1
|
Saad KM, Elmasry K, Baban B, Livingston MJ, Dong Z, Abdelmageed ME, Abdelaziz RR, Suddek GM, Elmarakby AA. Protocatechuic Acid Ameliorates Cisplatin-Induced Inflammation and Apoptosis in Mouse Proximal Tubular Cells. Int J Mol Sci 2025; 26:4115. [PMID: 40362355 PMCID: PMC12071929 DOI: 10.3390/ijms26094115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Cisplatin is a highly cytotoxic drug used for the treatment of head, neck, and soft tissue cancers; however, it has nephrotoxic effects that can lead to acute kidney injury. Protocatechuic acid (PCA) is a natural widely available antioxidant found in many fruits such as kiwi, mango, and berries. We have recently shown that PCA reduced renal injury in a mouse model of unilateral ureteral obstruction. The current study aims to investigate the protective effects of PCA in Cisplatin-induced inflammation in vitro in Boston University Mouse Proximal Tubular (BUMPT) cells. BUMPT cells were cultured in complete DMEM. Confluent BUMPT cells were then treated with 20 μM Cisplatin ± PCA 50 or 100 μM for 24 h. PCA treatment showed a dose-depending increase in % cell viability in Cisplatin-treated BUMPT cells. PCA treatment also dose-dependently decreased Cisplatin-induced increases in oxidative stress (ROS and TBARS), inflammation (p-NF-κB and IL-6), and apoptosis (cleaved caspase-3 and % of TUNEL+ cells) compared to Cisplatin-only treatment. The reduction in oxidative stress, inflammation, and apoptosis with PCA treatment in Cisplatin-treated BUMPT cells was associated with decreases in tubular physical barrier resistance and the expression of the tight junction protein zonula occludens-1 (ZO-1) when compared to BUMPT cells treated with Cisplatin alone. The current findings suggest that PCA treatment improves tubular barrier function in Cisplatin-treated BUMPT cells via reductions in oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Karim M. Saad
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, Augusta, GA 30912, USA; (K.M.S.); (K.E.); (B.B.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.A.); (R.R.A.); (G.M.S.)
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, Augusta, GA 30912, USA; (K.M.S.); (K.E.); (B.B.)
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.J.L.); (Z.D.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, Augusta, GA 30912, USA; (K.M.S.); (K.E.); (B.B.)
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.J.L.); (Z.D.)
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.J.L.); (Z.D.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Marwa E. Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.A.); (R.R.A.); (G.M.S.)
| | - Rania R. Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.A.); (R.R.A.); (G.M.S.)
| | - Ghada M. Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.A.); (R.R.A.); (G.M.S.)
| | - Ahmed A. Elmarakby
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, Augusta, GA 30912, USA; (K.M.S.); (K.E.); (B.B.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.A.); (R.R.A.); (G.M.S.)
| |
Collapse
|
2
|
Shi L, Wang Z, Xiao J, Hu R, Zou H, Wang J, Yue Z, Peng Q, Jiang Y, Xue B, Wang L. Folic Acid Alleviates Hydrogen Peroxide-Induced Oxidative Stress in Bovine Placental Trophoblast Cells by Regulating the NRF2/mTOR Signaling Pathway. Int J Mol Sci 2025; 26:2818. [PMID: 40141461 PMCID: PMC11942747 DOI: 10.3390/ijms26062818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
As one of the important components of placental structure, the integrity of placental trophoblast cells is crucial for placental function. When oxidative stress continues to act on placental trophoblast cells, it can cause changes in placental structure and function. Research has shown that folic acid (FA) has a certain alleviating effect on the functional damage of trophoblast cells caused by oxidative stress, but the mechanism of action is still unclear. Therefore, this study focuses on bovine placental trophoblast cells (BPTCs) to explore the effects and mechanisms by which FA regulates oxidative stress in cells, with the aim of providing a theoretical foundation for improving the reproductive performance of cows. The results show that, compared with the H2O2 group, the FA+ H2O2 group showed an increase in the cell proliferation index (PI), superoxide dismutase 2 (SOD2), glutathione peroxidase (GSH-px), and catalase (CAT) mRNA expression and total antioxidant capacity (T-AOC) of cells, while the content of reactive oxygen species (ROS) decreased. In addition, the mRNA expression of tight junction factors, nutrient transporters, placental functional factors, mammalian rapamycin (mTOR) and its downstream factors, and nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream factors in the FA+ H2O2 group increased, while the protein abundance of nuclear NRF2 decreased. After treatment with the inhibitor ML385, it was found that the protective effect of FA on H2O2-induced cellular oxidative damage was alleviated. These results indicate that FA can regulate the NRF2/mTOR signaling pathway, promote the expression of antioxidant factors, and alleviate the damage to the cell barrier and nutrient transport function in BPTCs caused by oxidative stress.
Collapse
Affiliation(s)
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (J.X.); (H.Z.); (J.W.); (Z.Y.); (Q.P.); (Y.J.); (B.X.); (L.W.)
| | | | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (J.X.); (H.Z.); (J.W.); (Z.Y.); (Q.P.); (Y.J.); (B.X.); (L.W.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Matsuoka T, Kajiwara K, Kawasaki T, Wada S, Samura O, Sago H, Okamoto A, Umezawa A, Akutsu H. Inhibitory effect of all-trans retinoic acid on ferroptosis in BeWo cells mediated by the upregulation of heme Oxygenase-1. Placenta 2024; 154:110-121. [PMID: 38945098 DOI: 10.1016/j.placenta.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION This study aimed to explore the association between ferroptosis, a newly identified type of cell death, and the role of retinoic acid in developing pregnancy complications. Therefore, the effects of all-trans retinoic acid (ATRA) on ferroptosis susceptibility in BeWo cells were assessed to understand abnormal placental development. METHODS BeWo cells were used as surrogates for cytotrophoblasts. The effect of ATRA on ferroptosis sensitivity was assessed on BeWo cells pretreated with ATRA or dimethyl sulfoxide (DMSO; control), following which the LDH-releasing assay was performed. The effects of ATRA pretreatment on the antioxidant defense system (including glutathione [GSH], mitochondrial membrane potential, and heme oxygenase-1 [HMOX1]) in BeWo cells were assessed using assay kits, RT-qPCR, and HMOX1 immunostaining. To evaluate the effect of ATRA on BeWo cells, HMOX1 was silenced in BeWo cells using shRNA. RESULTS ATRA pretreatment increased ferroptosis resistance in BeWo cells. Although with pretreatment, qPCR indicated upregulation of HMOX1, no significant change was observed in the GSH levels or mitochondrial membrane potential. This was corroborated by intensified immunostaining for heme oxygenase-1 protein (HO-1). Notably, the protective effect of ATRA against ferroptosis was negated when HO-1 was inhibited. Although HMOX1-silenced BeWo cells exhibited heightened ferroptosis sensitivity compared with controls, ATRA pretreatment counteracted ferroptosis in these cells. DISCUSSION ATRA pretreatment promotes BeWo cell viability by suppressing ferroptosis and upregulating HMOX1 and this can be used as a potential therapeutic strategy for addressing placental complications associated with ferroptosis.
Collapse
Affiliation(s)
- Tomona Matsuoka
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Kazuhiro Kajiwara
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Seiji Wada
- Center of Maternal-Fetal, Neonatal, and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal, and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| |
Collapse
|
4
|
Lin Q, Cao J, Yu J, Zhu Y, Shen Y, Wang S, Wang Y, Liu Z, Chang Y. YAP-mediated trophoblast dysfunction: the common pathway underlying pregnancy complications. Cell Commun Signal 2023; 21:353. [PMID: 38098027 PMCID: PMC10722737 DOI: 10.1186/s12964-023-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Yes-associated protein (YAP) is a pivotal regulator in cellular proliferation, survival, differentiation, and migration, with significant roles in embryonic development, tissue repair, and tumorigenesis. At the maternal-fetal interface, emerging evidence underscores the importance of precisely regulated YAP activity in ensuring successful pregnancy initiation and progression. However, despite the established association between YAP dysregulation and adverse pregnancy outcomes, insights into the impact of aberrant YAP levels in fetal-derived, particularly trophoblast cells, and the ensuing dysfunction at the maternal-fetal interface remain limited. This review comprehensively examines YAP expression and its regulatory mechanisms in trophoblast cells throughout pregnancy. We emphasize its integral role in placental development and maternal-fetal interactions and delve into the correlations between YAP dysregulation and pregnancy complications. A nuanced understanding of YAP's functions during pregnancy could illuminate intricate molecular mechanisms and pave the way for innovative prevention and treatment strategies for pregnancy complications. Video Abstract.
Collapse
Affiliation(s)
- Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jing Yu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Zhu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Xiang F, Wang P, Gong H, Luo J, Zhou X, Zhan C, Hu T, Wang M, Xing Y, Guo H, Luo G, Li Y. Wnt4 increases the thickness of the epidermis in burn wounds by activating canonical Wnt signalling and decreasing the cell junctions between epidermal cells. BURNS & TRAUMA 2023; 11:tkac053. [PMID: 37408701 PMCID: PMC10318205 DOI: 10.1093/burnst/tkac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Indexed: 07/07/2023]
Abstract
BACKGROUND Burn wound healing is a complex process and the role of Wnt ligands varies in this process. Whether and how Wnt4 functions in burn wound healing is not well understood. In this study, we aim to reveal the effects and potential mechanisms of Wnt4 in burn wound healing. METHODS First, the expression of Wnt4 during burn wound healing was determined by immunofluorescence, Western blotting and qPCR. Then, Wnt4 was overexpressed in burn wounds. The healing rate and healing quality were analysed by gross photography and haematoxyline and eosin staining. Collagen secretion was observed by Masson staining. Vessel formation and fibroblast distribution were observed by immunostaining. Next, Wnt4 was knocked down in HaCaT cells. The migration of HaCaT cells was analysed by scratch healing and transwell assays. Next, the expression of β-catenin was detected by Western blotting and immunofluorescence. The binding of Frizzled2 and Wnt4 was detected by coimmunoprecipitation and immunofluorescence. Finally, the molecular changes induced by Wnt4 were analysed by RNA sequencing, immunofluorescence, Western blotting and qPCR in HaCaT cells and burn wound healing tissues. RESULTS The expression of Wnt4 was enhanced in burn wound skin. Overexpression of Wnt4 in burn wound skin increased the thickness of epidermis. Collagen secretion, vessel formation and fibroblast distribution were not significantly impacted by Wnt4 overexpression. When Wnt4 was knocked down in HaCaT cells, the ratio of proliferating cells decreased, the ratio of apoptotic cells increased and the ratio of the healing area in the scratch healing assay to the number of migrated cells in the transwell assay decreased. The nuclear translocation of β-catenin decreased in shRNA of Wnt4 mediated by lentivirus-treated HaCaT cells and increased in Wnt4-overexpressing epidermal cells. RNA-sequencing analysis revealed that cell junction-related signalling pathways were significantly impacted by Wnt4 knockdown. The expression of the cell junction proteins was decreased by the overexpression of Wnt4. CONCLUSIONS Wnt4 promoted the migration of epidermal cells. Overexpression of Wnt4 increased the thickness of the burn wound. A potential mechanism for this effect is that Wnt4 binds with Frizzled2 and increases the nuclear translocation of β-catenin, thus activating the canonical Wnt signalling pathway and decreasing the cell junction between epidermal cells.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Pei Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Hao Gong
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Jia Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Xin Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Chenglin Zhan
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Tianxing Hu
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Mengru Wang
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Yizhan Xing
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Haiying Guo
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing 400038, PR China
| |
Collapse
|
6
|
Fatima S, Altwaijry H, Abulmeaty MMA, Abudawood M, Siddiqi NJ, Alrashoudi RH, Alsobaie S. Combined Supplementation of Clostridium butyricum and Bifidobacterium infantis Diminishes Chronic Unpredictable Mild Stress-Induced Intestinal Alterations via Activation of Nrf-2 Signaling Pathway in Rats. Int J Mol Sci 2023; 24:ijms24098264. [PMID: 37175970 PMCID: PMC10178881 DOI: 10.3390/ijms24098264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Exposure to long-term chronic unpredictable mild stress (CUMS) can cause redox imbalance and inflammation, which may affect the integrity of the gut barrier. The present study was conducted to investigate the effects of a probiotics bacterium mixture, including Clostridium butyricum (C. butyricum) and Bifidobacterium infantis (B. infantis), on the intestinal homeostasis in rats exposed to multiple low-intensity stressors for 28 days. The mechanism of CUMS-induced altered intestinal homeostasis was evaluated by focusing on the nuclear factor-E2-related factor-2 (Nrf-2) pathway. In contrast to the CUMS group, probiotic mixture supplementation significantly (p < 0.01) reversed the stress-induced elevated corticosterone level, protein and lipid oxidation, and increased enzymatic and non-enzymatic antioxidant levels, as well as upregulated Nrf-2/HO-1 pathway. Probiotics supplementation further significantly (p < 0.01) decreased the CUMS-induced inflammation, altered T-lymphocyte levels, and suppressed the protein expression of nuclear factor kappa B (NF-κB) in rat intestines. Improvement in histological changes and intestinal barrier integrity further validate the beneficial effects of probiotic mixtures on CUMS-induced altered intestinal morphology. In conclusion, our results suggest that the combination of C. butyricum and B. infantis significantly attenuated CUMS-induced oxidative stress, inflammation, and T-lymphocyte modulation by upregulating Nrf-2/HO-1 signaling and inhibiting NF-κB expression in rat intestine.
Collapse
Affiliation(s)
- Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Haifa Altwaijry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Mahmoud M A Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Manal Abudawood
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Reem Hamoud Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sarah Alsobaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
7
|
Furuta A, Shima T, Yoshida-Kawaguchi M, Yamada K, Yasuda I, Tsuda S, Yamaki-Ushijima A, Yoneda S, Higashisaka K, Cheng SB, Matsumoto K, Tsutsumi Y, Sharma S, Saito S, Nakashima A. Chloroquine is a safe autophagy inhibitor for sustaining the expression of antioxidant enzymes in trophoblasts. J Reprod Immunol 2023; 155:103766. [PMID: 36470134 DOI: 10.1016/j.jri.2022.103766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Inhibition of autophagy contributes to the pathophysiology of preeclampsia. Although chloroquine (CHQ) is an autophagy inhibitor, it can reduce the occurrence of preeclampsia in women with systemic lupus erythematosus. To clarify this important clinical question, this study aimed to address the safety of CHQ in trophoblast cells from the viewpoint of homeostasis, in which the anti-oxidative stress (OS) response and autophagy are involved. We used Western blotting to evaluate the protein levels in the trophoblast cells. The expression levels of heme oxygenase-1 (HO-1), an anti-OS enzyme, mediate resistance to OS induced by hydrogen peroxide (H2O2) in trophoblast cell lines. Among the autophagy modulators, bafilomycin A1 (BAF), an autophagy inhibitor, but not autophagy activators, suppressed HO-1 expression in BeWo cells; CHQ did not suppress HO-1 expression in BeWo cells. To clarify the role of autophagy in HO-1 induction, we observed no difference in HO-1 induction by H2O2 between autophagy-normal and autophagy-deficient cells. As for the mechanism of HO-1 induction by OS, BAF suppressed HO-1 induction by downregulating the expression of neighbor of BRCA1 gene 1 (NBR1) in the selective p62-NBR1-nuclear factor erythroid 2-related factor 2 (Nrf2) autophagy pathway. CHQ did not inhibit HO-1 expression by sustaining NBR1 expression in human villous tissues compared to BAF treatment. In conclusion, CHQ is a safer medicine than BAF for sustaining NBR1, which resist against OS in trophoblasts by connecting selective autophagy and the anti-OS response.
Collapse
Affiliation(s)
- Atsushi Furuta
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shi-Bin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Surendra Sharma
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Shigeru Saito
- University of Toyama, 3190 Gofuku, Toyama 9308555, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan.
| |
Collapse
|
8
|
Peng J, He Q, Li S, Liu T, Zhang J. Hydrogen-Rich Water Mitigates LPS-Induced Chronic Intestinal Inflammatory Response in Rats via Nrf-2 and NF-κB Signaling Pathways. Vet Sci 2022; 9:621. [PMID: 36356098 PMCID: PMC9692594 DOI: 10.3390/vetsci9110621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 04/04/2024] Open
Abstract
Long-term exposure to low-dose lipopolysaccharide can impair intestinal barriers, causing intestinal inflammation and leading to systemic inflammation. Hydrogen-rich water possesses antioxidant and anti-inflammatory functions and exerts inhibitory effects on various inflammatory diseases. In this study, we investigated whether oral hydrogen-rich water could prevent lipopolysaccharide-induced chronic intestinal inflammation. An experimental model was established by feeding hydrogen-rich water, followed by the injection of lipopolysaccharide (200 μg/kg) in the tail vein of rats after seven months. ELISA, Western blot, immunohistochemistry, and other methods were used to detect related cytokines, proteins related to the NF-κB and Nrf-2 signaling pathways, and tight-junction proteins to study the anti-inflammatory and antioxidant effects of hydrogen-rich water. The obtained results show that hydrogen-rich water significantly increased the levels of superoxide dismutase and structural proteins; activated the Nrf-2 signaling pathway; downregulated the expression of inflammatory factors cyclooxygenase-2, myeloperoxidase, and ROS; and decreased the activation of the NF-κB signaling pathway. These results suggest that hydrogen-rich water could protect against chronic intestinal inflammation in rats caused by lipopolysaccharide-induced activation of the NF-κB signaling pathway by regulating the Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Jin Peng
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Qi He
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Shuaichen Li
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tao Liu
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Jiantao Zhang
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
9
|
Li X, Wu H, Huo H, Ma F, Zhao M, Han Q, Hu L, Li Y, Zhang H, Pan J, Tang Z, Guo J. N-acetylcysteine combined with insulin alleviates the oxidative damage of cerebrum via regulating redox homeostasis in type 1 diabetic mellitus canine. Life Sci 2022; 308:120958. [PMID: 36108767 DOI: 10.1016/j.lfs.2022.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are one of the major complications of type 1 diabetes mellitus (T1DM). The effect of insulin monotherapy on controlling blood glucose and neurodegeneration associated with diabetes is unsatisfactory. It is revealed that oxidative stress is a key element in T1DM. Therefore, N-acetylcysteine (NAC) was used together with insulin to investigate the therapeutic effect on neuronal damage in T1DM in this study. A total of 40 beagles were randomly divided into 5 groups (control group, DM group, insulin monotherapy group, NAC combined with insulin group, and NAC monotherapy group) to explore the effects of NAC on alleviating the oxidative damage in cerebrum. Our results showed that the contents of H2O2, 8-OHdg and MDA were apparently increased in DM group, while DNA and lipid oxidative damage was alleviated by the treatment of NAC and insulin. Histopathology revealed the sparse of neurofibrils and vacuolar degeneration in DM group. Additionally, compared with the control group, the mRNA expression levels of HO-1, nqo1, GCLC and GSTM1 were significantly decreased in DM group, while the opposite trend could be shown under NAC combined with insulin treatment. Meanwhile, the tight junction proteins of ZO-1, occludin and Claudin-1 were up-regulated with the treatment of NAC combined with insulin. Additionally, NAC further alleviated oxidative damage by enhancing the activity of GSH, Trx and TrxR and reducing the activity of catalase, GSSG and Grx to maintain redox homeostasis. These results demonstrated that NAC combined with insulin exerted protective effects against T1DM-induced cerebral injury via maintaining cerebral redox homeostasis.
Collapse
Affiliation(s)
- Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Menglong Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
10
|
Downregulation of krüppel-like factor 6 expression modulates extravillous trophoblast cell behavior by increasing reactive oxygen species. Placenta 2022; 127:62-72. [PMID: 35973366 DOI: 10.1016/j.placenta.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Placental extravillous trophoblasts play a crucial role in the establishment of a healthy pregnancy. Reactive oxygen species (ROS) may contribute to their differentiation and function as mediators in signaling processes or might cause oxidative stress resulting in trophoblast dysfunction. The krüppel-like transcription factor 6 (KLF6) regulates many genes involved in essential cell processes where ROS are also involved. However, whether KLF6 regulates ROS levels has not been previously investigated. MATERIALS AND METHODS KLF6 was silenced by siRNAs in HTR8-SV/neo cells, an extravillous trophoblast model. Total and mitochondrial ROS levels, as well as mitochondrial membrane potential and apoptosis were analyzed by flow cytometry. The expression of genes and proteins of interest were analyzed by qRT-PCR and Western blot, respectively. Cell response to oxidative stress, proliferation, viability, morphology, and migration were evaluated. RESULTS KLF6 downregulation led to an increase in ROS and NOX4 mRNA levels, accompanied by reduced cell proliferation and increased p21 protein expression. Catalase activity, 2-Cys peroxiredoxin protein levels, Nrf2 cytoplasmic localization and hemoxygenase 1 expression, as well as mitochondrial membrane potential and cell apoptosis were not altered suggesting that ROS increase is not associated with cellular damage. Instead, KLF6 silencing induced cytoskeleton modifications and increased cell migration in a ROS-dependent manner. DISCUSSION Present data reveal a novel role of KLF6 on ROS balance and signaling demonstrating that KLF6 downregulation induces an increase in ROS levels that contribute to extravillous trophoblast cell migration.
Collapse
|
11
|
Wang J, Liang C, Hu Y, Xia X, Li Z, Gao H, Sheng J, Huang K, Wang S, Zhu P, Hao J, Tao F. Effects of selenium levels on placental oxidative stress and inflammation during pregnancy: a prospective cohort study. J Matern Fetal Neonatal Med 2022; 35:9956-9965. [PMID: 35659169 DOI: 10.1080/14767058.2022.2078963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Studies on the impact of Se levels in different pregnancy periods on placental function are limited. AIM This cohort study sought to investigate the levels of the trace element Se and to assess their effects on placental oxidative stress (OS) and mRNA expression of inflammatory genes during pregnancy. METHODS The study population consisted of 2519 pregnant women from the Ma'anshan birth cohort. Se levels were measured in the first and second trimesters of pregnancy and in cord blood using inductively coupled plasma-mass spectrometry (ICP-MS). Placental stress and mRNA expression of inflammatory genes were assessed using RT-PCR. RESULTS A statistically significant negative association was noted between Se levels in the second trimester of pregnancy and mRNA expression of placental HO-1(β = -0.009, p < .01), HIF1α (β = -0.005, p = .010), GRP78 (β = -0.011, p < .001), CRP (β = -.007, p = .033) and CD68 (β = -0.006, p = .019). A negative association was noted between Se levels in cord blood and mRNA expression of placental HO-1 (β = -0.007, p = .004), HIF1α (β = -0.006, p = .005) and GRP78 (β = -0.009, p = .004). We found that prenatal Se status was associated with placental stress and mRNA expression of inflammatory genes. CONCLUSION Se deficiency during pregnancy, especially in the second trimester, leads to the production of OS and an increase in inflammatory mediators, affecting the growth and development of the fetus. Monitoring of pregnant women's nutritional status is necessary to prevent nutritional imbalances and deficiencies in important micronutrients in the fetal.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yabin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Sheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Sufang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Fantone S, Tossetta G, Di Simone N, Tersigni C, Scambia G, Marcheggiani F, Giannubilo SR, Marzioni D. CD93 a potential player in cytotrophoblast and endothelial cell migration. Cell Tissue Res 2021; 387:123-130. [PMID: 34674045 DOI: 10.1007/s00441-021-03543-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
CD93, also known as complement component C1q receptor, is expressed on the surface of different cellular types such as monocytes, neutrophils, platelets, microglia, and endothelial cells, and it plays a pivotal role in cell proliferation, cell migration, and formation of capillary-like structures. These processes are strictly regulated, and many fetal and maternal players are involved during placental development. At present, there are no studies in literature regarding CD93 in placental development, so we investigated CD93 expression in first and third trimester and PE placentas by immunohistochemistry and western blotting analysis. In addition, we performed in vitro experiments under oxidative stress conditions to demonstrate how oxidative stress acts on CD93 protein expression. Our data showed that CD93 was expressed in villous cytotrophoblast cells, in some fetal vessels of first and third trimester and PE placentas and in the extravillous cytotrophoblast of cell columns in the first trimester placentas. Moreover, we detected a significant decrease of CD93 expression in third trimester and PE placentas compared to first trimester placentas, while no differences were detected between third and PE placentas. No differences of CD93 expression were detected in oxidative stress conditions. We suggest that CD93 can guide extravillous cytotrophoblast migration through β1-integrin in uterine spiral arteries during placentation in the first trimester of pregnancy and that the decrease of CD93 expression in third trimester and PE placentas could be linked to the poor extravillous cytotrophoblast cells migration. So, it might be interesting to understand the role of CD93 in the first phases of PE onset.
Collapse
Affiliation(s)
- Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy. .,Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Science, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.,IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Chiara Tersigni
- U.O.C. Di Ostetricia E Patologia Ostetrica, Dipartimento Di Scienze Della Salute Della Donna, Fondazione Policlinico Universitario A. Gemelli IRCCS, del Bambino E Di Sanità Pubblica, 00168, Roma, Italy.,Istituto Di Clinica Ostetrica E Ginecologica, Università Cattolica del Sacro Cuore, 00168, Roma, Italy
| | - Giovanni Scambia
- U.O.C. Di Ostetricia E Patologia Ostetrica, Dipartimento Di Scienze Della Salute Della Donna, Fondazione Policlinico Universitario A. Gemelli IRCCS, del Bambino E Di Sanità Pubblica, 00168, Roma, Italy.,Istituto Di Clinica Ostetrica E Ginecologica, Università Cattolica del Sacro Cuore, 00168, Roma, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131, Ancona, Italy
| | - Stefano R Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| |
Collapse
|
13
|
Zhao HL, Zhang J, Zhu Y, Wu Y, Yan QG, Peng XY, Xiang XM, Tian KL, Li T, Liu LM. Protective effects of HBOC on pulmonary vascular leakage after haemorrhagic shock and the underlying mechanisms. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1272-1281. [PMID: 33084450 DOI: 10.1080/21691401.2020.1835937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Volume resuscitation is an important early treatment for haemorrhagic shock. Haemoglobin-based oxygen carrier (HBOC) can expand the volume and provide oxygen for tissues. Vascular leakage is common complication in the process of haemorrhagic shock and resuscitation. The aim of this study was to observe the effects of HBOC (a bovine-derived, cross-linked tetramer haemoglobin oxygen-carrying solution, 0.5 g/L) on vascular leakage in rats after haemorrhagic shock. A haemorrhagic shock rat model and hypoxic vascular endothelial cells (VECs) were used. The role of intercellular junctions and endothelial glycocalyx in the protective effects of HBOC and the relationship with mitochondrial function were analysed. After haemorrhagic shock, the pulmonary vascular permeability to FITC-BSA, Evans Blue was increased, endothelial glycocalyx was destroyed and the expression of intercellular junction proteins was decreased. After haemorrhagic shock, a small volume of HBOC solution (6 ml/kg) protected pulmonary vascular permeability, increased structural thickness of endothelial glycocalyx, the levels of its components and increased expression levels of the intercellular junction proteins ZO-1, VE-cadherin and occludin. Moreover, HBOC significantly increased oxygen delivery and consumption in rats, improved VEC mitochondrial function and structure. In conclusion, HBOC mitigates endothelial leakage by protecting endothelial glycocalyx and intercellular junctions through improving mitochondrial function and tissue oxygen delivery.
Collapse
Affiliation(s)
- Hong Liang Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qing Guang Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xiao Yong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xin Ming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Kun Lun Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Liang Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
14
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
15
|
Yang Y, Xu P, Zhu F, Liao J, Wu Y, Hu M, Fu H, Qiao J, Lin L, Huang B, Jin H, Liu X, Zheng Y, Wen L, Saffery R, Kilby MD, Yan J, Kenny LC, Qi H, Tong C, Baker PN. The Potent Antioxidant MitoQ Protects Against Preeclampsia During Late Gestation but Increases the Risk of Preeclampsia When Administered in Early Pregnancy. Antioxid Redox Signal 2021; 34:118-136. [PMID: 32228063 DOI: 10.1089/ars.2019.7891] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Although preeclampsia (PE) has been attributed to excessive oxidative stress (OS) in the placenta, mild antioxidants failed to prevent PE in clinical trials. As mitochondria are a major source of OS, this study assessed the potential of a potent mitochondria-targeting antioxidant MitoQ in the prevention of PE. Results: Placentas from women with PE and from reduced uterine perfusion pressure (RUPP) mice demonstrated significantly higher OS, along with increased mitochondrial damage and compromised glutathione peroxidase (GPx) activities. MitoQ administration during late gestation alleviated RUPP-induced PE; whereas early-pregnancy MitoQ treatment not only exacerbated blood pressure, fetal growth restriction, and proteinuria but also reduced the labyrinth/spongiotrophoblast ratio and blood sinuses in the labyrinth. Invasion (Matrigel transwell) and migration (wound healing assay) of trophoblasts were greatly improved by 1 μM hydrogen peroxide (H2O2), but this improvement was abolished by MitoQ or MitoTempo. Mild OS enhanced the expression of miR-29b-3p, which regulates five genes involved in viability and mobility, in HTR8-S/Vneo cells. Innovation and Conclusions: Although the potent mitochondrial-targeting antioxidant MitoQ protects against hypertension and kidney damage induced by RUPP in mice when administered in late gestation, it exacerbates the PE-like phenotype when given in early gestation by interfering with placenta formation because mild OS is required to stimulate trophoblast proliferation, invasion, and migration. Eliminating trophoblastic OS during early pregnancy may lead to compromised placentation and a risk of diseases of placental origin. Therefore, antioxidant therapy for pregnant women should be carefully considered.
Collapse
Affiliation(s)
- Yike Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Fangyu Zhu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Jiujiang Liao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Huijia Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Juan Qiao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Li Lin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Biao Huang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Huili Jin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Richard Saffery
- Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Mark D Kilby
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, United Kingdom.,Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, United Kingdom
| | - Jianying Yan
- Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Louise C Kenny
- Department of Women's and Children's Health, Faculty of Health and Life Sciences, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Joint Laboratory of Reproduction and Development of Ministry of Education P.R.C., Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Philip N Baker
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
16
|
Peoc'h K, Puy V, Fournier T. Haem oxygenases play a pivotal role in placental physiology and pathology. Hum Reprod Update 2020; 26:634-649. [PMID: 32347305 DOI: 10.1093/humupd/dmaa014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Haem oxygenases (HO) catabolise haem, which is the prosthetic group of numerous haemoproteins. Thus, multiple primary cellular pathways and functions rely on haem availability. HO exists in two isoforms, both expressed in the placenta, namely HO-1 and HO-2, the first being inducible. Haem oxygenases, particularly HO-1, have garnered specific interest in the field of physiological and pathological placental function. These enzymes mediate haem degradation by cleaving the alpha methene bridge to produce biliverdin, which is subsequently converted to bilirubin, carbon monoxide and iron. HO-1 has anti-inflammatory and antioxidant activities. SEARCH METHODS An initial literature analysis was performed using PubMed on 3 October 2018 using key terms such as 'haem oxygenase and pregnancy', 'haem oxygenase and placenta', 'HO-1 and pregnancy', 'HO-1 and placenta', 'HO and placenta', 'HO and pregnancy', 'genetic variant and HO', 'CO and pregnancy', 'CO and placenta', 'Bilirubin and pregnancy', 'Iron and pregnancy' and 'PPAR and Haem', selecting consensus conferences, recommendations, meta-analyses, practical recommendations and reviews. A second literature analysis was performed, including notable miscarriages, foetal loss and diabetes mellitus, on 20 December 2019. The three authors studied the publications independently to decipher whether they should be included in the manuscript. OBJECTIVE AND RATIONALE This review aimed to summarise current pieces of knowledge of haem oxygenase location, function and regulation in the placenta, either in healthy pregnancies or those associated with miscarriages and foetal loss, pre-eclampsia, foetal growth restriction and diabetes mellitus. OUTCOMES HO-1 exerts some protective effects on the placentation, probably by a combination of factors, including its interrelation with the PGC-1α/PPAR pathway and the sFlt1/PlGF balance, and through its primary metabolites, notably carbon monoxide and bilirubin. Its protective role has been highlighted in numerous pregnancy conditions, including pre-eclampsia, foetal growth restriction, gestational diabetes mellitus and miscarriages. WIDER IMPLICATIONS HO-1 is a crucial enzyme in physiological and pathological placentation. This protective enzyme is currently considered a potential therapeutic target in various pregnancy diseases.
Collapse
Affiliation(s)
- Katell Peoc'h
- Université de Paris, Laboratory of Excellence GR-Ex, Centre de Recherche sur l'Inflammation, INSERM U1149, UFR de Médecine Bichat, 75018 Paris, France
- Assistance Publique des Hôpitaux de Paris, APHP Nord, Paris, France
| | - Vincent Puy
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP, Clamart 92140, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Fournier
- Université de Paris, INSERM, UMR-S 1139, 3PHM, F-75006, Paris, France
- Fondation PremUp, F-75014, Paris, France
| |
Collapse
|
17
|
Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan LL, Ding YB, Wang YX. The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation. Reprod Sci 2020; 28:305-320. [PMID: 33146876 DOI: 10.1007/s43032-020-00364-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Placentation is a major determinant of the success of pregnancy. It is regulated by several factors such as cell adhesion molecules, tight junctions, and gap junctions. The cell adhesion molecules are integrins, cadherins, immunoglobulins, nectins, and selectins. The tight junctions are composed of claudins, occludin, and junction adhesion molecule proteins while the gap junctions are composed of connexins of varying molecular weights. During placentation, some of these molecules regulate trophoblast proliferation, trophoblast fusion, trophoblast migration, trophoblast invasion, trophoblast-endothelium adhesion, glandular remodeling, and spiral artery remodeling. There is a dysregulated placental expression of some of these molecules during obstetric complications. We have, hereby, indicated the expression patterns of the subunits of each of these molecules in the various trophoblast subtypes and in the decidua, and have highlighted their involvement in physiological and pathological placentation. The available evidence points to the relevance of these molecules as distinguishing markers of the various trophoblast lineages and as potential therapeutic targets in the management of malplacentation-mediated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Armin Czika
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Zulqarnain Panhwar
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
18
|
Wu Y, Mi Y, Zhang F, Cheng Y, Wu X. Suppression of bromodomain-containing protein 4 protects trophoblast cells from oxidative stress injury by enhancing Nrf2 activation. Hum Exp Toxicol 2020; 40:742-753. [PMID: 33094643 DOI: 10.1177/0960327120968857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress is considered a key hallmark of preeclampsia, which causes the dysregulation of trophoblast cells, and it contributes to the pathogenesis of preeclampsia. Emerging evidence has suggested bromodomain-containing protein 4 (BRD4) as a key regulator of oxidative stress in multiple cell types. However, whether BRD4 participates in regulating oxidative stress in trophoblast cells remains undetermined. The current study was designed to explore the potential function of BRD4 in the regulation of oxidative stress in trophoblast cells. Our data revealed that BRD4 expression was elevated in trophoblast cells stimulated with hydrogen peroxide. Exposure to hydrogen peroxide caused marked decreases in the levels of proliferation and invasion but promoted apoptosis and the production of ROS in trophoblast cells. Knockdown of BRD4, or treatment with a BRD4 inhibitor, markedly increased the levels of cell proliferation and invasion and decreased apoptosis and ROS production following the hydrogen peroxide challenge. Further data indicated that suppression of BRD4 markedly decreased the expression levels of Keap1, but increased the nuclear expression of Nrf2 and enhanced Nrf2-mediated transcriptional activity. BRD4 inhibition-mediated protective effects were markedly reversed by Keap1 overexpression or Nrf2 inhibition. Overall, these results demonstrated that BRD4 inhibition attenuated hydrogen peroxide-induced oxidative stress injury in trophoblast cells by enhancing Nrf2 activation via the downregulation of Keap1. Our study highlights the potential importance of the BRD4/Keap1/Nrf2 axis in the modulation of the oxidative stress response in trophoblast cells. Targeted inhibition of BRD4 may offer new opportunities for the development of innovative therapeutic approaches to treat preeclampsia.
Collapse
Affiliation(s)
- Yiqing Wu
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Fan Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yimin Cheng
- The Hospital of Xi'an Shiyou University, Xi'an, Shaanxi, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Li J, Liu Y, Xue R, Shen H, Wu Y, Quinn M, Zhang H, Wu W. Inflammation-related downregulation of zonula Occludens-1 in fetal membrane contributes to development of prelabor rupture of membranes. Placenta 2020; 99:173-179. [PMID: 32810765 DOI: 10.1016/j.placenta.2020.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The aim of this research was to study the alteration of three key tight junction proteins, to explore whether they were involved in the occurrence of prelabor rupture of the membrane (PROM) and to determine the correlation with intrauterine infection. METHODS A total of 208 women were enrolled between January 2015 to December 2018, including those with preterm and term PROM (PROM group) and normal pregnancies with intact fetal membrane (control group). We investigated the expressions of three key TJ molecules (Zonula occludens-1, Occludin and Claudin-5) in fetal membranes. The localization and expression of Zonula occludens-1 (ZO-1) in the amnion and chorion were studied by immunohistochemistry assay. The associations between ZO-1 expression levels and extent of inflammatory reactions as well as other obstetric characteristics were further studied using Spearman's rank correlation test and Mann-Whitney U test. RESULTS ZO-1 was significantly downregulated in PROM group compared with control group (P < 0.001), whereas no significant changes were found for Occludin and Claudin-5. ZO-1 expression was reduced in the chorion and amnion layers in PROM group compared with that in control group, which showed a significant difference (P < 0.01), but no significant differences were observed between the preterm PROM and term PROM groups (P > 0.05). The expression levels of ZO-1 in the chorion were negatively correlated with the stage/grade of acute chorioamnionitis (P < 0.05). DISCUSSION Our study suggests that inflammation-related downregulation of ZO-1 might be a pivotal event in the occurrence of PROM, which helps to clarify the mechanism of membrane rupture caused by infection.
Collapse
Affiliation(s)
- Juan Li
- Departments of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Departments of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Xue
- Departments of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Shen
- Departments of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wu
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Martin Quinn
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Huijuan Zhang
- Departments of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Weibin Wu
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China; Departments of Biobank, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|