1
|
Li R, An P, Lin X, Liu X, Zhao L, He Y. A comprehensive analysis of LINC00958 as a prognostic biomarker for head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg 2024; 53:461-469. [PMID: 37923576 DOI: 10.1016/j.ijom.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
This work focused on exploring whether the long intergenic non-protein coding RNA LINC00958 is associated with the prognosis of head and neck squamous cell carcinoma (HNSCC). Associations of the LINC00958 expression level with clinicopathological features of HNSCC were investigated by logistic regression and Wilcoxon signed-rank test. The Kaplan-Meier method was applied to evaluate patient survival. Clinical data and expression profiles were obtained from The Cancer Genome Atlas (TCGA). Associations of patient clinical characteristics with overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) were assessed by univariate and multivariate analysis using the Cox proportional hazard model. Immune cell infiltration analysis and gene set enrichment analysis (GSEA) were applied to determine any significant effects of LINC00958. High LINC00958 expression was related to early pT stage (P < 0.01), primary therapy outcome (P < 0.01), HPV status (P < 0.001), lymphovascular invasion (P < 0.001), and perineural invasion (P < 0.01). The receiver operating characteristic curve showed strong prognostic power for LINC00958 (area under curve = 0.886). High LINC00958 expression predicted poor OS (P = 0.007), DSS (P = 0.036), and PFI (P = 0.040). LINC00958 was related to signalling pathways and the infiltration of certain immune cells. miR-27b-5p was significantly associated with LINC00958, and downstream NT5E predicted poor survival in HNSCC cases. LINC00958 may affect the prognosis by regulating NT5E via miR-27b-5p, and could serve as a possible factor to predict the prognosis of HNSCC, especially oral squamous cell carcinoma.
Collapse
Affiliation(s)
- R Li
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China; Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - P An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Lin
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - X Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - L Zhao
- Center of Oral Medicine, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Y He
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai, China.
| |
Collapse
|
2
|
Fayyaz F, Eshkiki ZS, Karamzadeh AR, Moradi Z, Kaviani F, Namazi A, Karimi R, Tabaeian SP, Mansouri F, Akbari A. Relationship between long non-coding RNAs and Hippo signaling pathway in gastrointestinal cancers; molecular mechanisms and clinical significance. Heliyon 2024; 10:e23826. [PMID: 38226210 PMCID: PMC10788524 DOI: 10.1016/j.heliyon.2023.e23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play a significant biological role in the regulation of various cellular processes such as cell proliferation, differentiation, apoptosis and migration. In various malignancies, lncRNAs interplay with some main cancer-associated signaling pathways, including the Hippo signaling pathway to regulate the various cellular processes. It has been revealed that the cross-talking between lncRNAs and Hippo signaling pathway involves in gastrointestinal (GI) cancers development and progression. Considering the clinical significance of these lncRNAs, they have also been introduced as potential biomarkers in diagnostic, prognostic and therapeutic strategies in GI cancers. Herein, we review the mechanisms of lncRNA-mediated regulation of Hippo signaling pathway and focus on the corresponding molecular mechanisms and clinical significance of these non-coding RNAs in GI cancers.
Collapse
Affiliation(s)
- Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Reza Karamzadeh
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Zahra Moradi
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
- Young Researchers and Elite Club, Qom Branch, Islamic Azad University, Qom, Iran
| | - Faezeh Kaviani
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Namazi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansouri
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang G, Wu B, Fu L, Liu B, Han X, Wang J, Zhang Y, Yu M, Ma H, Ma S, Cai H. A pan-cancer analysis of the prognostic value of long non-coding RNA LINC00662 in human cancers. Front Genet 2022; 13:1063119. [PMID: 36568401 PMCID: PMC9773142 DOI: 10.3389/fgene.2022.1063119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Numerous studies have revealed that the long non-coding RNA LINC00662 is irregularly expressed in various cancers, as well as is correlated with cancer development and progression. Nevertheless, the clinical value of LINC00662 remains controversial. Hence, we explored the correlation of LINC00662 with cancer prognosis through meta-analysis and bioinformatics analysis. Methods: From the beginning through 12 March 2022, we searched for correlational studies on Web of Science, Embase, PubMed and The Cochrane Library. We used pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) to determine the significance of studies on survival outcomes and clinicopathological aspects in human cancers. Additionally, the Gene Expression Profiling Interactive Analysis (GEPIA) database was employed to confirm our findings. Results: Our meta-analysis of 14 studies comprising a total of 960 cancer patients revealed that LINC00662 overexpression was correlated with poor overall survival (HR = 1.91, 95% CI 1.49-2.45, p < 0.001) in cancer patients and relapse-free survival (HR = 2.12, 95% CI 1.19-3.76, p = 0.010) in hepatocellular carcinoma patients. The correlation between LINC00662 and OS was further supported by the results of subgroup analyses according to cancer type, follow-up time, HR availability, and NOS score. In addition, LINC00662 overexpression predicted advanced tumor stage (OR = 4.23, 95% CI 2.50-7.17, p < 0.001), larger tumor size (OR = 1.49, 95% CI 1.11-1.99, p = 0.008), earlier lymph node metastasis (OR = 2.40, 95% CI 1.25-4.59, p = 0.008), and earlier distant metastasis (OR = 4.78, 95% CI 2.57-8.88, p < 0.001). However, there were no statistically significant differences in age (OR = 1.16, 95% CI 0.90-1.51, p = 0.246), gender (OR = 1.10, 95% CI 0.79-1.53, p = 0.578), or differentiation grade (OR = 1.53, 95% CI 0.71-3.33, p = 0.280). Conclusion: LINC00662 expression upregulation is associated with poor prognosis and advanced clinicopathological features in patients with multiple tumors. LINC00662 may serve as a biomarker for the diagnosis and treatment of patients with tumors.
Collapse
Affiliation(s)
- Guangming Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China
| | - Bin Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China
| | - Liangyin Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China
| | - Bin Liu
- Gansu Provincial Hospital, Lanzhou, China,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | | | - Jie Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Yipeng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Miao Yu
- Gansu Provincial Hospital, Lanzhou, China
| | - Haizhong Ma
- Gansu Provincial Hospital, Lanzhou, China,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shixun Ma
- Gansu Provincial Hospital, Lanzhou, China,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hui Cai
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China,Department of General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China,Gansu Provincial Hospital, Lanzhou, China,*Correspondence: Hui Cai,
| |
Collapse
|
4
|
Sharma U, Tuli HS, Uttam V, Choudhary R, Sharma B, Sharma U, Prakash H, Jain A. Role of Hedgehog and Hippo signaling pathways in cancer: A special focus on non-coding RNAs. Pharmacol Res 2022; 186:106523. [DOI: 10.1016/j.phrs.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
|
5
|
An C, Hu Z, Li Y, Zhao P, Liu R, Zhang Q, Zhu P, Li Y, Wang Y. LINC00662 enhances cell progression and stemness in breast cancer by MiR-144-3p/SOX2 axis. Cancer Cell Int 2022; 22:184. [PMID: 35551606 PMCID: PMC9097442 DOI: 10.1186/s12935-022-02576-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/06/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most prevalent malignancies among women globally. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are associated with BC carcinogenesis. In the current study, we explored the mechanism by which LINC00662 regulates BC. METHODS Quantitative real-time PCR (qRT-PCR) assessed RNA expressions while western blot for protein levels. Kaplan Meier analysis evaluated overall survival (OS). Cytoplasmic/nuclear fractionation, RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays probed into the underlying molecular mechanism of LINC00662 in BC. Xenograft model was established to explore the influence of LINC00662 on BC progression in vivo. R square graphs were utilized to represent RNA relationships. RESULTS LINC00662 is overtly overexpressed in BC tissues and cell lines. LINC00662 knockdown hampers cell proliferation, migration, invasion and stemness. LINC00662 expression is negatively correlated with OS of BC patients. LINC00662 up-regulates SOX2 expression by competitively binding to miR-144-3p, thereby modulating BC cell progression. Xenograft experiments verified that LINC00662 promotes BC tumor growth and cell stemness in vivo. CONCLUSION LINC00662 enhances cell proliferation, migration, invasion and stemness in BC by targeting miR-144-3p/SOX2 axis. The findings in the present study suggested that LINC00662 could be a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Congjing An
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhigang Hu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuehong Li
- Department of Pathology, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Pengxin Zhao
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Runtian Liu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Qing Zhang
- Department of Pathology, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Peiling Zhu
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Yanting Li
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Ying Wang
- Department of Breast and Thyroid Surgery, the Second Hospital of Hebei Medical University, Xinhua District, No.215, Heping Xi Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
6
|
USP49 mediates tumor progression and poor prognosis through a YAP1-dependent feedback loop in gastric cancer. Oncogene 2022; 41:2555-2570. [PMID: 35318441 DOI: 10.1038/s41388-022-02267-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
The importance of the Hippo-Yes-associated protein 1 (YAP1) pathway in gastric carcinogenesis and metastasis has attracted considerable research attention; however, the regulatory network of YAP1 in gastric cancer (GC) is not completely understood. In this study, ubiquitin-specific peptidase 49 (USP49) was identified as a novel deubiquitinase of YAP1, knockdown of USP49 inhibited the proliferation, metastasis, chemoresistance, and peritoneal metastasis of GC cells. Overexpression of USP49 showed opposing biological effects. Moreover, USP49 was transcriptionally activated by the YAP1/TEAD4 complex, which formed a positive feedback loop with YAP1 to promote the malignant progression of GC cells. Finally, we collected tissue samples and clinical follow-up information from 482 GC patients. The results showed that USP49 expression was high in GC cells and positively correlated with the expression of YAP1 and its target genes, connective tissue growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (CYR61). Survival and Cox regression analysis showed that high USP49 expression was associated with poor prognosis and was an independent prognostic factor. Moreover, patients with high USP49 and YAP1 expression had extremely short overall survival. The findings of this study reveal that the aberrant activation of the USP49/YAP1 positive feedback loop plays a critical role in the malignant progression of GC, thus providing potential novel prognostic factors and therapeutic targets for GC.
Collapse
|
7
|
The E3 ubiquitin ligase, FBXW5, promotes the migration and invasion of gastric cancer through the dysregulation of the Hippo pathway. Cell Death Dis 2022; 8:79. [PMID: 35210431 PMCID: PMC8873275 DOI: 10.1038/s41420-022-00868-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
Abstract
F-box and WD repeat domain-containing 5 (FBXW5), with WD40 repeats, can bind to the PPxY sequence of the large tumor suppressor kinases 1/2 (LATS1/2) kinase domain, resulting in ubiquitination. Ubiquitination and the subsequent degradation of LATS1/2 abrogate the Hippo pathway and worsen gastric cancer (GC). However, the effects and molecular mechanisms of FBXW5 in GC remain unexplored. To elucidate the clinical significance of FBXW5, immunohistochemistry was conducted to reveal the positive correlation between FBXW5 expression and lymph node metastasis (p < 0.001) and TNM stage (training cohort: p = 0.018; validation cohort: p = 0.001). Further, patients with high FBXW5 expression were found to have poor prognosis (training cohort: log-rank p = 0.020; validation cohort: log-rank p = 0.025). Cell experiments revealed the promoting effects of FBXW5 on the proliferation, invasion, metastasis, and chemoresistance of GC cells. Blocking LATS1-YAP1 leads to the loss of FBXW5-mediated regulation of the Hippo pathway and partial functions. Further, co-immunoprecipitation and in vivo ubiquitination assays revealed the interaction between FBXW5 and LATS1, which promoted the ubiquitination and degradation of LATS1. Based on mouse xenograft assays, FBXW5 silencing attenuated the growth of subcutaneous tumor xenografts. Altogether, FBXW5 was found to inactivate the Hippo signaling pathway by enhancing LATS1 ubiquitination and degradation, which promoted the invasion, metastasis, and drug resistance of GC cells.
Collapse
|
8
|
Wang B, Xu Z, Wang X, Xia S, Cai P, Wang M, Gao Z. Knockdown of lncRNA LINC00662 suppresses malignant behaviour of osteosarcoma cells via competition with miR-30b-3p to regulate ELK1 expression. J Orthop Surg Res 2022; 17:74. [PMID: 35123530 PMCID: PMC8818160 DOI: 10.1186/s13018-022-02964-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose Osteosarcoma is a type of bone malignancy that mainly occurred in teenagers. This investigation is aimed to clarify the effect of long non-coding RNA (lncRNA) LINC00662 on the proliferation, migration, and invasion in osteosarcoma and explore the underlying action mechanisms. Methods The mRNA expression of LINC00662 was determined by real-time quantitative polymerase chain reaction. Cell proliferation, migration, and invasion were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and transwell assays, respectively. A dual-luciferase reporter assay was used to validate the target relationships Between microRNA (miR)-30b-3p and LINC00662/ ETS domain-containing protein 1 (ELK1). Western blotting was performed to determine the protein expression of ELK1. Xenograft model was established to evaluate the effects of LINC00662 silencing on tumor growth in vivo. Results LncRNA LINC00662 and ELK1 were significantly increased, while miR-30b-3p was reduced in osteosarcoma tissues. The results of functional experiments indicated that transfection of small hairpin (sh)-LINC00662 and miR-30b-3p mimics repressed the migration, invasion, and proliferation of osteosarcoma cells. LncRNA LINC00662 also appeared to sponge miR-30b-3p in order to affect the expression of ELK1. Simultaneously, there were weak negative correlations between the expression of miR-30b-3p and LINC00662/ELK1 in osteosarcoma tissues. Rescue experiments suggested that ELK1 overexpression and downregulation of miR-30b-3p reversed the suppressive effects of sh-LINC00662 on the cell migration, invasion, and proliferation in osteosarcoma. Conclusions The current study indicated that knockdown of LINC00662 repressed cell migration, invasion, and proliferation through sponging miR-30b-3p to regulate the expression of ELK1 in osteosarcoma. These results may uncover a promising target for the treatment of osteosarcoma.
Collapse
|
9
|
Blandino A, Scherer D, Rounge TB, Umu SU, Boekstegers F, Barahona Ponce C, Marcelain K, Gárate-Calderón V, Waldenberger M, Morales E, Rojas A, Munoz C, Retamales J, de Toro G, Barajas O, Rivera MT, Cortés A, Loader D, Saavedra J, Gutiérrez L, Ortega A, Bertrán ME, Gabler F, Campos M, Alvarado J, Moisán F, Spencer L, Nervi B, Carvajal-Hausdorf DE, Losada H, Almau M, Fernández P, Gallegos I, Olloquequi J, Fuentes-Guajardo M, Gonzalez-Jose R, Bortolini MC, Gallo C, Linares AR, Rothhammer F, Lorenzo Bermejo J. Identification of Circulating lncRNAs Associated with Gallbladder Cancer Risk by Tissue-Based Preselection, Cis-eQTL Validation, and Analysis of Association with Genotype-Based Expression. Cancers (Basel) 2022; 14:634. [PMID: 35158906 PMCID: PMC8833674 DOI: 10.3390/cancers14030634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play key roles in cell processes and are good candidates for cancer risk prediction. Few studies have investigated the association between individual genotypes and lncRNA expression. Here we integrate three separate datasets with information on lncRNA expression only, both lncRNA expression and genotype, and genotype information only to identify circulating lncRNAs associated with the risk of gallbladder cancer (GBC) using robust linear and logistic regression techniques. In the first dataset, we preselect lncRNAs based on expression changes along the sequence "gallstones → dysplasia → GBC". In the second dataset, we validate associations between genetic variants and serum expression levels of the preselected lncRNAs (cis-lncRNA-eQTLs) and build lncRNA expression prediction models. In the third dataset, we predict serum lncRNA expression based on individual genotypes and assess the association between genotype-based expression and GBC risk. AC084082.3 and LINC00662 showed increasing expression levels (p-value = 0.009), while C22orf34 expression decreased in the sequence from gallstones to GBC (p-value = 0.04). We identified and validated two cis-LINC00662-eQTLs (r2 = 0.26) and three cis-C22orf34-eQTLs (r2 = 0.24). Only LINC00662 showed a genotyped-based serum expression associated with GBC risk (OR = 1.25 per log2 expression unit, 95% CI 1.04-1.52, p-value = 0.02). Our results suggest that preselection of lncRNAs based on tissue samples and exploitation of cis-lncRNA-eQTLs may facilitate the identification of circulating noncoding RNAs linked to cancer risk.
Collapse
Affiliation(s)
- Alice Blandino
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany; (A.B.); (D.S.); (F.B.); (C.B.P.); (V.G.-C.)
| | - Dominique Scherer
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany; (A.B.); (D.S.); (F.B.); (C.B.P.); (V.G.-C.)
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, 0379 Oslo, Norway; (T.B.R.); (S.U.U.)
- Department of Informatics, University of Oslo, 0304 Oslo, Norway
| | - Sinan U. Umu
- Department of Research, Cancer Registry of Norway, 0379 Oslo, Norway; (T.B.R.); (S.U.U.)
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany; (A.B.); (D.S.); (F.B.); (C.B.P.); (V.G.-C.)
| | - Carol Barahona Ponce
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany; (A.B.); (D.S.); (F.B.); (C.B.P.); (V.G.-C.)
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago 8380000, Chile; (K.M.); (O.B.); (I.G.)
| | - Valentina Gárate-Calderón
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany; (A.B.); (D.S.); (F.B.); (C.B.P.); (V.G.-C.)
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago 8380000, Chile; (K.M.); (O.B.); (I.G.)
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology and Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Erik Morales
- Hospital Regional de Talca, Talca 3460000, Chile; (E.M.); (C.M.)
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Armando Rojas
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| | - César Munoz
- Hospital Regional de Talca, Talca 3460000, Chile; (E.M.); (C.M.)
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
| | | | - Gonzalo de Toro
- Hospital de Puerto Montt, Puerto Montt 5480000, Chile;
- Escuela de Tecnología Médica, Universidad Austral de Chile sede Puerto Montt, Puerto Montt 5480000, Chile
| | - Olga Barajas
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago 8380000, Chile; (K.M.); (O.B.); (I.G.)
- Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | | | - Analía Cortés
- Hospital del Salvador, Santiago 7500922, Chile; (M.T.R.); (A.C.)
| | - Denisse Loader
- Hospital Padre Hurtado, Santiago 8880456, Chile; (D.L.); (J.S.)
| | | | | | | | | | - Fernando Gabler
- Hospital San Borja Arriarán, Santiago 8320000, Chile; (F.G.); (M.C.)
| | - Mónica Campos
- Hospital San Borja Arriarán, Santiago 8320000, Chile; (F.G.); (M.C.)
| | - Juan Alvarado
- Hospital Regional Guillermo Grant Benavente, Concepcion 4070386, Chile; (J.A.); (F.M.); (L.S.)
| | - Fabrizio Moisán
- Hospital Regional Guillermo Grant Benavente, Concepcion 4070386, Chile; (J.A.); (F.M.); (L.S.)
| | - Loreto Spencer
- Hospital Regional Guillermo Grant Benavente, Concepcion 4070386, Chile; (J.A.); (F.M.); (L.S.)
| | - Bruno Nervi
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; or
| | | | | | - Mauricio Almau
- Hospital de Rancagua, Rancagua 2820000, Chile; (M.A.); (P.F.)
| | | | - Ivan Gallegos
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago 8380000, Chile; (K.M.); (O.B.); (I.G.)
- Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Tarapacá University, Arica 1000815, Chile;
| | - Rolando Gonzalez-Jose
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9120ACD, Argentina;
| | - Maria Cátira Bortolini
- Instituto de Biociências, Universidad Federal do Rio Grande do Sul, Puerto Alegre 15053, Brazil;
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Andres Ruiz Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200434, China;
- ADES (Anthropologie Bio-Culturelle, Droit, Éthique et Santé), UFR de Médecine, Aix-Marseille University, 13007 Marseille, France
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Justo Lorenzo Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany; (A.B.); (D.S.); (F.B.); (C.B.P.); (V.G.-C.)
| |
Collapse
|
10
|
Xu J, Liu XY, Zhang Q, Liu H, Zhang P, Tian ZB, Zhang CP, Li XY. Crosstalk Among YAP, LncRNA, and Tumor-Associated Macrophages in Tumorigenesis Development. Front Oncol 2022; 11:810893. [PMID: 35071016 PMCID: PMC8770286 DOI: 10.3389/fonc.2021.810893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (ncRNAs), which do not encode proteins, regulate cell proliferation, tumor angiogenesis, and metastasis and are closely associated with the development, progression, and metastasis of many cancers. Tumor-associated macrophages (TAMs) in the tumor microenvironment play an important role in cancer progression. The Hippo signaling pathway regulates cell proliferation and apoptosis, maintains tissue and organ size, and homeostasis of the internal environment of organisms. Abnormal expression of Yes-associated protein (YAP), the Hippo signaling pathway key component, is widely observed in various malignancies. Further, TAM, lncRNA, and YAP are currently valuable targets for cancer immunotherapy. In this review, we have logically summarized recent studies, clarified the close association between the three factors and tumorigenesis, and analyzed the outlook of tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin-Yuan Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui-Ping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Tao F, Qi L, Liu G. Long intergenic non-protein coding RNA 662 accelerates the progression of gastric cancer through up-regulating centrosomal protein 55 by sponging microRNA-195-5p. Bioengineered 2022; 13:3007-3018. [PMID: 35037833 PMCID: PMC8974125 DOI: 10.1080/21655979.2021.2023978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important players in regulating diverse human diseases, including cancers. Nonetheless, the function of long intergenic non-protein coding RNA 662 (LINC00662) in gastric cancer (GC) carcinogenesis and progression remains to be delineated. In the present study, LINC00662, microRNA-195-5p (miR-195-5p) and centrosomal protein 55 (CEP55) mRNA expression levels were quantified by qRT-PCR. GC cell proliferation, migration and invasion were analyzed by CCK-8, BrdU and Transwell assays. Besides, dual-luciferase reporter and RNA pull-down assays were conducted for verifying the targeting relationships of LINC00662, miR-195-5p and CEP55. The regulatory functions of LINC00662 and miR-195-5p on CEP55 were examined utilizing Western blot. In this study, it was revealed that LINC00662 expression level was elevated in GC tissues and cells. LINC00662 overexpression facilitated the malignant biological behaviors of GC cells whereas knockdown of LINC00662 worked oppositely. In terms of mechanism, LINC00662 targeted miR-195-5p to modulate CEP55 expression. In conclusion, LINC00662 facilitates the malignant biological behaviors of GC cells via miR-195-5p/CEP55 axis, and therefore, it may be a promising target for GC treatment.
Collapse
Affiliation(s)
- Fei Tao
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Likun Qi
- Department of Gastrointestinal Surgery, Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guoqing Liu
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
12
|
Pang J, Pan H, Yang C, Meng P, Xie W, Li J, Li Y, Xiao SY. Prognostic Value of Immune-Related Multi-IncRNA Signatures Associated With Tumor Microenvironment in Esophageal Cancer. Front Genet 2021; 12:722601. [PMID: 34659345 PMCID: PMC8516150 DOI: 10.3389/fgene.2021.722601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer is the eighth most common cancer and the sixth leading cause of cancer death worldwide. Hence, for a better understanding of tumor microenvironment and to seek for novel molecular targets for esophageal cancer, we performed related studies on two histopathological subtypes of esophageal cancer: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Bioinformatic analyses were conducted based on the RNA-seq, genomic mutation, and clinical data from TCGA and GEO cohorts. We clustered patients into high-immunity and low-immunity groups through the ssGSEA results. The ESTIMATE algorithm was used to evaluate the tumor microenvironment. Patients with high immunity in both ESCC and EAC had lower tumor purity and poor survival. Subsequently, CIBERSORT was performed to learn about the detailed difference of tumor-infiltrating lymphocytes (TILs) between high- and low-immunity patients. Specific increase of M2 macrophages and decrease of activated dendric cells can be observed in ESCC and EAC, respectively. The most enriched functions and pathways of high-immunity patients were immunoglobulin complex, MHC class II protein complex, and allograft rejection according to the GO terms and KEGG. Two prognostic immune-related multi-lncRNA risk models were constructed and validated by ROC curve and PCA in ESCC and EAC. High-risk patients in both subtypes had poor survival, advanced clinical characteristics, and higher drug susceptibility except cisplatin and sorafenib. In addition, the tumor mutation burden (TMB) was positively correlated with the risk level in the ESCC and EAC and showed distinct differences between the two subtypes. In summary, we comprehensively analyzed the tumor microenvironment for two subtypes of esophageal cancer, identified two multi-lncRNA signatures predictive for the prognosis, and explored the possibility of the signatures to forecast drug susceptibility as well as TMB for the first time. The findings may serve as a conceptual basis for innovative strategy of individualized immunotherapy for esophageal cancer.
Collapse
Affiliation(s)
- Jingjing Pang
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - He Pan
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunxiu Yang
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pei Meng
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Xie
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiahao Li
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yueying Li
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu-Yuan Xiao
- Department of Pathology, Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Zhong C, Zhang Q, Zhang M, Qi Y, Duan S. LINC00662: A new oncogenic lncRNA with great potential. J Cell Physiol 2021; 237:1105-1118. [PMID: 34647332 DOI: 10.1002/jcp.30599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022]
Abstract
LINC00662 is located on chromosome 19q11 and is 2085 bp long. It is a long noncoding RNA (lncRNA) newly discovered. LINC00662 expression is upregulated in at least 14 tumors. In addition, the upregulation of LINC00662 expression is also closely related to the poor prognosis of cancer patients and resistance to radiotherapy and chemotherapy. LINC00662 can act as a ceRNA of at least 8 miRNAs. By regulating these miRNAs and their downstream genes, LINC00662 participates in the regulation of four signaling pathways, including the extracellular signal-regulated kinase (ERK) signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, and the SMD signaling pathway. In addition, the abnormal upregulation of LINC00662 can promote the stem-like features of lung cancer cells. LINC00662 can reduce the promoter methylation level of s-adenosylmethionine (SAM)-dependent hepatocellular carcinoma (HCC)-promoting genes by regulating the MAT1A/SAM and AHCY/SAH axes, thereby promoting the activation of oncogenes. This article summarizes the molecular regulation mechanism of LINC00662 in cancer and the diagnostic and prognostic value of LINC00662 in cancer.
Collapse
Affiliation(s)
- Chenming Zhong
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Qiudan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Mingfang Zhang
- Department of Molecular & Biomedical Pharmacology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanlin Qi
- Department of Molecular & Biomedical Pharmacology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
14
|
Huang J, Lin F, Xu C, Xu Y. LINC00662 facilitates osteosarcoma progression via sponging miR-103a-3p and regulating SIK2 expression. J Tissue Eng Regen Med 2021; 15:1082-1091. [PMID: 34559955 DOI: 10.1002/term.3242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/07/2022]
Abstract
Long non-coding RNA (lncRNA) involvement in regulating assorted cancers has been determined. Long intergenic non-protein coding RNA 662 (LINC00662) has been studied in gastric cancer. However, its function was not elucidated in osteosarcoma (OS). Thus, we aimed to discover LINC00662 function and the corresponding mechanism in OS. In this study, we found that LINC00662 displayed high expression in OS cells. LINC00662 down-regulation negatively affected OS cell malignant behaviors and tumor growth. Subsequently, miR-103a-3p was proven to bind with LINC00662 and overexpression of miR-103a-3p inhibited OS cell proliferation, migration and invasion. Then, SIK2, the downstream of miR-103a-3p, was up-regulated in OS cells and positively regulated by LINC00662. In addition, knockdown of SIK2 exerted inhibitory effects on proliferative, migratory and invaded capacities of OS cells. More interestingly, miR-103a-3p depletion or SIK2 overexpression restored the impacts of down-regulated LINC00662 on OS cells. In conclusion, LINC00662 could facilitate OS progression via miR-103a-3p/SIK2 axis.
Collapse
Affiliation(s)
- Jianghu Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Feiyue Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuncai Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
He Y, Xu Y, Yu X, Sun Z, Guo W. The Vital Roles of LINC00662 in Human Cancers. Front Cell Dev Biol 2021; 9:711352. [PMID: 34354995 PMCID: PMC8329443 DOI: 10.3389/fcell.2021.711352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in many human diseases, particularly in tumorigenicity and progression. Although lncRNA research studies are increasing rapidly, our understanding of lncRNA mechanisms is still incomplete. The long intergenic non-protein coding RNA 662 (LINC00662) is a novel lncRNA, and accumulating evidence suggests that it is related to a variety of tumors in multiple systems, including the respiratory, reproductive, nervous, and digestive systems. LINC00662 has been shown to be upregulated in malignant tumors and has been confirmed to promote the development of malignant tumors. LINC00662 has also been reported to facilitate a variety of cellular events, such as tumor-cell proliferation, invasion, and migration, and its expression has been correlated to clinicopathological characteristics in patients with tumors. In terms of mechanisms, LINC00662 regulates gene expression by interacting with both proteins and with RNAs, so it may be a potential biomarker for cancer diagnosis, prognosis, and treatment. This article reviews the expression patterns, biological functions, and underlying molecular mechanisms of LINC00662 in tumors.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
16
|
Ji W, Jiao J, Cheng C, Xiao Y, Shao J, Liu H. A positive feedback loop of LINC00662 and STAT3 promotes malignant phenotype of glioma. Pathol Res Pract 2021; 224:153539. [PMID: 34246852 DOI: 10.1016/j.prp.2021.153539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and development of glioma. LINC00662 has been involved in the pathogenesis of various human cancers. However, the mechanism underlying which LINC00662 exerts its role in glioma needs further exploration. In addition, regulation mechanism of LINC00662 expression in glioma remains unknown. METHODS AND MATERIALS RT-qPCR was performed to evaluate the expression levels of LINC00662, miR-340-5p in glioma tissues and cell lines. The effect of LINC00662 and miR-340-5p in cell proliferation and invasion was assessed by Cell Counting Kit-8(CCK-8), clone colony formation and Transwell assay. Luciferase reporter assays and RNA immunoprecipitation assay validated the miR-340-5p-target relationships with LINC00662 or STAT3. CHIP-qPCR and Luciferase reporter assays were used to demonstrate the interaction between STAT3 and the promoter region of LINC00662. A tumor xenografts model was implemented to verify the effect of LINC00662 on glioma development in vivo. RESULTS We found that LINC00662 was frequently highly expressed and related to the malignant phenotype of glioma. LINC00662 knockdown inhibited the proliferation, invasion and glioma genesis of glioma. LINC00662 acted as a ceRNA sponging miR-340-5p to protect the expression of STAT3. In addition, STAT3 was forced to the promoter region of LINC00662 and promoted its transcription. In vivo experiments demonstrated that targeting LINC00662 may be a potential strategy in glioma therapy. CONCLUSION There was a positive regulation loop between LINC00662 and STAT3 in glioma. LINC00662 might be an oncogene in glioma. Targeting LINC00662 was a potential strategy in glioma therapy.
Collapse
Affiliation(s)
- Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, PR China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Yong Xiao
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, PR China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China.
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
17
|
Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, Zhao P, Zhang M, Shao Y, Huang S, He X, Wen H, Wu X. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene 2021; 40:4770-4782. [PMID: 34148056 PMCID: PMC8298204 DOI: 10.1038/s41388-021-01884-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Numerous studies suggest an important role for copy number alterations (CNAs) in cancer progression. However, CNAs of long intergenic noncoding RNAs (lincRNAs) in ovarian cancer (OC) and their potential functions have not been fully investigated. Here, based on analysis of The Cancer Genome Atlas (TCGA) database, we identified in this study an oncogenic lincRNA termed LINC00662 that exhibited a significant correlation between its CNA and its increased expression. LINC00662 overexpression is highly associated with malignant features in OC patients and is a prognostic indicator. LINC00662 significantly promotes OC cell proliferation and metastasis in vitro and in vivo. Mechanistically, LINC00662 is stabilized by heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1). Moreover, LINC00662 exerts oncogenic effects by interacting with glucose-regulated protein 78 (GRP78) and preventing its ubiquitination in OC cells, leading to activation of the oncogenic p38 MAPK signaling pathway. Taken together, our results define an oncogenic role for LINC00662 in OC progression mediated via GRP78/p38 signaling, with potential implications regarding therapeutic targets for OC.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Deng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ping Zhao
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Meng Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
18
|
Yao Y, Liu Y, Jin F, Meng Z. LINC00662 Promotes Oral Squamous Cell Carcinoma Cell Growth and Metastasis through miR-144-3p/EZH2 Axis. Yonsei Med J 2021; 62:640-649. [PMID: 34164962 PMCID: PMC8236341 DOI: 10.3349/ymj.2021.62.7.640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Long non-coding RNA (lncRNA) is identified as an important regulator involved in oral squamous cell carcinoma (OSCC) tumorigenesis. This study aimed to investigate the functional role and underlying mechanism of LINC00662 in OSCC. MATERIALS AND METHODS The expression levels of LINC00662, miR-144-3p, and enhancer of zeste homolog 2 (EZH2) mRNA were quantified with quantitative real-time polymerase chain reaction in OSCC tissues and cell lines. Western blot analysis was used to assay the expression levels of E-cadherin, Vimentin, and EZH2. Cell proliferation, migration, and invasion were monitored by cell counting kit-8 and Transwell assays. Dual-luciferase reporter and RNA immunoprecipitation assays were employed to verify the regulatory relationship between LINC00662 and miR-144-3p. RESULTS The expression of LINC00662, positively associated with the increased TNM stage and lymph node metastasis of the patients, was up-regulated in OSCC tissues and cells. The overexpression of LINC00662 facilitated the proliferation, migration, and invasion of OSCC cells. MiR-144-3p could bind to LINC00662, and the promoting effect of LINC00662 overexpression was counteracted by miR-144-3p mimic. Moreover, EZH2 expression was negatively regulated by miR-144-3p and positively regulated by LINC00662. The silencing of EZH2 attenuated the promoting effects of overexpression of LINC00662 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition. CONCLUSION LINC00662, as an oncogenic lncRNA of OSCC, accelerates OSCC progression by repressing miR-144-3p expression and increasing EZH2 expression.
Collapse
Affiliation(s)
- Yongmei Yao
- Affiliated Hospital of Shandong Medical College, Linyi, China
| | - Yang Liu
- Department of Stomatology, Dongping County People's Hospital, Dongping, China
| | - Fengqin Jin
- Department of Stomatology, Tianqiao People's Hospital, Jinan, China
| | - Zhaohua Meng
- Department of Stomatology, Dongping Hospital Affiliated to Shandong First Medical University, Dongping, China.
| |
Collapse
|
19
|
Qin S, Mao Y, Wang H, Duan Y, Zhao L. The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. Int J Biol Sci 2021; 17:2718-2736. [PMID: 34345203 PMCID: PMC8326131 DOI: 10.7150/ijbs.60641] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stemness, mainly consisting of chemo-resistance, radio-resistance, tumorigenesis, metastasis, tumor self-renewal, cancer metabolism reprogramming, and tumor immuno-microenvironment remodeling, play crucial roles in the cancer progression process and has become the hotspot of cancer research field in recent years. Nowadays, the exact molecular mechanisms of cancer stemness have not been fully understood. Extensive studies have recently implicated that non-coding RNA (ncRNA) plays vital roles in modulating cancer stemness. Notably, N6-methyladenosine (m6A) modification is of crucial importance for RNAs to exert their biological functions, including RNA splicing, stability, translation, degradation, and export. Emerging evidence has revealed that m6A modification can govern the expressions and functions of ncRNAs, consequently controlling cancer stemness properties. However, the interaction mechanisms between ncRNAs and m6A modification in cancer stemness modulation are rarely investigated. In this review, we elucidate the recent findings on the relationships of m6A modification, ncRNAs, and cancer stemness. We also focus on some key signaling pathways such as Wnt/β-catenin signaling, MAPK signaling, Hippo signaling, and JAK/STAT3 signaling to illustrate the underlying interplay mechanisms between m6A modification and ncRNAs in cancer stemness. In particular, we briefly highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for indicating cancer stemness properties and improving the diagnostic precision for a wide variety of cancers.
Collapse
Affiliation(s)
- Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haofan Wang
- Department of Interventional Radiology, The 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Liu Y, Qiu S, Zheng X, Qiu Y, Yao S, Ge Y, Zhou C. LINC00662 modulates cervical cancer cell proliferation, invasion, and apoptosis via sponging miR-103a-3p and upregulating PDK4. Mol Carcinog 2021; 60:365-376. [PMID: 33819358 DOI: 10.1002/mc.23294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Cervical cancer (CC) is one of the most common cancers among women with high recurrence rates all over the world. Recently, the molecular mechanism of CC has been gradually uncovered in accumulating reports. This study aimed to investigate the function and upstream regulation mechanism of pyruvate dehydrogenase kinase 4 (PDK4) in CC cells, which was verified as an oncogene in several cancers. Through RT-qPCR assay, we discovered that PDK4 was highly expressed in CC cells. Then, it was demonstrated in function assays that PDK4 facilitated CC cell proliferation and invasion, but inhibited CC cell apoptosis. Next, we sought to determine the upstream genes of PDK4, and miR-103a-3p was identified to target PDK4. Then, through bioinformatics tools and a range of mechanism assays, long intergenic non-protein coding RNA 662 (LINC00662) was verified as the sponge of miR-103a-3p. Moreover, LINC00662 positively modulated PDK4 expression via competitively binding to miR-103a-3p in CC cells. Subsequently, rescue assays demonstrated that LINC00662 accelerated CC cell proliferation and inhibited cell apoptosis through upregulating PDK4. Furthermore, forkhead box A1 (FOXA1) was verified to activate transcription of both LINC00662 and PDK4. Taken together, our study revealed a novel ceRNA pattern of LINC00662/miR-103a-3p/PDK4 with FOXA1 as a transcription factor of LINC00662 and PDK4 in CC cells.
Collapse
Affiliation(s)
- Yongli Liu
- Gynecology Department, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
- Gynecology Department, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuang Qiu
- Gynecology Department, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
- Gynecology Department, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoli Zheng
- Gynecology Department, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
- Gynecology Department, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingying Qiu
- Gynecology Department, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
- Gynecology Department, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenghui Yao
- Gynecology Department, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
- Gynecology Department, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Ge
- Gynecology Department, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
- Gynecology Department, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Caixia Zhou
- Gynecology Department, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
- Gynecology Department, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Wang M, Xu T, Feng W, Liu J, Wang Z. Advances in Understanding the LncRNA-Mediated Regulation of the Hippo Pathway in Cancer. Onco Targets Ther 2021; 14:2397-2415. [PMID: 33854336 PMCID: PMC8039192 DOI: 10.2147/ott.s283157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and cannot encode proteins. Over the past decade, lncRNAs have been defined as regulatory elements of multiple biological processes, and their aberrant expression contributes to the development and progression of various malignancies. Recent studies have shown that lncRNAs are involved in key cancer-related signaling pathways, including the Hippo signaling pathway, which plays a prominent role in controlling organ size and tissue homeostasis by regulating cell proliferation, apoptosis, and differentiation. However, dysregulation of this pathway is associated with pathological conditions, especially cancer. Accumulating evidence has revealed that lncRNAs can modulate the Hippo signaling pathway in cancer. In this review, we elaborate on the role of the Hippo signaling pathway and the advances in the understanding of its lncRNA-mediated regulation in cancer. This review provides additional insight into carcinogenesis and will be of great clinical value for developing novel early detection and treatment strategies for this deadly disease.
Collapse
Affiliation(s)
- Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Feng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junxia Liu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
23
|
Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA-497 expression in human cancer. Oncol Lett 2020; 21:23. [PMID: 33240429 PMCID: PMC7681205 DOI: 10.3892/ol.2020.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of non-coding single-stranded RNA, with a length of ~22 nt, which are encoded by endogenous genes and are involved in the post-transcriptional regulation of gene expression in animals and plants. Studies have demonstrated that miRNAs play an important role in the occurrence, development, metastasis, diagnosis and treatment of cancer. In recent years, miR-497 has been identified as one of the key miRNAs in a variety of cancer types and has been shown to be downregulated in a variety of solid tumors. However, the regulation of miR-497 expression involves a complex network, which is affected by several factors. The aim of the present review was to summarize the mechanism of regulation of miR-497 expression at the pre-transcriptional and transcriptional levels in cancer, as well as the role of miR-497 expression imbalance in cancer diagnosis, treatment and prognosis. The regulatory mechanisms of miR-497 expression may aid in our understanding of the causes of miR-497 expression imbalance and provide a reference value for further research on the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Guanshui Luo
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China.,Department of Postgraduate Studies, The Second Clinical College of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zhenglin Xia
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shuai Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Hong Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
24
|
Song Z, Jia N, Li W, Zhang XY. LINC01572 Regulates Cisplatin Resistance in Gastric Cancer Cells by Mediating miR-497-5p. Onco Targets Ther 2020; 13:10877-10887. [PMID: 33149605 PMCID: PMC7602899 DOI: 10.2147/ott.s267915] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapy resistance has long been recognized as a major obstacle to cancer treatment. Therefore, elucidating the underlying mechanisms of chemotherapy resistance is conducive to developing new strategies to improve patients' response to chemotherapy drugs. Materials and Methods Real-time quantitative PCR (QPCR) was applied to measure the expression levels of lncRNAs. LINC01572 was down-regulated or up-regulated in GC cells transfected with either LINC01572 shRNA or overexpression vectors. In vitro and in vivo experiments were conducted to investigate the role of LINC01572 in autophagy-related chemotherapy resistance. Results Compared with the parental cells, drug-resistant GC cells had a higher level of LINC01572. Silencing of LINC01572 inhibited chemotherapy-induced autophagy, while its knockout sensitized GC cells against chemotherapy drugs. As a competitive endogenous RNA of miR-497-5p, LINC01572 weakened the inhibitory effect of miR-497-5p on ATG14, leading to chemically induced autophagy and chemotherapy resistance in GC cells. Conclusion A new mechanism of GC autophagy-related chemotherapy resistance regulated by lncRNA was explored in this study, providing a new perspective for understanding chemotherapy resistance.
Collapse
Affiliation(s)
- Zhe Song
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| | - Nan Jia
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| | - Wei Li
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| | - Xiao-Yu Zhang
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| |
Collapse
|
25
|
Xu ZY, Peng J, Shi ZZ, Chen XL, Cheng HZ, Wang H, Wang Y, Wang GP, Jiang W, Peng H. Silencing linc00662 inhibits cell proliferation and colony formation of lung cancer cells via regulating the miR-145-5p-PAFAH1B2 axis. Biochem Cell Biol 2020; 99:330-338. [PMID: 33108738 DOI: 10.1139/bcb-2019-0396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related death in the world. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotide transcripts, and are not translated into protein. The lncRNA linc00662 is overexpressed in lung cancer; however, its role in lung cancer is still unknown. In our study, by analyzing the TCGA data, we found that linc00662 was overexpressed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). We knocked-down the expression of linc00662 using siRNA, and found that silencing linc00662 significantly inhibited the proliferation and colony formation of the lung cancer cell lines A549 and H460. We also found that knockdown of linc00662 increased the expression of the microRNA miR-145-5p and decreased the expression of the platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B2) gene. We further show that linc00662 binds with miR-145-5p, and that miR-145-5p binds to the 3'UTR of PAFAH1B2. miR-145-5p negatively regulates PAFAH1B2 both at the mRNA and the protein level. Loss of miR-145-5p abolished the inhibitory effects of silencing linc00662 on the proliferation and colony formation of A549 and H460 cells. These findings indicate that linc00662 functions as an oncogene by acting as a competing endogenous RNA (ceRNA) and sponges and regulates miR-145-5p in lung cancer, and thus may provide a potential target for treating lung cancer.
Collapse
Affiliation(s)
- Zhe-Yuan Xu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Xin-Long Chen
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Hong-Zhong Cheng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Han Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Yang Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Guo-Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Wen Jiang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Hao Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| |
Collapse
|
26
|
Yin L, Chen G. Verteporfin Promotes the Apoptosis and Inhibits the Proliferation, Migration, and Invasion of Cervical Cancer Cells by Downregulating SULT2B1 Expression. Med Sci Monit 2020; 26:e926780. [PMID: 33079922 PMCID: PMC7586758 DOI: 10.12659/msm.926780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Cervical cancer threatens women’s health worldwide. Verteporfin (VP), a small-molecule YAP1 inhibitor, inhibits cancer cell growth. This study investigated whether VP could inhibit the proliferation and promote the apoptosis of cervical cancer cells by decreasing SULT2B1 expression. Material/Methods Normal and cancerous cervical cell proliferation after VP treatment was detected by CCK-8 assay. HeLa cell migration, invasion, and apoptosis after VP treatment and transfection were analyzed by wound healing assay, transwell assay, and TUNEL assay, respectively. The expression of related proteins was determined by western blot analysis. Western blot and RT-qPCR analysis detected mRNA and protein expression of SULT2B1. Results Different VP concentrations (0.5, 1, 2, and 5 μM) inhibited the viability of HeLa cells and had no obvious effect on H8 cells. Therefore, 5 μM VP was selected for subsequent experiments. VP inhibited the proliferation, migration, and invasion of HeLa cells and promoted their apoptosis. Bcl-2 expression decreased, and expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells increased. SULT2B1 expression increased in cervical cancer cells compared with normal cervical cells. Furthermore, SULT2B1 expression increased in HeLa cells and VP suppressed SULT2B1 expression. SULT2B1 overexpression reduced the inhibiting effect of VP on the proliferation, migration, and apoptosis of HeLa cells, and reduced VP effect on apoptosis of HeLa cells. SULT2B1 overexpression upregulated the Bcl-2 expression and downregulated the expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells. Conclusions VP inhibited the proliferation, migration, and invasion and promoted apoptosis of cervical cancer cells by decreasing SULT2B1 expression.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Guilin Chen
- Department of Obstetrics and Gynecology, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
27
|
Geng Y, Wu Y, Xu C, Li T, Zhang L. Long Non-Coding RNA LINC00662 Regulated Proliferation and Migration by Targeting miR-34a-5p/LMAN2L Axis in Glioma. Onco Targets Ther 2020; 13:10161-10172. [PMID: 33116598 PMCID: PMC7553658 DOI: 10.2147/ott.s272616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background Numerous studies suggest that long non-coding RNAs (lncRNAs) participate in the biological process of diverse malignancies, including glioma. Although many differentially expressed lncRNAs have been identified in glioma, to our best knowledge, the role of LINC00662 and its potential underlying mechanism in glioma progression remains unclear. This study aimed to explore the function and regulatory network of LINC00662 in glioma. Methods Expressions of LINC00662, miR-34a-5p and lectin mannose-binding 2-like (LMAN2L) in glioma tissues were analyzed using The Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Colony formation, Celltiter-Glo and BrdU (5-bromo-2'-deoxyuridine) incorporation assays were used to detect cell proliferation in vitro. Xenograft mouse models were established to determine cell proliferation in vivo. Transwell and wound healing assay was used to detect cell migration. In addition, epithelial-mesenchymal transition (EMT) markers were detected by Western blot. Annexin V and 7-AAD were used to stain apoptotic cells. Interactions between miR-34a-5p and LINC00662 or the 3'-UTR of LMAN2L were predicted and determined by bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) assays. Results High LINC00662 level predicted poor overall survival of glioma patients. Functional studies revealed that suppression of LINC00662 remarkably inhibited cell proliferation, clonogenicity and EMT pathway. Mechanistically, LINC00662 sponged miR-34a-5p to regulate LMAN2L expression. Furthermore, miR-34a-5p inhibitor reversed the anti-proliferation and anti-migration effect of LINC00662 knockdown, which could be rescued by downregulation of LMAN2L in glioma cells. Conclusion Our study was the first to report that LINC00662 acted as a competing endogenous RNA (ceRNA) to regulate glioma progression by targeting miR-34a-5p/LMAN2L axis, providing a new therapeutic target for glioma.
Collapse
Affiliation(s)
- Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuliang Wu
- Department of Neurosurgery, Qilu Children's Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Disease, Beijing, People's Republic of China
| |
Collapse
|
28
|
Liu S, Meng X. LINC00662 Long Non-Coding RNA Knockdown Attenuates the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Regulating the microRNA-15a-5p/Notch2 Axis. Onco Targets Ther 2020; 13:7517-7530. [PMID: 32848412 PMCID: PMC7429411 DOI: 10.2147/ott.s256464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Osteosarcoma (OS) is a frequently occurring malignancy in children and adolescents. In this study, we aimed to investigate the effects of the long non-coding RNA (lncRNA) LINC00662 (LINC00662) in OS and the underlying molecular mechanism. Methods The expression of LINC00662, microRNA-15a-5p (miR-15a-5p), and Notch2 in OS was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, and invasion of OS cells were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound-healing, and transwell assay. The interactions among LINC00662, miR-15a-5p, and Notch2 were determined by dual-luciferase reporter assays. A tumor xenograft model was established in mice for evaluating tumor growth in vivo. Results The expression of LINC00662 and Notch2 was found to be upregulated in OS, but the expression of miR-15a-5p was downregulated. The results demonstrated that LINC00662 knockdown attenuated the proliferation, migration, and invasion of OS cells and suppressed tumor growth in mice. The study further demonstrated that LINC00662 directly interacted with miR-15a-5p, and that Notch2 was a target of miR-15a-5p. The inhibition of miR-15a-5p or Notch2 overexpression markedly reversed the suppressive effect of sh-LINC00662 on the proliferation, migration, and invasion of OS cells. Conclusion The study demonstrated that LINC00662 could be a potential biomarker for OS therapy, and LINC00662 knockdown suppressed the proliferation, migration, and invasion of OS cells by regulating the miR-15a-5p/Notch2 axis.
Collapse
Affiliation(s)
- Shuheng Liu
- Department of Spine Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Xianghai Meng
- Trauma Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, People's Republic of China
| |
Collapse
|
29
|
Tu C, Yang K, Wan L, He J, Qi L, Wang W, Lu Q, Li Z. The crosstalk between lncRNAs and the Hippo signalling pathway in cancer progression. Cell Prolif 2020; 53:e12887. [PMID: 32779318 PMCID: PMC7507458 DOI: 10.1111/cpr.12887] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022] Open
Abstract
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, differentiation, proliferation, migration and other physiological activities. In particular, considerable studies have shown that the aberrant expression and dysregulation of lncRNAs are widely implicated in cancer initiation and progression by acting as tumour promoters or suppressors. Hippo signalling pathway has attracted researchers’ attention as one of the critical cancer‐related pathways in recent years. Increasing evidences have demonstrated that lncRNAs could interact with Hippo cascade and thereby contribute to acquisition of multiple malignant hallmarks, including proliferation, metastasis, relapse and resistance to anti‐cancer treatment. Specifically, Hippo signalling pathway is reported to modulate or be regulated by widespread lncRNAs. Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo signalling. More speculatively, lncRNAs related to Hippo pathway have been poised to become important putative biomarkers and therapeutic targets in human cancers. Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway in carcinogenesis, summarizes the comprehensive role of Hippo‐related lncRNAs in tumour progression and depicts their clinical diagnostic, prognostic or therapeutic potentials in tumours.
Collapse
Affiliation(s)
- Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kexin Yang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Lu
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Tang J, Zhu H, Lin J, Wang H. Knockdown of Circ_0081143 Mitigates Hypoxia-Induced Migration, Invasion, and EMT in Gastric Cancer Cells Through the miR-497-5p/EGFR Axis. Cancer Biother Radiopharm 2020; 36:333-346. [PMID: 32678674 DOI: 10.1089/cbr.2019.3512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jianjun Tang
- Department of General Surgery, Xiangyang No. 1 People's Hospital (Affiliated Hospital of Hubei University of Medicine), Xiangyang, China
| | - Hongyan Zhu
- Department of Oncology, Xiangyang No. 1 People's Hospital (Affiliated Hospital of Hubei University of Medicine), Xiangyang, China
| | - Jingjing Lin
- Department of Blood Transfusion, Xiangyang Traditional Chinese Medicine Hospital, Xiangyang, China
| | - Hongbo Wang
- Department of General Surgery, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, China
| |
Collapse
|
31
|
Liu Q, Zhu L, Liu X, Zheng J, Liu Y, Ruan X, Cao S, Cai H, Li Z, Xue Y. TRA2A-induced upregulation of LINC00662 regulates blood-brain barrier permeability by affecting ELK4 mRNA stability in Alzheimer's microenvironment. RNA Biol 2020; 17:1293-1308. [PMID: 32372707 DOI: 10.1080/15476286.2020.1756055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in the maintenance and regulation of the neural microenvironment. The BBB breakdown is a pathological change in early Alzheimer's disease (AD). RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are involved in the regulation of BBB permeability. Our study demonstrates the role of TRA2A/LINC00662/ELK4 axis in regulating BBB permeability in AD microenvironment. In Aβ1-42-incubated microvascular endothelial cells (ECs) of the BBB model in vitro, TRA2A and LINC00662 were enriched. TRA2A increased the stability of LINC00662 by binding with it. The knockdown of either TRA2A or LINC00662 decreased BBB permeability due to increased expression of tight junction-related proteins. ELK4 was less expressed in the BBB model in AD microenvironment in vitro. LINC00662 mediated the degradation of ELK4 mRNA by SMD pathway. Downregulation of ELK4 increased BBB permeability by increasing the tight junction-related protein expression.TRA2A/LINC00662/ELK4 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment, which may provide a novel target for the therapy of AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Lu Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
32
|
Li C, Wang S, Yang C. Long non-coding RNA DLX6-AS1 regulates neuroblastoma progression by targeting YAP1 via miR-497-5p. Life Sci 2020; 252:117657. [PMID: 32289431 DOI: 10.1016/j.lfs.2020.117657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
AIMS The lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) has been reported to be an oncogenic lncRNA in diverse malignant cancers; however, whether it has oncogenic role in neuroblastoma(NB) remain largely unknown. This study explored the expression status, function and potential mechanism of DLX6-AS1 in NB. MAIN METHOD In the current study, a total of 70 human NB tissues and matched adjacent non-tumor tissues were collected. Quantitative PCR (qPCR) was performed to study the expression differences of DLX6-AS1 in tissues and NB cell lines. Proliferation, migration, invasion and EMT status of transfected NB cells were evaluated by WST-1 assay, colony formation unit assay, Transwell assay and qPCR, respectively. The interaction between DLX6-AS1 and its potential targets was confirmed by luciferase reporter assay. Xenograft models were established to evaluate tumor proliferation in vivo. KEY FINDING We found that the expression of DLX6-AS1 was significantly increased in both NB tissues and cell lines, and elevated DLX6AS1 expression was positively correlated with advanced stage and poor survival. Proliferation rate, migration and invasion ability, as well as EMT process of NB cells was inhibited after DLX6-AS1 knockdown, meanwhile, the tumor growth in vivo was impaired after DLX6-AS1 inhibition. Further analysis showed that DLX6-AS1 regulates the expression of YAP1 by sponging miR-497-5p. DLX6-AS1 directly interacts with miR-497-5p and reduces the binding of miR-497-5p to YAP1 3'UTR, thus inhibiting the degradation of YAP1 by miR-497-5p. SIGNIFICANCE This work demonstrates that DLX6-AS1 partially enhances the proliferation, migration and invasion abilities of NB cells through the miR-497-5p/YAP1 pathway, DLX6-AS1 might act as a promising therapeutic target for NB.
Collapse
Affiliation(s)
- Changchun Li
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shan Wang
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Chao Yang
- Department of Pediatric surgical oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
33
|
Lu M, Zhou E. Long noncoding RNA LINC00662-miR-15b-5p mediated GPR120 dysregulation contributes to osteoarthritis. Pathol Int 2020; 70:155-165. [PMID: 32037689 DOI: 10.1111/pin.12875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
Previous studies demonstrated that dysregulation of G protein-coupled receptor 120 (GPR120) plays a protective role in osteoarthritis (OA). However, the mechanism underlying how GPR120 is downregulated remains largely unknown. In the present study, we evaluated whether GPR120 is regulated by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Our results show that GPR120 was negatively regulated by miR-15b-5p through targeting 3' untranslated region (3'UTR), and that miR-15b-5p was negatively regulated by LINC00662. Further luciferase assay shows that LINC00662-miR-15b-5p signaling pathway contributed the regulation of GPR120 expression. Functionally, the decreased of LINC00662 caused increased miR-15b-5p, thereby leading to decreased GPR120. The decreased GPR120 then contributes to increased expression of inflammatory factors including tumor necrosis factor α (TNF-α), interleukin (IL)-6 and IL-8, cell apoptosis, and decreased apoptosis-related protein levels including cleaved caspase-3, cleaved caspase-9, and Bax in cultured rat chondrocytes. In summary, the present study shows that LINC00662-miR-15b-5p signaling pathway is involved in the regulation of GPR120, thereby contributing to arthritis.
Collapse
Affiliation(s)
- Ming Lu
- Department of Orthopedics, Medical School of Chinese PLA, Beijing, China.,Department of Orthopedics, The Fourth Comprehensive Service and Support Center of the PLA Beijing Administration of Veterans Service Affairs, Beijing, China
| | - Enliang Zhou
- Department of Orthopedics, Shandong Lanling County People's Hospital, Linyi City, Shandong, China
| |
Collapse
|
34
|
LINC00662 promotes hepatocellular carcinoma progression via altering genomic methylation profiles. Cell Death Differ 2020; 27:2191-2205. [PMID: 31959915 DOI: 10.1038/s41418-020-0494-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
The identification of viability-associated long noncoding RNAs (lncRNAs) is a means of uncovering therapeutic approaches for hepatocellular carcinoma (HCC). In addition, aberrant genome-wide hypomethylation has been implicated in HCC initiation and progression. However, the relationship between lncRNA dysregulation and genome-wide hypomethylation in hepatocarcinogenesis has not been fully elucidated. A novel lncRNA named LINC00662 was previously demonstrated to play a role in gastrointestinal cancer. In this study, we demonstrated that this lncRNA was correlated with survival and exhibited oncogenic properties, both in vitro and in vivo. Moreover, we determined that LINC00662 could lead to genome-wide hypomethylation and alter the genomic methylation profile by synchronously reducing the S-adenosylmethionine (SAM) level and enhancing the S-adenosylhomocysteine (SAH) level. Mechanistically, LINC00662 was determined to regulate the key enzymes influencing SAM and SAH levels, namely, methionine adenosyltransferase 1A (MAT1A) and S-adenosylhomocysteine hydrolase (AHCY), by RNA-RNA and RNA-protein interactions. In addition, we demonstrated that some SAM-dependent HCC-promoting genes could be regulated by LINC00662 by altering the methylation status of their promoters via the LINC00662-coupled axes of MAT1A/SAM and AHCY/SAH. Taken together, the results of this this study indicate that LINC00662 could be a potential biomarker for HCC therapy. More importantly, we proposed a new role of lncRNA in regulating genomic methylation to promote oncogene activation.
Collapse
|
35
|
Wei W, Mo X, Yan L, Huang M, Yang Y, Jin Q, Zhong H, Cao W, Wu K, Wu L, Li Z, Wang T, Qin Y, Chen J. Circular RNA Profiling Reveals That circRNA_104433 Regulates Cell Growth by Targeting miR-497-5p in Gastric Cancer. Cancer Manag Res 2020; 12:15-30. [PMID: 32021419 PMCID: PMC6954096 DOI: 10.2147/cmar.s219307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The role and mechanism of hsa_circRNA_104433 in gastric cancer (GC) are further elucidated. MATERIALS AND METHODS CircRNA_104433 was selected by circRNA microarrays and GEO database. qRT-PCR was used to analyze the expression of circRNA_104433 in GC. The role of circRNA_104433 in GC cells was evaluated based on cell cycle progression, cell proliferation, cell apoptosis, and tumor xenograft experiment assay. To explore the mechanisms of circRNA_104433 in GC TCGA database, STRING version, qRT-PCR and luciferase assay were performed. Furthermore, the prognostic value of CDC25A in GC was determined based on the GEO database. RESULTS The level of circRNA_104433 showed upregulation in GC tissues, and the expression of it showed a positive correlation with the degree of differentiation and the size of the tumor. Knockdown of circRNA_104433 inhibited cell cycle transition, and cell proliferation, while promoted cell apoptosis in GC. CircRNA_104433 directly binds to miR-497-5p, which directly regulates CDC25A. The median survival period of GC patients with high expression levels of CDC25A was 21.3 months, which was shorter than those with low group expression of CDC25A (35.9 months). The cell cycle proteins CDK1, CDK2, CCNB1, PKMYT1, CDC20, CHEK1 and CDC25A were coexpressed with CDC25A. CONCLUSION These findings suggested that knockdown of circRNA_104433 expression suppressed tumor development in GC.
Collapse
Affiliation(s)
- Weiyuan Wei
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Mingwei Huang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yang Yang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Qinwen Jin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Huage Zhong
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Wenlong Cao
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Kun Wu
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Liucheng Wu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Zhao Li
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Tingan Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Jiansi Chen
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning530021, People’s Republic of China
| |
Collapse
|
36
|
Cheng B, Rong A, Zhou Q, Li W. LncRNA LINC00662 promotes colon cancer tumor growth and metastasis by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway. J Exp Clin Cancer Res 2020; 39:5. [PMID: 31900207 PMCID: PMC6942292 DOI: 10.1186/s13046-019-1510-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND LncRNA LINC00662 is closely related to the occurrence and development of cancer. This study aims to explore the effect of LINC00662 on colon cancer tumor growth and metastasis and its molecular mechanism. METHODS CCK8, colony formation, transwell, scratch wound, TUNEL, flow cytometry, RT-PCR, western blotting and immunohistochemistry assays were used to detect the proliferation, apoptosis, invasion and migration of colon cancer cell and mRNA and protein expressions. Luciferase reporter and RNA pull down assays were used to detect the combination of LINC00662 and miR-340-5p or IL22 and the combination of miR-340-5p and CLDN8/IL22. Co-immunoprecipitation were used to detect the co-expression of CLDN8 and IL22 in colon cell lines. The targets of LINC00662 were predicated by Starbase v2.0. The target genes of miR-340-5p were predicated by miRDB and TargetScan. GO and KEGG enrichment analysis were performed by DAVID website. RESULTS LINC00662 was up-regulation in colon cancer tissues and cell lines. Univariate Cox regression analysis showed that the LINC00662 expression level was related to the poor prognosis. LINC00662-WT and miR-340-5p mimics co-transfection depressed luciferase activity and IL22/CLDN8-WT and miR-340-5p inhibitors co-transfection memorably motivated luciferase activity. LINC00662 overexpression promoted cell proliferation, invasion and migration, and inhibited cell apoptosis in colon cancer. In vivo xenograft studies in nude mice manifested that LINC00662 overexpression prominently accelerate tumor growth. There was an opposite reaction in the biological functions of colon cells and tumor growth between LINC00662 overexpression and LINC00662 inhibition in vitro and in vivo. The functions of miR-340-5p mimics regulating the biological functions of colon cells and tumor growth were consistent with those of LINC00662 inhibition. CLDN8 and IL22, as target genes of miR-340-5p, reversed the functions of LINC00662 affecting the biological functions of colon cells and the protein levels of Bax, Bcl-2, XIAP, VEGF, MMP-2, E-cadherin and N-cadherin. Co-immunoprecipitation experiments indicated that CLDN8 directly interact with IL22 in colon cell lines. LINC00662 regulated CLDN8 and IL22 expressions and the activation of ERK signaling pathway via targeting miR-340-5p. CONCLUSION LINC00662 overexpression promoted the occurrence and development of colon cancer by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 410008 Henan Province China
| | - Aimei Rong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, 45000 Henan Province China
| | - Quanbo Zhou
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 45000 Henan Province China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 45000 Henan Province China
| |
Collapse
|
37
|
Tian X, Wu Y, Yang Y, Wang J, Niu M, Gao S, Qin T, Bao D. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling. Mol Oncol 2019; 14:462-483. [PMID: 31785055 PMCID: PMC6998656 DOI: 10.1002/1878-0261.12606] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages have important roles in hepatocellular carcinoma (HCC) initiation and progression. Long noncoding RNAs (lncRNAs) have also been reported to be involved in HCC. In this study, we explored how lncRNA LINC00662 may influence HCC progression through both tumor cell-dependent and macrophage-dependent mechanisms. LINC00662 was found to be upregulated in HCC, and high LINC00662 levels correlated with poor survival of HCC patients. LINC00662 upregulated WNT3A expression and secretion via competitively binding miR-15a, miR-16, and miR-107. Through inducing WNT3A secretion, LINC00662 activated Wnt/β-catenin signaling in HCC cells in an autocrine manner and further promoted HCC cell proliferation, cell cycle, and tumor cell invasion, while repressing HCC cell apoptosis. In addition, acting through WNT3A secretion, LINC00662 activated Wnt/β-catenin signaling in macrophages in a paracrine manner and further promoted M2 macrophage polarization. Via activating Wnt/β-catenin signaling and M2 macrophages polarization, LINC00662 significantly promoted HCC tumor growth and metastasis in vivo. Hence, targeting LINC00662 may provide novel therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Xiaohui Tian
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Yuanyuan Wu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Yating Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Jiaxin Wang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Menglan Niu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Tao Qin
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Dengke Bao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China.,Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China.,Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
38
|
Sun Y, Jiang T, Jia Y, Zou J, Wang X, Gu W. LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle 2019; 18:2509-2523. [PMID: 31397203 PMCID: PMC6738907 DOI: 10.1080/15384101.2019.1652034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cells malignant proliferative disease, especially in aged people. LncRNAs have been considered as important regulators in MM. This research was to study the effect of LncRNA MALAT1 on the proliferation and adhesion of myeloma cells and whether Long non-coding RNAs MALAT1(LncRNA MALAT1) plays its regulative role through Hippo-YAP signaling pathway by targeting miR-181a-5p. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was used to detect the LncRNA MALAT1/miR-181a-5p expression and improve the transfection efficiency. Western blot analysis was used to analyze the expression of proliferation and apoptosis related proteins and Hippo-Yes-associated protein (YAP) signaling pathway related proteins. Cell proliferative ability and cell apoptosis were respectively determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis. ELISA assay was for the determination of adherence factors. Immunohistochemistry was to detect the expression of proliferation and adhesion related proteins. LncRNA MALAT1 targeting gene was determined by Dual-luciferase reporter assay. LncRNA MALAT1 was increased in MM cells and LncRNA MALAT1 interference could inhibit cell proliferation and promote cell apoptosis with the changes in the related proteins. Also, LncRNA MALAT1 interference could inhibit cell adhesion through Hippo-YAP signaling pathway. MiR-181a-5p was demonstrated to be a target of LncRNA MALAT1 and miR-181a-5p overexpression could also regulate the changes in cellular behavior in accordance with the LncRNA MALAT1 interference. In addition, LncRNA MALAT1 interference could decrease the expression of miR-181a-5p and inhibit the growth of tumor. In conclusion, this study showed that LncRNA MALAT1 interference inhibited the proliferation and adhesion of myeloma cells by the up-regulation of miR-181a-5p through activating the Hippo-YAP signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/genetics
- Cell Adhesion/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Hippo Signaling Pathway
- Humans
- Male
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering
- Signal Transduction/genetics
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transplantation, Heterologous
- Up-Regulation
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Yanbei Sun
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tingxiu Jiang
- Department of Hematology, Liuzhou Worker’s Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yongqing Jia
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingyun Zou
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoxiao Wang
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
39
|
Huang S, Zhan Z, Li L, Guo H, Yao Y, Feng M, Deng J, Xiong J. LINC00958-MYC positive feedback loop modulates resistance of head and neck squamous cell carcinoma cells to chemo- and radiotherapy in vitro. Onco Targets Ther 2019; 12:5989-6000. [PMID: 31413594 PMCID: PMC6661987 DOI: 10.2147/ott.s208318] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant long non-coding RNA (lncRNA) expression contributes cancer development and resistance to therapy. This study first assessed expression of lncRNA LINC00958 in a variety of human cancers using GEPIA database data and then associated it with prognosis of head and neck squamous cell carcinoma (HNSCC) and investigated LINC00958 interaction with c-Myc and the c-Myc-related gene interplay in HNSCC cells. Materials and methods A cohort of 48 HNSCC vs normal tissues was collected for qRT-PCR analysis of LINC00958 and c-Myc expression and statistical analyses. HNSCC cell lines were subjected to transfection with LINC00958 and c-Myc siRNAs or cDNA and their negative control siRNA or empty vector for qRT-PCR, Western blot, cell viability, colony formation, luciferase reporter, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Results The data showed that LINC00958 expression was upregulated in HNSCC tissues and cell lines, upregulation of which was associated with poor tumor differentiation, advanced tumor stage, and shorter overall survival of patients. In vitro, LINC00958 expression induced HNSCC cell viability and colony formation, whereas knockdown of LINC00958 expression enhanced HNSCC cell sensitivity to ionizing radiation and cisplatin treatment. Mechanistically, LINC00958 is a direct target of c-Myc and can enhance the transcriptional activity of c-Myc, thus to form a positive feedback gene network in HNSCC cells, and in turn to modulate HNSCC cell resistance to chemo- and radiotherapy. Conclusion This study demonstrated the LINC00958 interplay with c-Myc as a feedback loop facilitated HNSCC development and resistance to chemo- and radiotherapy. Targeting of such a network could be further evaluated as a novel therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Zhengyu Zhan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
40
|
Liu Y, Gao X, Tian X. High expression of long intergenic non-coding RNA LINC00662 contributes to malignant growth of acute myeloid leukemia cells by upregulating ROCK1 via sponging microRNA-340-5p. Eur J Pharmacol 2019; 859:172535. [PMID: 31306637 DOI: 10.1016/j.ejphar.2019.172535] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulatory factors in diverse pathological processes, especially in tumorigenesis. Accumulating evidence has demonstrated that long intergenic non-coding RNA 00662 (LINC00662) is overexpressed in multiple cancers and facilitates cancer development and progression. However, whether LINC00662 is involved in acute myeloid leukemia (AML) remains unknown. This study was aimed to explore the expression, biological function and regulatory mechanism of LINC00662 in AML. Here, we found that LINC00662 was significantly increased in AML tissues and cell lines. Knockdown of LINC00662 significantly reduced the growth of AML cells and upregulated AML cell apoptosis. In contrast, overexpression of LINC00662 promoted AML cell growth. MicroRNA-340-5p (miR-340-5p) was predicted as a target of LINC00662. Luciferase reporter assays and RNA pull-down assays confirmed that LINC00662 directly interacted with miR-340-5p. Expression of miR-340-5p was downregulated in AML and silencing of LINC00662 upregulated miR-340-5p expression in AML cells. Moreover, overexpression of miR-340-5p inhibited cell growth and increased apoptosis in AML cells. Inhibition of miR-340-5p significantly reversed the inhibitory effect of LINC00662 silencing on AML cell growth. In addition, Rho-associated protein kinase 1 (ROCK1) was verified as a target gene of miR-340-5p in AML cells. Restoration of ROCK1 expression partially reversed LINC00662 silencing or miR-340-5p overexpression-mediated inhibitory effect on AML cell growth. Overall, our results demonstrate that LINC00662 contributes to the malignant growth of AML cells by upregulating ROCK1 via sponging miR-340-5p, highlighting the important role of the LINC00662/miR-340-5p/ROCK1 axis in regulating the malignant behavior of AML cells.
Collapse
Affiliation(s)
- Yuan Liu
- Hematology, The First Hospital of Yulin, Yulin City, Shaanxi Province, 719000, China
| | - Xiaoyan Gao
- Hematology, Yulin No.2 Hospital, Yulin City, Shaanxi Province, 719000, China.
| | - Xiaoqing Tian
- Hematology, Yulin No.2 Hospital, Yulin City, Shaanxi Province, 719000, China
| |
Collapse
|
41
|
Wang H, Yu M, Hu W, Chen X, Luo Y, Lin X, Zeng Y, Yao X. Linc00662 Promotes Tumorigenesis and Progression by Regulating miR-497-5p/AVL9 Axis in Colorectal Cancer. Front Genet 2019; 10:1385. [PMID: 32038723 PMCID: PMC6993758 DOI: 10.3389/fgene.2019.01385] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recently, multiple lines of evidence have demonstrated that linc00662 serves as an oncogene in various cancers. However, the exact mechanism of oncogenesis mediated by linc00662 in colorectal cancer (CRC) remains unknown. In this study, we aimed to explore the biological role of linc00662 in the regulation of CRC progression. METHODS Both gene expression omnibus (GEO) and the cancer genome atlas (TCGA) datasets were used to evaluate the expression of linc00662. RT-qPCR was used to analyze the expression of linc00662, miR-497-5p, and AVL9 in CRC clinical samples and cell lines. Cell Counting Kit-8 (CCK-8), flow cytometry, transwell assay, and xenograft model were used to investigate the effect of linc00662 on CRC cell proliferation, cell cycle, and metastasis. Western blot analysis was used to analyze the expression of the epithelial-mesenchymal transition (EMT)-associated markers. Furthermore, bioinformatics analysis and mechanism assays were used to elucidate the underlying mechanism. Dual-luciferase reporter assays were used to analyze the regulatory relationships among linc00662, miR-497-5p, and AVL9. RESULTS In this study, we found that the expression of linc00662 was significantly upregulated in CRC tissues compared to normal tissues and positively correlated with tissue differentiation, T stage, and lymphatic metastasis. Further, our data showed that the expression of linc00662 was positively associated with lymph node metastasis, TMN stage, and poor-moderate differentiation. Patients with higher linc00662 expression level were more likely to have poorer overall survival. Knockdown of linc00662 inhibited CRC cell growth, induced cell apoptosis, triggered cell cycle arrest at G2/M phase, and suppressed cell migration and invasion through regulating the EMT pathway. Further, mechanistic studies revealed that knockdown of linc00662 significantly reduced the expression of AVL9, a direct target of miR-497-5p. CONCLUSIONS Linc00662 was significantly upregulated in CRC, and mediated CRC progression and metastasis by competing with miR-497-5p to modulate the expression of AVL9. Therefore, our result sheds light on the potential application of linc00662 in CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Huaiming Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengya Yu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weixian Hu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuwen Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaosheng Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yongming Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xueqing Yao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xueqing Yao,
| |
Collapse
|