1
|
Xie L, Huang Y, Ma X, Ma X, Wang J, Gao T, Chen W. Effects of subclinical hypothyroidism during pregnancy on mtDNA methylation in the brain of rat offspring. BMC Neurosci 2025; 26:6. [PMID: 39856545 PMCID: PMC11762456 DOI: 10.1186/s12868-025-00930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE This study aims to investigate the impact of subclinical hypothyroidism (SCH) during pregnancy on mitochondrial DNA (mtDNA) methylation in the brain tissues of rat offspring. MATERIALS AND METHODS Sixteen SD rats were randomly divided into two groups: control group (CON) and SCH group. BS-seq sequencing was used to analyze mtDNA methylation levels in the offspring's brain tissues; the 2,7-dichlorofluorescin diacetate (DCFH-DA) probe method was employed to detect reactive oxygen species (ROS) levels in brain tissues; electron microscopy was utilized to observe the mitochondrial structure in the hippocampal tissues of the offspring. RESULTS In the analysis of differentially methylated regions (DMRs), the mitochondrial chromosome in the SCH group exhibited 23 DMRs compared to the control group. ROS levels in the brain tissues of the SCH group were significantly higher than those in the control group (P < 0.05). The mitochondrial structure in the hippocampus of the SCH group was less intact compared to the CON group. CONCLUSION Subclinical hypothyroidism in pregnant rats may alter the mtDNA methylation pattern in the brains of their offspring, potentially affecting mitochondrial function and structure.
Collapse
Affiliation(s)
- Liangzhuo Xie
- Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, P. R. China
| | - Yangling Huang
- Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, P. R. China
| | - Xiande Ma
- Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, P. R. China
| | - Xiaoqiu Ma
- Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, P. R. China
| | - Jian Wang
- Experimental Animal Center of Liaoning, University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, P. R. China
| | - Tianshu Gao
- Department of Endocrine, Affiliated Hospital, Liaoning University of TCM, Shenyang City, Liaoning Province, P. R. China.
| | - Wei Chen
- Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, P. R. China.
- The Second Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, P. R. China.
| |
Collapse
|
2
|
Arbeithuber B, Anthony K, Higgins B, Oppelt P, Shebl O, Tiemann-Boege I, Chiaromonte F, Ebner T, Makova KD. Mitochondrial DNA mutations in human oocytes undergo frequency-dependent selection but do not increase with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627454. [PMID: 39713397 PMCID: PMC11661235 DOI: 10.1101/2024.12.09.627454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Mitochondria, cellular powerhouses, harbor DNA (mtDNA) inherited from the mothers. MtDNA mutations can cause diseases, yet whether they increase with age in human germline cells-oocytes-remains understudied. Here, using highly accurate duplex sequencing of full-length mtDNA, we detected de novo mutations in single oocytes, blood, and saliva in women between 20 and 42 years of age. We found that, with age, mutations increased in blood and saliva but not in oocytes. In oocytes, mutations with high allele frequencies (≥1%) were less prevalent in coding than non-coding regions, whereas mutations with low allele frequencies (<1%) were more uniformly distributed along mtDNA, suggesting frequency-dependent purifying selection. In somatic tissues, mutations caused elevated amino acid changes in protein-coding regions, suggesting positive or destructive selection. Thus, mtDNA in human oocytes is protected against accumulation of mutations having functional consequences and with aging. These findings are particularly timely as humans tend to reproduce later in life.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Experimental Gynaecology and Obstetrics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Kate Anthony
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Bonnie Higgins
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Peter Oppelt
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Kepler University Hospital, Altenberger Strasse 69, 4040 Linz and Krankenhausstrasse 26, 4020, Linz, Austria
| | - Omar Shebl
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Kepler University Hospital, Altenberger Strasse 69, 4040 Linz and Krankenhausstrasse 26, 4020, Linz, Austria
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802 USA
- Sant’Anna School of Advanced Studies, Pisa, 56127 Italy
| | - Thomas Ebner
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Kepler University Hospital, Altenberger Strasse 69, 4040 Linz and Krankenhausstrasse 26, 4020, Linz, Austria
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Fan LH, Qi ST, Wang ZB, Ouyang YC, Lei WL, Wang Y, Li A, Wang F, Li J, Li L, Li YY, Hou Y, Schatten H, Wang WH, Sun QY, Ou XH. MEIKIN expression and its C-terminal phosphorylation by PLK1 is closely related the metaphase-anaphase transition by affecting cyclin B1 and Securin stabilization in meiotic oocyte. Histochem Cell Biol 2024; 162:447-464. [PMID: 39093409 DOI: 10.1007/s00418-024-02316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Oocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I. Here we found that MEIKIN is a maternal protein that was highly expressed in mouse oocytes before the metaphase I (MI) stage, but became degraded by the MII stage and dramatically reduced after fertilization. Strikingly, MEIKIN underwent phosphorylation modification after germinal vesicle breakdown (GVBD), indicating its possible function in subsequent cellular event regulation. We further showed that MEIKIN phosphorylation was mediated by PLK1 at its carboxyl terminal region and its C-terminus was its key functional domain. To clarify the biological significance of meikin degradation during later stages of oocyte maturation, exogenous expression of MEIKIN was employed, which showed that suppression of MEIKIN degradation resulted in chromosome misalignment, cyclin B1 and Securin degradation failure, and MI arrest through a spindle assembly checkpoint (SAC)-independent mechanism. Exogenous expression of MEIKIN also inhibited metaphase II (MII) exit and early embryo development. These results indicate that proper MEIKIN expression level and its C-terminal phosphorylation by PLK1 are critical for regulating the metaphase-anaphase transition in meiotic oocyte. The findings of this study are important for understanding the regulation of chromosome segregation and the prevention meiotic abnormality.
Collapse
Affiliation(s)
- Li-Hua Fan
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shu-Tao Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ang Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Feng Wang
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Wei-Hua Wang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Qing-Yuan Sun
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
4
|
Baldini GM, Lot D, Malvasi A, Laganà AS, Vimercati A, Dellino M, Cicinelli E, Baldini D, Trojano G. Abnormalities of Oocyte Maturation: Mechanisms and Implications. Int J Mol Sci 2024; 25:12197. [PMID: 39596263 PMCID: PMC11595025 DOI: 10.3390/ijms252212197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The elucidation of oocyte maturation mechanisms is paramount for advancing embryo development within the scope of assisted reproductive technologies (ART). Both cytoplasmic and nuclear maturation represent intricate processes governed by tightly regulated cellular pathways, which are essential for ensuring the oocyte's competence for fertilization and subsequent embryogenesis. A comprehensive grasp of these mechanisms is vital, as the maturation stage of the oocyte significantly influences chromosomal integrity, spindle formation, and its ability to support the initial stages of embryonic development. By leveraging this knowledge, we can enhance in vitro fertilization (IVF) protocols, refining ovarian stimulation regimens and culture conditions to improve oocyte quality. This, in turn, has the potential to boost pregnancy rates and outcomes. Further research in this area will contribute to the development of novel interventions that aim to increase the efficacy of preimplantation embryonic development, offering new opportunities for individuals undergoing fertility treatments.
Collapse
Affiliation(s)
- Giorgio Maria Baldini
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Dario Lot
- IVF Center, Momo Fertilife, 76011 Bisceglie, Italy;
| | - Antonio Malvasi
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology “Paolo Giacone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities (PROMISE), University of Palermo, 90135 Palermo, Italy;
| | - Antonella Vimercati
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Miriam Dellino
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Ettore Cicinelli
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, Madonna delle Grazie Hospital, 75010 Matera, Italy;
| |
Collapse
|
5
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
6
|
Gurugubelli KR, Ballambattu VB. Perspectives on folate with special reference to epigenetics and neural tube defects. Reprod Toxicol 2024; 125:108576. [PMID: 38479591 DOI: 10.1016/j.reprotox.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Folate is a micronutrient essential for DNA synthesis, cell division, fetal growth and development. Folate deficiency leads to genomic instability. Inadequate intake of folate during conception may lead to neural tube defects (NTDs) in the offspring. Folate influences the DNA methylation, histone methylation and homocysteine mediated gene methylation. DNA methylation influences the expression of microRNAs (miRNAs). Folate deficiency may be associated with miRNAs misregulation leading to NTDs. Mitochondrial epigenetics and folate metabolism has proved to be involved in embryogenesis and neural tube development. Folate related genetic variants also cause the occurrence of NTDs. Unmetabolized excessive folate may affect health adversely. Hence estimation of folate levels in the blood plays an important role in high-risk cases.
Collapse
Affiliation(s)
- Krishna Rao Gurugubelli
- Department of Biochemistry, Andhra Medical College (AMC), Visakhapatnam, Andhra Pradesh, India
| | - Vishnu Bhat Ballambattu
- Aarupadai Veedu Medical College & Hospital (AVMC & H), Vinayaka Mission's Research Foundation (DU), Kirumambakkam, Puducherry, India.
| |
Collapse
|
7
|
Fan J, Liu C, Zhao Y, Xu Q, Yin Z, Liu Z, Mu Y. Single-Cell RNA Sequencing Reveals Differences in Chromatin Remodeling and Energy Metabolism among In Vivo-Developed, In Vitro-Fertilized, and Parthenogenetically Activated Embryos from the Oocyte to 8-Cell Stages in Pigs. Animals (Basel) 2024; 14:465. [PMID: 38338108 PMCID: PMC10854501 DOI: 10.3390/ani14030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
In vitro-fertilized (IVF) and parthenogenetically activated (PA) embryos, key to genetic engineering, face more developmental challenges than in vivo-developed embryos (IVV). We analyzed single-cell RNA-seq data from the oocyte to eight-cell stages in IVV, IVF, and PA porcine embryos, focusing on developmental differences during early zygotic genome activation (ZGA), a vital stage for embryonic development. (1) Our findings reveal that in vitro embryos (IVF and PA) exhibit more similar developmental trajectories compared to IVV embryos, with PA embryos showing the least gene diversity at each stage. (2) Significant differences in maternal mRNA, particularly affecting mRNA splicing, energy metabolism, and chromatin remodeling, were observed. Key genes like SMARCB1 (in vivo) and SIRT1 (in vitro) played major roles, with HDAC1 (in vivo) and EZH2 (in vitro) likely central in their complexes. (3) Across different types of embryos, there was minimal overlap in gene upregulation during ZGA, with IVV embryos demonstrating more pronounced upregulation. During minor ZGA, global epigenetic modification patterns diverged and expanded further. Specifically, in IVV, genes, especially those linked to H4 acetylation and H2 ubiquitination, were more actively regulated compared to PA embryos, which showed an increase in H3 methylation. Additionally, both types displayed a distinction in DNA methylation. During major ZGA, IVV distinctively upregulated genes related to mitochondrial regulation, ATP synthesis, and oxidative phosphorylation. (4) Furthermore, disparities in mRNA degradation-related genes between in vivo and in vitro embryos were more pronounced during major ZGA. In IVV, there was significant maternal mRNA degradation. Maternal genes regulating phosphatase activity and cell junctions, highly expressed in both in vivo and in vitro embryos, were degraded in IVV in a timely manner but not in in vitro embryos. (5) Our analysis also highlighted a higher expression of many mitochondrially encoded genes in in vitro embryos, yet their nucleosome occupancy and the ATP8 expression were notably higher in IVV.
Collapse
Affiliation(s)
- Jianlin Fan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhi Yin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Sgueglia G, Longobardi S, Valerio D, Campitiello MR, Colacurci N, Di Pietro C, Battaglia R, D'Hooghe T, Altucci L, Dell'Aversana C. The impact of epigenetic landscape on ovarian cells in infertile older women undergoing IVF procedures. Clin Epigenetics 2023; 15:76. [PMID: 37143127 PMCID: PMC10161563 DOI: 10.1186/s13148-023-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.
Collapse
Affiliation(s)
- Giulia Sgueglia
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy
| | | | - Domenico Valerio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Nicola Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- BIOGEM, Ariano Irpino, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| |
Collapse
|
10
|
Sanyal T, Das A, Bhowmick P, Bhattacharjee P. Interplay between environmental exposure and mitochondrial DNA methylation in disease susceptibility and cancer: a comprehensive review. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
11
|
Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022; 10:biomedicines10071689. [PMID: 35884994 PMCID: PMC9313063 DOI: 10.3390/biomedicines10071689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
Collapse
|
12
|
Wang M, Ren J, Liu Z, Li S, Su L, Wang B, Han D, Liu G. Beneficial Effect of Selenium Doped Carbon Quantum Dots Supplementation on the in vitro Development Competence of Ovine Oocytes. Int J Nanomedicine 2022; 17:2907-2924. [PMID: 35814612 PMCID: PMC9270046 DOI: 10.2147/ijn.s360000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background After the synthesis of selenium doped carbon quantum dots (Se/CDs) via a step-by-step hydrothermal synthesis method with diphenyl diselenide (DPDSe) as precursor, the beneficial effects of Se/CDs’ supplementation on the in vitro development competence of ovine oocytes were firstly investigated in this study by the assay of maturation rate, cortical granules’ (CGs) dynamics, mitochondrial activity, reactive oxygen species (ROS) production, epigenetic modification, transcript profile, and embryonic development competence. Results The results showed that the Se/CDs’ supplementation during the in vitro maturation (IVM) process not only enhanced the maturation rate, CGs’ dynamics, mitochondrial activity and embryonic developmental competence of ovine oocytes, but remarkably decreased the ROS production level of ovine oocytes. In addition, the expression levels of H3K9me3 and H3K27me3 in the ovine oocytes were significantly up-regulated after the Se/CDs’ supplementation, in consistent with the expression levels of 5mC and 5hmC. Moreover, 2994 up-regulated differentially expressed genes (DEGs) and 846 repressed DEGs were found in the oocytes after the Se/CDs’ supplementation. According to the analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), these DEGs induced by the Se/CDs’ supplementation were positively related to the progesterone mediated oocyte maturation and mitochondrial functions. And these remarkably up-regulated expression levels of DEGs related to oocyte maturation, mitochondrial function, and epigenetic modification induced by the Se/CDs’ supplementation further confirmed the beneficial effect of Se/CDs’ supplementation on the in vitro development competence of ovine oocytes. Conclusion The Se/CDs prepared in our study significantly promoted the in vitro development competence of ovine oocytes, benefiting the extended research about the potential applications of Se/CDs in mammalian breeding technologies.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Jingyu Ren
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Zhanpeng Liu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Daoning Han
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
- Correspondence: Gang Liu, Email
| |
Collapse
|
13
|
Arbeithuber B, Cremona MA, Hester J, Barrett A, Higgins B, Anthony K, Chiaromonte F, Diaz FJ, Makova KD. Advanced age increases frequencies of de novo mitochondrial mutations in macaque oocytes and somatic tissues. Proc Natl Acad Sci U S A 2022; 119:e2118740119. [PMID: 35394879 PMCID: PMC9169796 DOI: 10.1073/pnas.2118740119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) contribute to multiple diseases. However, how new mtDNA mutations arise and accumulate with age remains understudied because of the high error rates of current sequencing technologies. Duplex sequencing reduces error rates by several orders of magnitude via independently tagging and analyzing each of the two template DNA strands. Here, using duplex sequencing, we obtained high-quality mtDNA sequences for somatic tissues (liver and skeletal muscle) and single oocytes of 30 unrelated rhesus macaques, from 1 to 23 y of age. Sequencing single oocytes minimized effects of natural selection on germline mutations. In total, we identified 17,637 tissue-specific de novo mutations. Their frequency increased ∼3.5-fold in liver and ∼2.8-fold in muscle over the ∼20 y assessed. Mutation frequency in oocytes increased ∼2.5-fold until the age of 9 y, but did not increase after that, suggesting that oocytes of older animals maintain the quality of their mtDNA. We found the light-strand origin of replication (OriL) to be a hotspot for mutation accumulation with aging in liver. Indeed, the 33-nucleotide-long OriL harbored 12 variant hotspots, 10 of which likely disrupt its hairpin structure and affect replication efficiency. Moreover, in somatic tissues, protein-coding variants were subject to positive selection (potentially mitigating toxic effects of mitochondrial activity), the strength of which increased with the number of macaques harboring variants. Our work illuminates the origins and accumulation of somatic and germline mtDNA mutations with aging in primates and has implications for delayed reproduction in modern human societies.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital Linz, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Marzia A. Cremona
- Department of Operations and Decision Systems, Université Laval, Québec, QC G1V0A6, Canada
- Population Health and Optimal Health Practices, CHU de Québec - Université Laval Research Center, Québec, QC G1V4G2, Canada
- Center for Medical Genomics, The Pennsylvania State University, University Park, PA 16802
| | - James Hester
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Alison Barrett
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Bonnie Higgins
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Kate Anthony
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Francesca Chiaromonte
- Center for Medical Genomics, The Pennsylvania State University, University Park, PA 16802
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802
- Institute of Economics and EMbeDS, Sant'Anna School of Advanced Studies, Pisa 56127, Italy
| | - Francisco J. Diaz
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Kateryna D. Makova
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Center for Medical Genomics, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
14
|
Ren J, Li S, Wang C, Hao Y, Liu Z, Ma Y, Liu G, Dai Y. Glutathione protects against the meiotic defects of ovine oocytes induced by arsenic exposure via the inhibition of mitochondrial dysfunctions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113135. [PMID: 34979315 DOI: 10.1016/j.ecoenv.2021.113135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Accumulating evidences revealed the connections between arsenic exposure and mitochondrial dysfunctions induced reproductive toxicology. Meanwhile, production declines were found in livestock suffering from arsenic exposure. However, the connections between arsenic exposure and livestock meiotic defects remain unclear. In this study, the effects of sodium arsenite (NaAsO2) exposure during the in vitro maturation (IVM) on the meiotic potentials of ovine oocytes were analyzed. Furthermore, the effects of glutathione (GSH) supplementation on the meiotic defects of NaAsO2 exposed ovine oocytes were investigated by the assay of nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, mitochondrial dysfunctions, reactive oxygen species (ROS) accumulation, oxidative DNA damages, cellular apoptosis, epigenetic modifications and fertilization capacities. The results showed that the meiotic defects of NaAsO2 exposed ovine oocytes were effectively ameliorated by the GSH supplementation via the inhibition of mitochondrial dysfunctions, which not only promoted the nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, CGs dynamic and fertilization capacities, but also inhibited the ROS accumulation, oxidative DNA damages and apoptosis of ovine MII oocytes. The abnormal expressions of 5mC, H3K4me3 and H3K9me3 in NaAsO2 exposed ovine oocytes, indicating the abnormal epimutations of DNA methylation and histone methylation, were also effectively ameliorated by the GSH supplementation. Taken together, this study confirmed the connections between arsenic exposure and meiotic defects of ovine oocytes. Meanwhile, the effects of GSH supplementation on the developmental competence of livestock oocytes, especially for these suffering from arsenic exposure were also founded, benefiting the extended researches for the GSH applications.
Collapse
Affiliation(s)
- Jingyu Ren
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot 010021, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia people's Hospital, 20 Zhaowuda Road, Hohhot 010021, Inner Mongolia, China
| | - Chunyu Wang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot 010021, Inner Mongolia, China
| | - Yuchun Hao
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot 010021, Inner Mongolia, China
| | - Zhanpeng Liu
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot 010021, Inner Mongolia, China
| | - Yuzhen Ma
- Center of Reproductive Medicine, Inner Mongolia Peoples' Hospital, Hohhot 010021, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Street, Hohhot 010050, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot 010021, Inner Mongolia, China.
| |
Collapse
|
15
|
Eijkenboom L, Palacio-Castañeda V, Groenman F, Braat D, Beerendonk C, Brock R, Verdurmen W, Peek R. Assessing the use of tumor-specific DARPin-toxin fusion proteins for ex vivo purging of cancer metastases from human ovarian cortex before autotransplantation. F&S SCIENCE 2021; 2:330-344. [PMID: 35559858 DOI: 10.1016/j.xfss.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the use of tumor-specific designed ankyrin repeat proteins (DARPins) fused to a domain of Pseudomonas aeruginosa exotoxin A for purging of cancer metastases from the ovarian cortex. DESIGN Experimental study. SETTING University medical center. PATIENT(S) Human ovarian cortex. INTERVENTION(S) Ovarian cortex harboring artificially induced breast cancer metastases was treated with DARPins targeted to epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2). MAIN OUTCOME MEASURE(S) The presence of any remaining cancer cells after purging was analyzed by (immuno)histochemistry and reverse transcriptase polymerase chain reaction. Effects on the viability of the ovarian cortex were determined by (immuno)histology, a follicular viability assay, and an assay to determine the in vitro growth capacity of small follicles. RESULT(S) After purging with EpCAM-targeted DARPin, all EpCAM-positive breast cancer cells were eradicated from the ovarian cortex. Although treatment had no effect on the morphology or viability of small follicles, a sharp decrease in oocyte viability during in vitro growth was observed, presumably due to low-level expression of EpCAM on oocytes. The HER2-targeted DARPins had no detrimental effects on the morphology, viability, or in vitro growth of small follicles. HER2-positive breast cancer foci were fully eliminated from the ovarian cortex, and the reverse transcriptase polymerase chain reaction showed a decrease to basal levels of HER2 mRNA after purging. CONCLUSION(S) Purging cancer metastases from ovarian cortex without impairing ovarian tissue integrity is possible by targeting tumor cell surface proteins with exotoxin A-fused DARPins. By adapting the target specificity of the cytotoxic DARPin fusions, it should be possible to eradicate metastases from all types of malignancies.
Collapse
Affiliation(s)
- Lotte Eijkenboom
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, Netherlands
| | - Didi Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Wouter Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Peek
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Peek R, Eijkenboom LL, Braat DDM, Beerendonk CCM. Complete Purging of Ewing Sarcoma Metastases from Human Ovarian Cortex Tissue Fragments by Inhibiting the mTORC1 Signaling Pathway. J Clin Med 2021; 10:jcm10194362. [PMID: 34640378 PMCID: PMC8509560 DOI: 10.3390/jcm10194362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Restoration of fertility by autologous transplantation of ovarian cortex tissue in former cancer patients may lead to the reintroduction of malignancy via the graft. Pharmacological ex vivo purging of ovarian cortex fragments prior to autotransplantation may reduce the risk of reseeding the cancer. In this study we have investigated the capacity of Everolimus (EVE), an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, to eradicate Ewing’s sarcoma (ES) from ovarian tissue by a short-term ex vivo treatment. Exposure of experimentally induced ES tumor foci in ovarian tissue to EVE for 24 h completely eliminated the malignant cells without detrimental effects on follicle morphology, survival or early folliculogenesis. This indicates that effective purging of ovarian cortex tissue from contaminating ES tumor foci is possible by short-term exposure to EVE.
Collapse
|
17
|
Du ZQ, Liang H, Liu XM, Liu YH, Wang C, Yang CX. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs. Sci Rep 2021; 11:14393. [PMID: 34257377 PMCID: PMC8277874 DOI: 10.1038/s41598-021-93904-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Successful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
18
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
19
|
Wang W, Shao S, Chen W, Wang W, Chuai Y, Li Y, Guo Y, Han S, Shu M, Wang Q, Zhang L, Shang W. Electrofusion Stimulation Is an Independent Factor of Chromosome Abnormality in Mice Oocytes Reconstructed via Spindle Transfer. Front Endocrinol (Lausanne) 2021; 12:705837. [PMID: 34413830 PMCID: PMC8370092 DOI: 10.3389/fendo.2021.705837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022] Open
Abstract
Oocytes reconstructed by spindle transfer (ST) are prone to chromosome abnormality, which is speculated to be caused by mechanical interference or premature activation, the mechanism is controversial. In this study, C57BL/6N oocytes were used as the model, and electrofusion ST was performed under normal conditions, Ca2+ free, and at room temperature, respectively. The effect of enucleation and electrofusion stimulation on MPF activity, spindle morphology, γ-tubulin localization and chromosome arrangement was compared. We found that electrofusion stimulation could induce premature chromosome separation and abnormal spindle morphology and assembly by decreasing the MPF activity, leading to premature activation, and thus resulting in chromosome abnormality in oocytes reconstructed via ST. Electrofusion stimulation was an independent factor of chromosome abnormality in oocytes reconstructed via ST, and was not related to enucleation, fusion status, temperature, or Ca2+. The electrofusion stimulation number should be minimized, with no more than 2 times being appropriate. As the electrofusion stimulation number increased, several typical abnormalities in chromosome arrangement and spindle assembly occurred. Although blastocyst culture could eliminate embryos with chromosomal abnormalities, it would significantly decrease the number of normal embryos and reduce the availability of embryos. The optimum operating condition for electrofusion ST was the 37°C group without Ca2+.
Collapse
Affiliation(s)
- Wei Wang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Department of Reproductive Medicine, Harrison International Peace Hospital, Hengshui, China
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yunhai Chuai
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yunfei Li
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yiming Guo
- Department of Biology, Kenneth P. Dietrich School of Art & Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shujie Han
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Navy Clinical Medical School, Anhui Medical University, Beijing, China
| | - Mingming Shu
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Qihang Wang
- Department of Reproductive Medicine, First Hospital of Tsinghua University, Beijing, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lei Zhang, ; Wei Shang,
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Navy Clinical Medical School, Anhui Medical University, Beijing, China
- *Correspondence: Lei Zhang, ; Wei Shang,
| |
Collapse
|
20
|
Menezo Y, Clement P, Clement A, Elder K. Methylation: An Ineluctable Biochemical and Physiological Process Essential to the Transmission of Life. Int J Mol Sci 2020; 21:ijms21239311. [PMID: 33297303 PMCID: PMC7730869 DOI: 10.3390/ijms21239311] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Methylation is a universal biochemical process which covalently adds methyl groups to a variety of molecular targets. It plays a critical role in two major global regulatory mechanisms, epigenetic modifications and imprinting, via methyl tagging on histones and DNA. During reproduction, the two genomes that unite to create a new individual are complementary but not equivalent. Methylation determines the complementary regulatory characteristics of male and female genomes. DNA methylation is executed by methyltransferases that transfer a methyl group from S-adenosylmethionine, the universal methyl donor, to cytosine residues of CG (also designated CpG). Histones are methylated mainly on lysine and arginine residues. The methylation processes regulate the main steps in reproductive physiology: gametogenesis, and early and late embryo development. A focus will be made on the impact of assisted reproductive technology and on the impact of endocrine disruptors (EDCs) via generation of oxidative stress.
Collapse
Affiliation(s)
- Yves Menezo
- Laboratoire CLEMENT, Avenue d’Eylau, 75016 Paris, France; (P.C.); (A.C.)
- Correspondence:
| | - Patrice Clement
- Laboratoire CLEMENT, Avenue d’Eylau, 75016 Paris, France; (P.C.); (A.C.)
| | - Arthur Clement
- Laboratoire CLEMENT, Avenue d’Eylau, 75016 Paris, France; (P.C.); (A.C.)
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB232TN, UK;
| |
Collapse
|
21
|
F C Lopes A. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin Epigenetics 2020; 12:182. [PMID: 33228792 PMCID: PMC7684747 DOI: 10.1186/s13148-020-00976-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are controlled by the coordination of two genomes: the mitochondrial and the nuclear DNA. As such, variations in nuclear gene expression as a consequence of mutations and epigenetic modifications can affect mitochondrial functionality. Conversely, the opposite could also be true. However, the relationship between mitochondrial dysfunction and epigenetics, such as nuclear DNA methylation, remains largely unexplored. Mitochondria function as central metabolic hubs controlling some of the main substrates involved in nuclear DNA methylation, via the one carbon metabolism, the tricarboxylic acid cycle and the methionine pathway. Here, we review key findings and highlight new areas of focus, with the ultimate goal of getting one step closer to understanding the genomic effects of mitochondrial dysfunction on nuclear epigenetic landscapes.
Collapse
Affiliation(s)
- Amanda F C Lopes
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Medical Research Council - Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
22
|
Arbeithuber B, Hester J, Cremona MA, Stoler N, Zaidi A, Higgins B, Anthony K, Chiaromonte F, Diaz FJ, Makova KD. Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues. PLoS Biol 2020; 18:e3000745. [PMID: 32667908 PMCID: PMC7363077 DOI: 10.1371/journal.pbio.3000745] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations create genetic variation for other evolutionary forces to operate on and cause numerous genetic diseases. Nevertheless, how de novo mutations arise remains poorly understood. Progress in the area is hindered by the fact that error rates of conventional sequencing technologies (1 in 100 or 1,000 base pairs) are several orders of magnitude higher than de novo mutation rates (1 in 10,000,000 or 100,000,000 base pairs per generation). Moreover, previous analyses of germline de novo mutations examined pedigrees (and not germ cells) and thus were likely affected by selection. Here, we applied highly accurate duplex sequencing to detect low-frequency, de novo mutations in mitochondrial DNA (mtDNA) directly from oocytes and from somatic tissues (brain and muscle) of 36 mice from two independent pedigrees. We found mtDNA mutation frequencies 2- to 3-fold higher in 10-month-old than in 1-month-old mice, demonstrating mutation accumulation during the period of only 9 mo. Mutation frequencies and patterns differed between germline and somatic tissues and among mtDNA regions, suggestive of distinct mutagenesis mechanisms. Additionally, we discovered a more pronounced genetic drift of mitochondrial genetic variants in the germline of older versus younger mice, arguing for mtDNA turnover during oocyte meiotic arrest. Our study deciphered for the first time the intricacies of germline de novo mutagenesis using duplex sequencing directly in oocytes, which provided unprecedented resolution and minimized selection effects present in pedigree studies. Moreover, our work provides important information about the origins and accumulation of mutations with aging/maturation and has implications for delayed reproduction in modern human societies. Furthermore, the duplex sequencing method we optimized for single cells opens avenues for investigating low-frequency mutations in other studies.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James Hester
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nicholas Stoler
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Arslan Zaidi
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bonnie Higgins
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kate Anthony
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca Chiaromonte
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- EMbeDS, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Francisco J. Diaz
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|