1
|
Zhao X, Zhao B, Li H, Liu Y, Wang B, Li A, Zeng T, Hui HX, Sun J, Cikes D, Gheldof N, Hager J, Mi J, Laybutt DR, Deng Y, Shi Y, Neely GG, Wang Q. MTCH2 Suppresses Thermogenesis by Regulating Autophagy in Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416598. [PMID: 40051328 PMCID: PMC12061245 DOI: 10.1002/advs.202416598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
Stimulating adipose tissue thermogenesis has emerged as a promising strategy for combating obesity, with uncoupling protein 1 (UCP1) playing a central role in this process. However, the mechanisms that suppress adipose thermogenesis and energy dissipation in obesity are not fully understood. This study identifies mitochondrial carrier homolog 2 (MTCH2), an obesity susceptibility gene, as a negative regulator of energy homeostasis across flies, rodents, and humans. Notably, adipose-specific MTCH2 depletion in mice protects against high-fat-diet (HFD)-induced obesity and metabolic disorders. Mechanistically, MTCH2 deficiency promotes energy expenditure by stimulating thermogenesis in brown adipose tissue (BAT) and browning of subcutaneous white adipose tissue (scWAT), accompanied by upregulated UCP1 protein expression, enhanced mitochondrial biogenesis, and increased lipolysis in BAT and scWAT. Using integrated RNA sequencing and proteomic analyses, this study demonstrates that MTCH2 is a key suppressor of thermogenesis by negatively regulating autophagy via Bcl-2-dependent mechanism. These findings highlight MTCH2's critical role in energy homeostasis and reveal a previously unrecognized link between MTCH2, thermogenesis, and autophagy in adipose tissue biology, positioning MTCH2 as a promising therapeutic target for obesity and related metabolic disorders. This study provides new opportunities to develop treatments that enhance energy expenditure.
Collapse
Affiliation(s)
- Xin‐Yuan Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ben‐Chi Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Hui‐Lin Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ying Liu
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Bei Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - An‐Qi Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Tian‐Shu Zeng
- Wuhan Union HospitalHuazhong University of Science and TechnologyWuhan430022China
| | - Hannah Xiaoyan Hui
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jia Sun
- Department of EndocrinologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Domagoj Cikes
- Institute of Physiology and PathophysiologyJohannes Kepler University LinzLinz4020Austria
| | - Nele Gheldof
- Ecole Polytechnique de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Jorg Hager
- Nestlé Institute of Health SciencesLausanneCH‐1015Switzerland
| | - Jian‐Xun Mi
- Key Laboratory of Big Data Intelligent ComputingChongqing University of Posts and TelecommunicationsChongqing400065China
- Chongqing Key Laboratory of Image CognitionChongqing University of Posts and TelecommunicationsChongqing400065China
- College of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - D. Ross Laybutt
- Garvan Institute of Medical ResearchSt Vincent's Clinical SchoolUNSW SydneyDarlinghurstSydneyNSW2010Australia
| | - Yin‐Yue Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Yan‐Chuan Shi
- Neuroendocrinology GroupGarvan Institute of Medical ResearchDarlinghurstSydneyNSW2010Australia
- St Vincent's Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSW2010Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional GenomicsCharles Perkins Centre and School of Life & Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Qiao‐Ping Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Guangdong Provincial Key Laboratory of DiabetologyGuangzhou Key Laboratory of Mechanistic and Translational Obesity ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
2
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
3
|
Liu L, Yi G, Li X, Chen C, Chen K, He H, Li J, Cai F, Peng Y, Yang Z, Zhang X. IL-17A's role in exacerbating radiation-induced lung injury: Autophagy impairment via the PP2A-mTOR pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119864. [PMID: 39437853 DOI: 10.1016/j.bbamcr.2024.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Radiation-induced lung injury (RILI) is a serious complication of radiotherapy, and the role of IL-17A in this process is not well understood. While IL-17A has been shown to modulate autophagy, conflicting reports exist regarding its activation or inhibition of autophagy. This study investigates the role of IL-17A in RILI and its effects on autophagy via the PP2A-mTOR pathway, with a focus on the PP2A B56α subunit. METHODS C57BL/6J mice and human lung epithelial cells (BEAS-2B) were exposed to radiation with or without recombinant IL-17A. Autophagy markers were analyzed using Western blotting, immunofluorescence, and autophagy flux assays. PP2A activity, specifically the B56α subunit, was measured. A PP2A agonist (DT-061) was used to verify its role in reversing IL-17A-mediated autophagy inhibition. RESULTS IL-17A inhibited autophagy in lung epithelial cells exposed to radiation by suppressing PP2A activity, particularly through downregulation of the B56α subunit, leading to mTOR activation and reduced autophagosome formation. Treatment with DT-061 restored autophagic activity and improved cell viability. These findings align with reports suggesting that IL-17A inhibits autophagy in certain contexts, while other studies have shown opposing effects. CONCLUSION IL-17A inhibits autophagy in RILI through the PP2A B56α-mTOR pathway, exacerbating lung damage. Further research is needed to clarify the role of IL-17A in different cell types and conditions. Targeting the IL-17A-PP2A B56α-mTOR axis may offer new therapeutic strategies for RILI management.
Collapse
Affiliation(s)
- Liangzhong Liu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - GuangMing Yi
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaohong Li
- Nursing Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - Cai Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Kehong Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hengqiu He
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jinjin Li
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Fanghao Cai
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Peng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Xiaoyue Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
4
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Ling X, Wang C, Feng Q, Zhang T. Interleukin-17 prevents oxidative stress from damaging osteoblast formation by inhibiting autophagic degradation of metallothionein-2. Endocr J 2024; 71:623-633. [PMID: 38644219 DOI: 10.1507/endocrj.ej24-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Interleukin 17A (IL-17A) is a key cytokine promoting osteoblast formation, which contributes to osteogenesis. IL-17A functions in autophagy inhibition within osteoblasts. Metallothionein-2 (MT-2), as an important reactive oxygen species (ROS)-scavenging molecule, prevents oxidative stress from damaging osteoblast formation. The relationship between IL-17A-regulated autophagy and MT-2 production under oxidative stress deserves further exploration. In this study, we first investigated the roles of IL-17A in osteoblastic differentiation and ROS production in osteoblast precursors in the presence of hydrogen peroxide (H2O2). Next, we explored the effects of IL-17A on autophagic activity and MT-2 protein expression in osteoblast precursors in the presence of H2O2. Ultimately, by using autophagic pharmacological agonist (rapamycin) and lentiviral transduction technology, the relationship between autophagy, IL-17A-regulated MT-2 protein expression and IL-17A-regulated ROS production was further elucidated. Our results showed that in the presence of H2O2, IL-17A promoted osteoblastic differentiation and inhibited ROS production. Moreover, in the presence of H2O2, IL-17A inhibited autophagic activity and promoted MT-2 protein expression in osteoblast precursors. Importantly, IL-17A-promoted MT-2 protein levels and -inhibited ROS production were reversed by autophagy activation with rapamycin. Furthermore, IL-17A-inhibited ROS production were blocked by MT-2 silencing. In conclusion, IL-17A promotes ROS clearance by inhibiting autophagic degradation of MT-2, thereby protecting osteoblast formation from oxidative stress.
Collapse
Affiliation(s)
- Xueyan Ling
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen 361000, Fujian, China
| | - Cuixia Wang
- Department of Paediatrics, Eighth People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Qin Feng
- Department of Imaging, Women and Children's Hospital Qingdao University, Qingdao 266000, Shandong, China
| | - Tao Zhang
- Department of General Internal Medicine, Women and Children's Hospital Qingdao University, Qingdao 266000, Shandong, China
| |
Collapse
|
6
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
7
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
8
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
9
|
Tang R, Zheng L, Zheng J, Wu J, Chen P, Chen J, Xu D, Zeng Y, Li Q, Zhang Z. Secukinumab plays a synergistic role with starvation therapy in promoting autophagic cell death of hepatocellular carcinoma via inhibiting IL-17A-increased BCL2 level. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00770-6. [PMID: 37195553 DOI: 10.1007/s11626-023-00770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
It is known that IL-17A inhibits autophagy of hepatocellular carcinoma (HCC) cells, thus contributing to the carcinogenesis of HCC. Starvation therapy can promote the autophagic death of HCC cells by blocking the nutrition supply. The purpose of this study was to explore whether the pharmacological antagonist of IL-17A, secukinumab, and starvation therapy have a synergistic effect on the autophagic cell death of HCC. Here, it could be observed that compared with serum-free condition, the combination of secukinumab and serum-free status better promoted autophagy (observed by LC3 conversion rate, p62 protein expression and the formation of autophagosomes), and more significantly inhibited the survival and function (observed by Trypan blue staining, CCK-8, Transwell, and scratch assays) in HCC HepG2 cells. Moreover, secukinumab significantly decreased BCL2 protein expression under serum-normal and serum-free conditions. However, both the addition of recombinant IL-17A and overexpression of BCL2 blocked the regulation of secukinumab on the survival and autophagy in HepG2 cells. Nude mice experiments demonstrated that compared to the lenvatinib-alone group, the combination group of lenvatinib and secukinumab better inhibited the in vivo tumorigenesis of HepG2 cells and enhanced autophagy in xenotumor tissues. Furthermore, secukinumab significantly decreased BCL2 protein expression in xenotumor tissues without or with lenvatinib application. In conclusion, the antagonism of IL-17A with secukinumab, due to the upregulation on BCL2-related autophagic cell death, can cooperate with starvation therapy in inhibiting HCC carcinogenesis. Our data suggested that secukinumab can become an effective adjuvant for the treatment of HCC.
Collapse
Affiliation(s)
- Rong Tang
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Jinfang Zheng
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Jincai Wu
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Pingping Chen
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Jiacheng Chen
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Dafeng Xu
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Yongchao Zeng
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Qijin Li
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China
| | - Zhensheng Zhang
- Department of Hepatopancreatobiliary Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HuaXiu Road 19th, Haikou, 570311, Hainan, China.
| |
Collapse
|
10
|
Chen XX, Wu HJ, Ke DS, Zhu YR. IL-17A inhibits the degradation of RANKL in osteoblasts by inhibiting BCL2-Beclin1-autophagy signaling. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00761-7. [DOI: 10.1007/s11626-023-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
|
11
|
Liu J, Liu B, Diao G, Zhang Z. Tissue factor promotes HCC carcinogenesis by inhibiting BCL2-dependent autophagy. Bull Cancer 2022; 109:795-804. [DOI: 10.1016/j.bulcan.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
12
|
Yang H, Gao C, Wang X, Qiu F, Wei M, Xia F. Associations between vaginal flora, MIP-1α, IL-17A, and clinical pregnancy rate in AIH. Am J Reprod Immunol 2022; 88:e13543. [PMID: 35357057 DOI: 10.1111/aji.13543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM To investigate how asymptomatic bacterial imbalance affects the clinical pregnancy rate after artificial insemination with the husband's semen (AIH). METHODS This study included married heterosexual couples who underwent AIH. According to the follow-up results, participants were divided into the pregnancy and non-pregnancy groups. Based on the first 10 pair participants in each group with vaginal flora bacterial 16S rRNA sequencing results, six semen samples received bacterial-sperm mixed test. Moreover, 34 cytokines were detected in the peripheral blood sera of the first three pairs by high-throughput Luminex, which were verified in vaginal secretions, cervical mucus, and blood sera from the first 200 pairs by ELISA. RESULTS The results of the 16S sequencing of vaginal secretions showed that compared with the pregnant group, the non-pregnant group had a significantly increased bacterial species diversity, which was mainly manifested by a decrease in Lactobacillus crispatus and an increase in Prevotella bivia. When Prevotella bivia or Lactobacillus crispatus were mixed with sperms, the sperm motility was decreased (p < .05). The vaginal posterior fornix secretions, cervical mucus, and peripheral blood sera of the non-pregnant group showed decreased levels of MIP-1α and increased levels of IL-17A (p < .05). CONCLUSION The imbalance of vaginal flora leading to the increase of Prevotella bivia and the decrease of Lactobacillus crispatus may cause an imbalance of immune regulation. Low expression of MIP-1α and high expression of IL-17A were associated with reduced clinical pregnancy rate in AIH.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Chengzhen Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xia Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fenglong Qiu
- Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Mian Wei
- Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Fei Xia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
13
|
Interleukin-17 promotes osteoclastogenesis and periodontal damage via autophagy in vitro and in vivo. Int Immunopharmacol 2022; 107:108631. [PMID: 35219162 DOI: 10.1016/j.intimp.2022.108631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Because of its potent pro-inflammatory properties, interleukin-17 (IL-17) contributes to the pathogenesis of various inflammatory diseases. This study explored the effects of IL-17 on osteoclastogenesis in an osteoclast monoculture and osteoblast-osteoclast co-culture system, as tools to investigate the molecular mechanisms underlying the interactions between osteoclastogenesis and autophagy. METHODS Various ratios of calvarial osteoblasts (OB) and osteoclast precursor cells (mouse macrophage cell line RAW264.7, hereinafter referred to as OC) were tested. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the optimum osteoblasts:osteoclasts ratio. IL-17 was added to the co-culture system to test its effects on multinucleated osteoclast formation and osteoclast-related proteins. We assessed the effects of IL-17 on receptor activator of nuclear factor-kappa B ligand (RANKL) expression in osteoblasts, and determined if IL-17 alone could modulate osteoclast formation in an osteoclast monoculture. Administration of exogenous RANKL combined with IL-17 was employed to stimulate RAW264.7 cells osteoclastogenesis and to determine production of osteoclasts and autophagy-related proteins. We knocked down Beclin1 expression in RAW264.7 cells and examined the expression of autophagy-related and osteoclast-related proteins in RAW264.7 cells and the co-culture system, and the TAK1-binding protein 3 (TAB3)/ extracellular signal regulated kinase (ERK) pathway. RESULTS A ratio of 20 OB : 1 OC yielded the highest rate of osteoclast formation. Low IL-17 concentrations increased osteoclastogenesis in co-cultures significantly, but high levels of IL-17 had the opposite effect. IL-17 alone could not induce formation of TRAP+ multinucleated cells in RAW264.7 cells. Low IL-17 concentrations promoted osteoclast differentiation and autophagy in RAW264.7 cells induced by exogenous RANKL, but high IL-17 concentrations inhibited this process. Knockdown of Beclin1 reversed the enhanced effects of 0.1 ng/mL IL-17 on osteoclastogenesis and autophagy in RAW264.7 cells. The TAB3/ERK pathway was also blocked after autophagy inhibition. CONCLUSION In the co-culture model used in this study, a ratio of 20 OB:1 OC proved to be the optimal ratio to facilitate osteoclast formation. IL-17 regulated RANKL-induced osteoclastogenesis via autophagy. The Beclin1/TAB3/ERK pathway was involved in osteoclast autophagy.
Collapse
|
14
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
15
|
Han J, Ye S, Chen J, Wang K, Jin J, Zeng Z, Xue S. Lysine-Specific Histone Demethylase 1 Promotes Oncogenesis of the Esophageal Squamous Cell Carcinoma by Upregulating DUSP4. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1624-1634. [PMID: 34937541 DOI: 10.1134/s0006297921120117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer (EC) and has a poor prognosis due to its aggressive nature. Accordingly, it is necessary to find novel prognostic biomarkers and therapeutic targets for ESCC. Lysine-specific histone demethylase 1 (LSD1) plays a core role in the regulation of ESCC oncogenesis. However, the detailed mechanism of LSD1-regulated ESCC growth has not been elucidated. This study aims to explore molecular mechanism underlying the LSD1-regulated ESCC's oncogenesis. After LSD1 silencing, we detected differentially expressed genes (DEGs) in human ESCC cell line, TE-1, by transcriptome sequencing. Subsequently, we investigated expression pattern of the selected molecules in the ESCC tissues and cell lines by qRT-PCR and Western blotting. Furthermore, we explored the roles of selected molecules in ESCC using gene silencing and overexpression assays. Transcriptome sequencing showed that the expression of dual specificity phosphatase 4 (DUSP4) in TE-1 was significantly attenuated after the LSD1 silencing. In addition, the DUSP4 mRNA expression level was significantly higher in the ESCC tissues, especially in those derived from patients with invasion or metastasis. Moreover, the DUSP4 expression was positively associated with the LSD1 expression in the ESCC tissues. DUSP4 overexpression promoted proliferation, invasion, and migration of the ESCC cells, while DUSP4 silencing had an opposite effect. DUSP4 overexpression also enhanced tumorigenicity of the ESCC cells in vivo, while DUSP4 silencing inhibited tumor growth. Importantly, inhibition of cell proliferation, invasion, and migration by the LSD1 inhibitor (ZY0511) was reversed by DUSP4 overexpression. Conclusively, we found that LSD1 promotes ESCC's oncogenesis by upregulating DUSP4, the potential therapeutic and diagnostic target in ESCC.
Collapse
Affiliation(s)
- Junyong Han
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Shixin Ye
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Jinyan Chen
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Kun Wang
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Jingjun Jin
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Zhiyong Zeng
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Shijie Xue
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| |
Collapse
|
16
|
Ke D, Wang X, Lin Y, Wei S. Lactoferrin promotes the autophagy activity during osteoblast formation via BCL2-Beclin1 signaling. Mol Biol Rep 2021; 49:259-266. [PMID: 34716503 DOI: 10.1007/s11033-021-06866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lactoferrin, as the main component of milk, can maintain osteoblast formation, which is conducive to the prevention and treatment of osteoporosis. Lactoferrin also serves as an autophagy regulator, especially in osteoblasts. This study aimed to explore the significance of autophagy in osteoblast formation regulated by lactoferrin and the internal mechanism. METHODS AND RESULTS In this study, we firstly explored the roles of lactoferrin in the autophagy activity of primary osteoblasts (LC3 transformation rate, autophagosome formation). Subsequently, we further investigated the effects of lactoferrin on the BCL2 expression and BCL2-Beclin1 complex. Ultimately, the significance of BCL2 overexpression and Beclin1 silencing on lactoferrin-regulated osteoblast autophagy and osteogenic parameters (ALP activity and mRNA expression of PCNA, Col1, BGLAP and OPN) was observed by gene processing, respectively. Our results showed that lactoferrin enhanced the autophagy activity of osteoblasts. Importantly, lactoferrin inhibited BCL2 expression and the co-immunoprecipitation of BCL2 and Beclin1 in osteoblasts. Moreover, lactoferrin-promoted autophagy and osteogenic parameters was reversed by BCL2 overexpression or Beclin1 silencing in osteoblasts. CONCLUSIONS In conclusion, lactoferrin can inhibit BCL2 expression in osteoblasts, further enhancing Beclin1-dependent autophagy activation.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Xinwen Wang
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China
| | - Yinquan Lin
- Department of Orthopedics, The People's Hospital of JiangMen, No. 172 Gaodi Li, Pengjiang District, Jiangmen, 529000, Guangdong, China.
| | - Shengwang Wei
- Department of Orthopedics, Liuzhou Workers Hospital, No.47, Zone 4, Hongyan Road, Liunan District, Liuzhou, 545005, Guangxi, China.
| |
Collapse
|
17
|
Hu G, Yan C, Xie P, Cao Y, Shao J, Ge J. PRMT2 accelerates tumorigenesis of hepatocellular carcinoma by activating Bcl2 via histone H3R8 methylation. Exp Cell Res 2020; 394:112152. [PMID: 32574605 DOI: 10.1016/j.yexcr.2020.112152] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Protein arginine methyltransferases (PRMTs) have been implicated in the development of various cancers. PRMT2, a member of the type I PRMT family, is overexpressed in multiple tumors. However, the expression and role of PRMT2 in hepatocellular carcinoma (HCC) have not been studied. Here, we discovered that PRMT2 expression is elevated in HCC tissues compared to the corresponding non-tumor tissues, and PRMT2 overexpression is an independent predictor of poor prognosis in HCC patients. Depletion of PRMT2 in HCC cell lines inhibited their cell growth and induced apoptosis. Mechanistic investigations showed that PRMT2 is responsible for H3R8 asymmetric methylation (H3R8me2a). H3R8me2a enrichment at the Bcl2 promoter increases its accessibility to STAT3, promoting Bcl2 gene expression. In addition, our results confirmed that the catalytically inactive mutant of PRMT2 or the type I PRMT inhibitor MS023 impaired the pro-tumorigenic functions of PRMT2 in HCC cells. Overall, our findings showed that PRMT2 functions as an oncogenic gene in HCC, revealing its potential as a novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Guohui Hu
- Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Cao
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Shao
- Centre for Assisted Reproduction, The First Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China.
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Zhuang D, Liang L, Zhang H, Feng X. miR-202 Suppresses Hepatocellular Carcinoma Progression via Downregulating BCL2 Expression. Oncol Res 2020; 28:399-408. [PMID: 32272979 PMCID: PMC7851524 DOI: 10.3727/096504020x15864296270581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
miRNAs play an important role in progression of hepatocellular carcinoma (HCC). In this work, we assessed the function of miR-202 in human HCC and identified BCL2 as its target. We found miR-202 expression was found significantly downregulated, while BCL2 expression was markedly upregulated in HCC tissues and cell lines (HepG2, Hep3B, and HCCLM3). Both miR-202 and BCL2 were closely correlated with major vascular invasion and advanced TNM stage as well as overall survival of HCC patients. Overexpression of miR-202 significantly inhibited cell proliferation, induced apoptosis and cell cycle arrest at the G0/G1 phase, and prevented tumor formation in a xenograft nude mouse model. Further, miR-202 dramatically inhibited migration, invasion, and epithelial–mesenchymal transition. miR-202 bound to the 3′-untranslated region (3′-UTR) of BCL2 mRNA and downregulated the expression level of BCL2 protein. Exogenous BCL2 overexpression weakened the inhibitory effects of miR-202, while inhibition of BCL2 enhanced the inhibitory effects of miR-202. In conclusion, miR-202 serves as a tumor suppressor in HCC progression by downregulating BCL2 expression, indicating miR-202 might be a potential target for HCC.
Collapse
Affiliation(s)
- Donghai Zhuang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong UniversityJinanP.R. China
| | - Li Liang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong UniversityJinanP.R. China
| | - Hongzhan Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong UniversityJinanP.R. China
| | - Xianguang Feng
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong UniversityJinanP.R. China
| |
Collapse
|
19
|
Li J, Liu G, Li L, Yao Z, Huang J. Research progress on the effect of autophagy-lysosomal pathway on tumor drug resistance. Exp Cell Res 2020; 389:111925. [DOI: 10.1016/j.yexcr.2020.111925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
|
20
|
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506:33-43. [PMID: 32142718 DOI: 10.1016/j.cca.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality that is often accompanied by immune system disorders and local lymphocyte infiltration. Tumor-infiltrating lymphocytes, cancer cells, stromal cells, and the numerous cytokines they produce, such as chemokines, interferons, tumor necrosis factors, and interleukins, collectively constitute the tumor microenvironment. As a main type of immune effector, interleukin plays opposing roles in regulating tumor cell progression, adhesion, and migration according to its different subtypes. Many reports have concentrated on the roles that interleukins play in HCC, but understanding them systematically remains challenging. This study reviewed the current data to comprehensively summarize the relationships between HCC progression and human interleukin gene families.
Collapse
Affiliation(s)
- Hu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China; Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Yang Xuefeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Xiao Jianhua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|