1
|
Mei Y, Wu Y, Zhai Y, Chen C, Han H, Wan L, Ma W, Ding M, Zheng X, Wu L. C1632 protects against LPS-induced acute lung injury by regulating AXL-mediated MAPK/NF-κB signaling pathway. Int Immunopharmacol 2025; 153:114542. [PMID: 40132459 DOI: 10.1016/j.intimp.2025.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Acute lung injury (ALI), a leading pulmonary inflammatory disorder, is associated with high morbidity and mortality rates. AXL, a member of the TAM family, plays a significant role in the innate immune and inflammatory responses. This study aimed to evaluate the therapeutic potential of C1632 and its mechanisms in the treatment of LPS-induced ALI/ARDS. The results demonstrated that C1632 pretreatment inhibited the transcription, expression, and secretion of LPS-induced inflammatory factors (IL-6, TNF-α) and vascular adhesion molecules (VCAM-1, ICAM-1). Furthermore, it reduced inflammatory cell infiltration in the lungs, thereby alleviating LPS-induced histopathological changes and lung injury in mice. Mechanistically, C1632 suppressed AXL transcription and expression, which inhibited the activation of the MAPK/NF-κB signaling pathway triggered by LPS stimulation. Both in vitro and in vivo studies confirmed that C1632 administration did not exhibit significant cytotoxicity. Additionally, it did not cause functional or structural damage to the liver and kidneys in mice, nor did it induce other acute toxic effects. In summary, these findings suggest that AXL is a novel target for MAPK/NF-κB signaling pathway mediated anti-inflammatory treatment and C1632 is a promising therapeutic agent for ALI/ARDS treatment.
Collapse
Affiliation(s)
- Yanan Mei
- Respiratory Medicine Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihang Wu
- Respiratory Medicine Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihui Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chaoyue Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Wan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenyan Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meiqing Ding
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Liqin Wu
- Respiratory Medicine Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
2
|
Shao M, Jin M, Feizhou L, Ma X, Wei Z. Administration of hypoxic pretreated adipose-derived mesenchymal stem cell exosomes promotes spinal cord repair after injury via delivery of circ-Astn1 and activation of autophagy. Int Immunopharmacol 2025; 152:114324. [PMID: 40049089 DOI: 10.1016/j.intimp.2025.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND The aim of this study was to investigate the role and mechanism of exosomes isolated from adipose-derived mesenchymal stem cells (ADSCs) on spinal cord repair. METHODS High-throughput sequencing was used to investigate abnormal expression of circular RNA (circRNA) in ADSC exosomes pretreated under hypoxic conditions (HExos) and ADSCs exosomes under normal conditions (Exos). The abnormal expression of mRNA in spinal cord tissues was also analyzed using high-throughput sequencing. Bioinformatics and luciferase reporter analyses were used to clarify the relationship among circRNA, micro RNA (miRNA), and mRNA. BV2 cells were used to analyze apoptosis levels and inflammatory cytokine expression under oxygen-glucose deprivation (OGD) conditions by using immunofluorescence and enzyme-linked immunosorbent assay (ELISAs). An SCI mouse model was also constructed and the therapeutic effect of Exos was detected using immunohistochemistry and immunofluorescence. RESULTS High-throughput sequencing results showed that circ-Astn1 played a role in HExo-mediated spinal cord repair after SCI. Downregulation of circ-Astn1 decreased the therapeutic effect of HExos. We also found that Atg7 played a role in HExo-mediated spinal cord repair after SCI. Luciferase reporter analysis confirmed that both miR-138-5p and Atg7 were downstream targets of circ-Astn1. Downregulation of Atg7 or overexpression of miR-138-5p reversed the protective effect of circ-Astn1 on BV2 cells after exposure to OGD conditions. In contrast, upregulation of circ-Astn1 increased the therapeutic effects of Exo-mediated spinal cord repair after SCI via autophagy activation. CONCLUSIONS Taken together, the results indicate that ADSC-Exos containing circ-Astn1 promoted spinal cord repair after SCI by targeting the miR-138-5p/Atg7 pathway, which mediated autophagy.
Collapse
Affiliation(s)
- Minghao Shao
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Spine Surgery, Xingguo Hospital Affiliated to Gannan Medical University, No. 699 Wenming Avenue, Xingguo County, Ganzhou 342400, Jiangxi Province, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Lv Feizhou
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaosheng Ma
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zhu Wei
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Spine Surgery, Xingguo Hospital Affiliated to Gannan Medical University, No. 699 Wenming Avenue, Xingguo County, Ganzhou 342400, Jiangxi Province, China.
| |
Collapse
|
3
|
Ma S, Qin Y, Ren W. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in hematological diseases. Mol Med 2024; 30:165. [PMID: 39342091 PMCID: PMC11439276 DOI: 10.1186/s10020-024-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
The oncofetal mRNA-binding protein IGF2BP1 belongs to a conserved family of RNA-binding proteins. It primarily promotes RNA stability, regulates translation and RNA localization, and mediates gene expression through its downstream effectors. Numerous studies have demonstrated that IGF2BP1 plays crucial roles in embryogenesis and carcinogenesis. IGF2BP1-modulated cell proliferation, invasion, and chemo-resistance in solid tumors have attracted researchers' attention. Additionally, several studies have highlighted the importance of IGF2BP1 in hematologic malignancies and hematological genetic diseases, positioning it as a promising therapeutic target for hematological disorders. However, there is a lack of systematic summaries regarding the IGF2BP1 gene within the hematological field. In this review, we provide a comprehensive overview of the discovery and molecular structure of IGF2BP1, along with recent studies on its role in regulating embryogenesis. We also focus on the mechanisms by which IGF2BP1 regulates hematological malignancies through its interactions with its targeted mRNAs. Furthermore, we systematically elucidate the function and mechanism of IGF2BP1 in promoting fetal hemoglobin expression in adult hematopoietic stem/progenitor cells. Finally, we discuss the limitations and challenges of IGF2BP1 as a therapeutic target, offering insights into its prospects.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yiran Qin
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Wang K, Bhattacharya A, Haratake N, Daimon T, Nakashoji A, Ozawa H, Peng B, Li W, Kufe D. XIST and MUC1-C form an auto-regulatory pathway in driving cancer progression. Cell Death Dis 2024; 15:330. [PMID: 38740827 PMCID: PMC11091074 DOI: 10.1038/s41419-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The long non-coding RNA X-inactive specific transcript (lncRNA XIST) and MUC1 gene are dysregulated in chronic inflammation and cancer; however, there is no known interaction of their functions. The present studies demonstrate that MUC1-C regulates XIST lncRNA levels by suppressing the RBM15/B, WTAP and METTL3/14 components of the m6A methylation complex that associate with XIST A repeats. MUC1-C also suppresses the YTHDF2-CNOT1 deadenylase complex that recognizes m6A sites and contributes to XIST decay with increases in XIST stability and expression. In support of an auto-regulatory pathway, we show that XIST regulates MUC1-C expression by promoting NF-κB-mediated activation of the MUC1 gene. Of significance, MUC1-C and XIST regulate common genes associated with inflammation and stemness, including (i) miR-21 which is upregulated across pan-cancers, and (ii) TDP-43 which associates with the XIST E repeats. Our results further demonstrate that the MUC1-C/XIST pathway (i) is regulated by TDP-43, (ii) drives stemness-associated genes, and (iii) is necessary for self-renewal capacity. These findings indicate that the MUC1-C/XIST auto-regulatory axis is of importance in cancer progression.
Collapse
Affiliation(s)
- Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Fan L, Yang K, Yu R, Hui H, Wu W. circ-Iqsec1 induces bone marrow-derived mesenchymal stem cell (BMSC) osteogenic differentiation through the miR-187-3p/Satb2 signaling pathway. Arthritis Res Ther 2022; 24:273. [PMID: 36517907 PMCID: PMC9749292 DOI: 10.1186/s13075-022-02964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) are general progenitor cells of osteoblasts and adipocytes and they are characterized as a fundamental mediator for bone formation. The current research studied the molecular mechanisms underlying circRNA-regulated BMSC osteogenic differentiation. METHODS Next-generation sequencing (NGS) was employed to study abnormal circRNA and mRNA expression in BMSCs before and after osteogenic differentiation induction. Bioinformatics analysis and luciferase reporting analysis were employed to confirm correlations among miRNA, circRNA, and mRNA. RT-qPCR, ALP staining, and alizarin red staining illustrated the osteogenic differentiation ability of BMSCs. RESULTS Data showed that circ-Iqsec1 expression increased during BMSC osteogenic differentiation. circ-Iqsec1 downregulation reduced BMSC osteogenic differentiation ability. The present investigation discovered that Satb2 played a role during BMSC osteogenic differentiation. Satb2 downregulation decreased BMSC osteogenic differentiation ability. Bioinformatics and luciferase data showed that miR-187-3p linked circ-Iqsec1 and Satb2. miR-187-3p downregulation or Satb2 overexpression restored the osteogenic differentiation capability of BMSCs post silencing circ-Iqsec1 in in vivo and in vitro experiments. Satb2 upregulation restored osteogenic differentiation capability of BMSCs post miR-187-3p overexpression. CONCLUSION Taken together, our study found that circ-Iqsec1 induced BMSC osteogenic differentiation through the miR-187-3p/Satb2 signaling pathway.
Collapse
Affiliation(s)
- Lixia Fan
- grid.452402.50000 0004 1808 3430Department of Anesthesiology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan city, 250012 Shandong China
| | - Kaiyun Yang
- grid.27255.370000 0004 1761 1174Institute of Stomatology, Shandong University, 107 Wenhua West Road, Jinan city, 250012 Shandong China
| | - Ruixuan Yu
- grid.452402.50000 0004 1808 3430Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan city, 250012 China
| | - Houde Hui
- grid.452402.50000 0004 1808 3430Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan city, 250012 China
| | - Wenliang Wu
- grid.452402.50000 0004 1808 3430Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan city, 250012 China
| |
Collapse
|
6
|
Association between miR-126, miR-21, inflammatory factors and T lymphocyte apoptosis in septic rats. Mol Clin Oncol 2021; 15:206. [PMID: 34462662 DOI: 10.3892/mco.2021.2368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) serve an important role in regulating expression levels of inflammatory factors but the underlying mechanism is still unclear. The present study aimed to observe miR-126 and miR-21 expression and apoptosis in T lymphocytes and to analyze their association with cytokine release in septic rats. The septic model rats were given intraperitoneal lipopolysaccharide (LPS) and divided into 0, 12, 24, 48 and 72 h groups. Peripheral blood was collected from each group to isolate T lymphocytes. The expression levels of miR-126 and miR-21 in T lymphocytes were observed, as well as cytokine release and apoptosis. Finally, the association between miR-126, miR-21, cytokines and apoptosis in T lymphocytes was analyzed. The release of TNF-α and IL-6 in septic rats was initially elevated but then decreased. miR-126 and miR-21 levels in T lymphocytes in septic rats were lower than those of NC rats. miR-126 and miR-21 initially decreased and then increased, whereas of apoptosis of T lymphocytes increased and then decreased, in septic rats. The expression of miR-126 was positively correlated with that of miR-21 (r=0.316; P=0.029) and negatively correlated with that of TNF-α (r=-0.480; P=0.001) and IL-6 (r=-0.626; P<0.001), as well as the apoptotic rate of T lymphocytes (r=-0.377; P=0.008). Furthermore, expression levels of miR-126 were negatively corrlated with caspase-3 expression levels (r=-0.606; P<0.001) and activity (r=-0.541; P<0.001). There was a negative correlation between miR-21 and levels of TNF-α (r=-0.311; P=0.032) and IL-6 (r=-0.439; P=0.002), as well as caspase-3 expression (r=-0.398; P=0.005) and activity (r=-0.378; P=0.008). However, there miR-126 expression was not correlated with apoptotic rate of T lymphocytes. Altered expression levels of miR-126 and miR-21 reflected the severity of inflammatory response and indicated levels of T lymphocyte apoptosis in septic rats.
Collapse
|
7
|
Ma X, Liu H, Chen F. Functioning of Long Noncoding RNAs Expressed in Macrophage in the Development of Atherosclerosis. Front Pharmacol 2020; 11:567582. [PMID: 33381026 PMCID: PMC7768882 DOI: 10.3389/fphar.2020.567582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammation is part of the pathological process during atherosclerosis (AS). Due to the abundance of monocytes/macrophages within the arterial plaque, monocytes/macrophages have become a critical cellular target in AS studies. In recent decades, a number of long noncoding RNAs (lncRNAs) have been found to exert regulatory roles on the macrophage metabolism and macrophage plasticity, consequently promoting or suppressing atherosclerotic inflammation. In this review, we provide a comprehensive overview of lncRNAs in macrophage biology, highlighting the potential role of lncRNAs in AS based on recent findings, with the aim to identify disease biomarkers and future therapeutic interventions for AS.
Collapse
Affiliation(s)
- Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|