic myocytes, endothelial cells) has both pro-inflammatory and anti-inflammatory properties, being a key component in regulating various physiologic and pathological processes. The structure of this molecule and the receptor system it possesses are important due to the different activities that IL-6 can exert; through trans-signaling pro-inflammatory activities are mediated, while through classic signaling, IL-6 is responsible for anti-inflammatory and regenerative activities. IL-6 signaling is involved in coronary artery disease and the global COVID-19 pandemic. This proatherogenic cytokine reaches elevated serum levels in the cytokine storm generated by SARS-CoV-2, and is also associated with smoking or obesity-classic cardiovascular risk factors which promote inflammatory states. IL-6 levels are proportionally correlated with dyslipidemia, hypertension and glucose dysregulation, and they are associated with poor outcomes in patients with unstable angina or acute myocardial infarction. IL-6 targeting for treatment development (not only) in cardiovascular disease and COVID-19 is still a matter of ongoing research, although tocilizumab has proven to be effective in reducing the proatherogenic effects of IL-6 and is suggested to improve COVID-19 patient survival.
Collapse
Affiliation(s)
- Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Valentin Chioncel
- Cardio-Thoracic Department, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Clinical Cardiology Department, 'Bagdasar Arseni' Emergency Hospital, 041915 Bucharest, Romania
| | - Alina M Elisei
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania.,Research Center in The Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Magdalena Miulescu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Olimpia D Buzia
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania.,Research Center in The Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Lawrence C Nwabudike
- Department of Diabetic Foot Care, 'Prof. N. Paulescu' National Institute of Diabetes, 011233 Bucharest, Romania
| | - Mihaela Craescu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Miruna Draganescu
- Clinical Department, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Florin Bujoreanu
- Department of Dermatology, 'Sf. Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Elisabeta Marinescu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Manuela Arbune
- Centre of Medical-Pharmaceutical Research, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Diana Sabina Radaschin
- Research Center in The Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, 'Dunărea de Jos' University, 800010 Galati, Romania
| | - Carmen Bobeica
- Department of Dermato-Venereology, Doctoral School, University of Medicine and Pharmacy 'Gr. T. Popa', 700115 Iași, Romania
| | - Aurel Nechita
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania.,Department of Pediatrics, 'Sf. Ioan' Clinical Hospital for Children, 800487 Galati, Romania
| | - Alin L Tatu
- Research Center in The Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, 'Dunărea de Jos' University, 800010 Galati, Romania.,Clinical Department, Faculty of Medicine and Pharmacy, 'Dunărea de Jos' University, 800010 Galati, Romania.,Department of Dermatology, 'Sf. Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| |
Collapse
|
17
|
Assessing the Anti-inflammatory Mechanism of Reduning Injection by Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6134098. [PMID: 33381562 PMCID: PMC7758122 DOI: 10.1155/2020/6134098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Reduning Injection (RDNI) is a traditional Chinese medicine formula indicated for the treatment of inflammatory diseases. However, the molecular mechanism of RDNI is unclear. The information of RDNI ingredients was collected from previous studies. Targets of them were obtained by data mining and molecular docking. The information of targets and related pathways was collected in UniProt and KEGG. Networks were constructed and analyzed by Cytoscape to identify key compounds, targets, and pathways. Data mining and molecular docking identified 11 compounds, 84 targets, and 201 pathways that are related to the anti-inflammatory activity of RDNI. Network analysis identified two key compounds (caffeic acid and ferulic acid), five key targets (Bcl-2, eNOS, PTGS2, PPARA, and MMPs), and four key pathways (estrogen signaling pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway) which would play critical roles in the treatment of inflammatory diseases by RDNI. The cross-talks among pathways provided a deeper understanding of anti-inflammatory effect of RDNI. RDNI is capable of regulating multiple biological processes and treating inflammation at a systems level. Network pharmacology is a practical approach to explore the therapeutic mechanism of TCM for complex disease.
Collapse
|
18
|
Kim DS, Park KE, Kwak YJ, Bae MK, Bae SK, Jang IS, Jang HO. Agrimonia pilosa Ledeb Root Extract: Anti-Inflammatory Activities of the Medicinal Herb in LPS-Induced Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1875-1893. [PMID: 33308100 DOI: 10.1142/s0192415x20500949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inflammation regulation is essential for maintaining healthy functions and normal homeostasis of the body. Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium and a major pathogen that causes oral inflammation and other systemic inflammations. This study aims to examine the anti-inflammatory effects of Agrimonia pilosa Ledeb root extracts (APL-ME) in Porphyromonas gingivalis LPS-induced RAW 264.7 cells and find anti-inflammatory effect compounds of APL-ME. The anti-inflammatory effects of APL-ME were evaluated anti-oxidant activity, cell viability, nitrite concentration, pro-inflammatory cytokines (interleukin-1[Formula: see text], interleukin-6, tumor necrosis factor (TNF)-[Formula: see text], and anti-inflammatory cytokine (interleukin-10 (IL-10)). Also, Inflammation related genes and proteins, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), expression were decreased by APL-ME and mitogen-activated protein kinase (MAPK) signaling proteins expression was regulated by APL-ME. Liquid chromatography-mass spectrometer (LC/MS)-MS analysis results indicated that several components were detected in APL-ME. Our study indicated that APL-ME suppressed nitrite concentrations, pro-inflammatory cytokines such as IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] in P. gingivalis LPS induced RAW 264.7 cells. However, IL-10 expression was increased by ALP-ME. In addition, protein expressions of COX-2 and iNOS were inhibited APL-ME extracts dose-dependently. According to these results, APL-ME has anti-inflammatory effects in P. gingivalis LPS induced RAW 264.7 cells.
Collapse
Affiliation(s)
- Da-Sol Kim
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea.,Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Kyoung-Eun Park
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Yeon-Ju Kwak
- Research Institute of GH BioFarm, Gagopa-Healing Food, Changwon-si, Republic of Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea.,Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Soo-Kyung Bae
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea.,Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Ik-Soon Jang
- Division of Life Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Hye-Ock Jang
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| |
Collapse
|
19
|
Chiang CC, Chen CM, Suen JL, Su HH, Hsieh CC, Cheng CM. Stimulatory effect of gastroesophageal reflux disease (GERD) on pulmonary fibroblast differentiation. Dig Liver Dis 2020; 52:988-994. [PMID: 32727693 DOI: 10.1016/j.dld.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that prolonged micro-aspiration of gastric fluid is associated in gastroesophageal reflux disease with the development of chronic respiratory diseases, possibly caused by inflammation-related immunomodulation. Therefore, we sought to ascertain the effect of gastric fluid exposure on pulmonary residential cells. The expression of α-smooth muscle actin as a fibrotic marker was increased in both normal human pulmonary fibroblast cells and mouse macrophages. Gastric fluid enhanced the proliferation and migration of HFL-1 cells and stimulated the expression of inflammatory cytokines in an antibody assay. Elevated expression of the Rho signaling pathway was noted in fibroblast cells stimulated with gastric fluid or conditioned media. These results indicate that gastric fluid alone, or the mixture of proinflammatory mediators induced by gastric fluid in the pulmonary context, can stimulate pulmonary fibroblast cell inflammation, migration, and differentiation, suggesting that a wound healing process is initiated. Subsequent aberrant repair in pulmonary residential cells may lead to pulmonary fibroblast differentiation and fibrotic progression. The results point to a stimulatory effect of chronic GERD on pulmonary fibroblast differentiation, and this may promote the development of chronic pulmonary diseases in the long term.
Collapse
Affiliation(s)
- Cheng Che Chiang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, Chun Shan Medicine University, Taichung Taiwan
| | - Jau Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chong Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
20
|
Guo CA, Ma L, Su XL, Wang YZ, Zhen LL, Zhang B, An H, Liu HB. Esmolol inhibits inflammation and apoptosis in the intestinal tissue via the overexpression of NF-κB-p65 in the early stage sepsis rats. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:331-341. [PMID: 32412904 DOI: 10.5152/tjg.2020.19341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Accumulating evidence reveals esmolol could protect the gut mucosa through the regulation of immune response and inflammation in patients with sepsis. However, its underlying mechanism is not fully understood. MATERIALS AND METHODS Diamine oxidase (DAO), intestinal fatty acid-binding protein (I-FABP), interleukin (IL)-6, and IL-10 in the plasma of rats were detected by ELISA assay. Western blotting was utilized to measure the expression levels of NF-kappa B-p65, Bcl-2, and cleaved caspase-3 in the intestinal tissues. The survival analysis was performed in each group. RESULTS The plasma levels of DAO and IL-10 levels were increased, whereas that of I-FABP and IL-6 were decreased in the sepsis rats after esmolol treatment, indicating that after the esmolol treatment, the intestinal inflammation and damages were remarkably reduced as compared to those in the normal saline treated sepsis rats. NF-κB-p65 and Bcl-2 were highly expressed, but cleaved caspase-3 showed lower expression in the esmolol treated groups. However, at the same time, we observed contrasting results in the normal saline treated group. Western blotting data indicated that the esmolol treatment inhibited the inflammation and apoptosis in the intestinal tissue due to the overexpression of NF-κB-p65 in the celiac sepsis rats. The survival analysis results indicate that the esmolol infusion should be used in the early stages sepsis rats. CONCLUSION Esmolol can suppress inflammation and apoptosis in the intestinal tissue via the overexpression of NF-kappa B-p65 in the early stage sepsis rats. kappa BEarly-stage use of esmolol might be an ideal treatment method for sepsis.
Collapse
Affiliation(s)
- Chang-An Guo
- Second Clinical Medical College, Lanzhou University, Gansu Province, China;First Aid Center, Lanzhou University Second Hospital, Gansu Province, China;Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, China
| | - Li Ma
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Xiao-Lu Su
- Department of Pathology, Lanzhou University Second Hospital, Gansu Province, China
| | - Ying-Zhen Wang
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Ling-Ling Zhen
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Bei Zhang
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Hong An
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Hong-Bin Liu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, China
| |
Collapse
|
21
|
Zhu Z, Zhang X, Dong W, Wang X, He S, Zhang H, Wang X, Wei R, Chen Y, Liu X, Guo C. TREM2 suppresses the proinflammatory response to facilitate PRRSV infection via PI3K/NF-κB signaling. PLoS Pathog 2020; 16:e1008543. [PMID: 32401783 PMCID: PMC7250469 DOI: 10.1371/journal.ppat.1008543] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/26/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) serves as an anti-inflammatory receptor, negatively regulating the innate immune response. TREM2 is mainly expressed on dendritic cells and macrophages, the target cells of porcine reproductive and respiratory syndrome virus (PRRSV). Thus, we investigated the potential role of TREM2 in PRRSV infection in porcine alveolar macrophages (PAMs). We found that there was an increased expression of TREM2 upon PRRSV infection in vitro. TREM2 silencing restrained the replication of PRRSV, whereas TREM2 overexpression facilitated viral replication. The cytoplasmic tail domain of TREM2 interacted with PRRSV Nsp2 to promote infection. TREM2 downregulation led to early activation of PI3K/NF-κB signaling, thus reinforcing the expression of proinflammatory cytokines and type I interferons. Due to the enhanced cytokine expression, a disintegrin and metalloproteinase 17 was activated to promote the cleavage of membrane CD163, which resulted in suppression of infection. Furthermore, exogenous soluble TREM2 (sTREM2)-mediated inhibition of PRRSV attachment might be attributed to its competitive binding to viral envelope proteins. In pigs, following PRRSV challenge in vivo, the expression of TREM2 in lungs and lymph nodes as well as the production of sTREM2 were significantly increased. These novel findings indicate that TREM2 plays a role in regulating PRRSV replication via the inflammatory response. Therefore, our work describes a novel antiviral mechanism against PRRSV infection and suggests that targeting TREM2 could be a new approach in the control of the PRRSV infection.
Collapse
Affiliation(s)
- Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xun Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
- * E-mail:
| |
Collapse
|
22
|
Novel and Stable Dual-Color IL-6 and IL-10 Reporters Derived from RAW 264.7 for Anti-Inflammation Screening of Natural Products. Int J Mol Sci 2019; 20:ijms20184620. [PMID: 31540402 PMCID: PMC6769898 DOI: 10.3390/ijms20184620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Our previous study suggested that the interleukin (IL)-6 and IL-10 could serve as good biomarkers for chronic inflammatory disease. We previously established an IL-6 and IL-10 reporters assay that could examine reporter activity along with the reference gene in LPS-induced RAW 264.7 cells. In this study, we described new and stable RAW 264.7 derived dual-color IL-6/gapdh and IL-10/gapdh reporters. This assay allowed us to easily determine relative IL-6 and IL-10 levels with 96-well plate within one step. We evaluated the relative IL-6 and IL-10 levels in the LPS-induced stable cells testing 52 natural products by real-time bioluminescence monitoring and time-point determination using a microplate luminometer. The relative IL-6 and IL-6/IL-10 values decreased by the crude ethanol extracts from nutmeg and by 1′S-1′-acetoxychavicol from greater galangal using real-time bioluminescence monitoring. At the same time, the relative IL-10 was induced. The relative IL-6 and IL-6/IL-10 decreased by crude ethanol extracts from nutmeg and 1′S-1′-acetoxychavicol acetate at 6 h. Only crude ethanol extract from nutmeg induced IL-10 at 6 h. We suggested that the use of these stable cells by real-time monitoring could serve as a screening assay for anti-inflammatory activity and may be used to discover new drugs against chronic inflammatory disease.
Collapse
|