1
|
Ihara D, Oishi R, Kasahara S, Yamamoto A, Kaito M, Tabuchi A. The BDNF-ERK/MAPK axis reduces phosphatase and actin regulator1, 2 and 3 (PHACTR1, 2 and 3) mRNA expressions in cortical neurons. Drug Discov Ther 2024; 18:255-259. [PMID: 39183043 DOI: 10.5582/ddt.2024.01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Actin rearrangement and phosphorylation-dephosphorylation in the nervous system contribute to plastic alteration of neuronal structure and function. Phosphatase and actin regulator (PHACTR) family members are actin- and protein phosphatase 1 (PP1)-binding proteins. Because some family members act as regulators of neuronal morphology, studying the regulatory mechanisms of PHACTR is valuable for understanding the basis of neuronal circuit formation. Although expression patterns of PHACTR family molecules (PHACTR1-4) vary across distinct brain areas, little is known about the extracellular ligands that influence their mRNA levels. In this study, we focused on an important neurotrophin, brain-derived neurotrophic factor (BDNF), and examined its effect on mRNA expression of PHACTR family member in cortical neurons. PHACTR1-3, but not PHACTR4, were affected by stimulation of primary cultured cortical neurons with BDNF; namely, sustained downregulation of their mRNA levels was observed. The observed downregulation was blocked by an inhibitor of the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126, suggesting that ERK/MAPK plays an inhibitory role for gene induction of PHACTR1-3. These findings aid the elucidation of how BDNF regulates actin- and PP1-related neuronal functions.
Collapse
Affiliation(s)
- Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryotaro Oishi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shiho Kasahara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Aimi Yamamoto
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Maki Kaito
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Zhou J, Zhang Z, Wu M, Liu H, Pang Y, Bartlett A, Peng Z, Ding W, Rivkin A, Lagos WN, Williams E, Lee CT, Miyazaki PA, Aldridge A, Zeng Q, Salinda JLA, Claffey N, Liem M, Fitzpatrick C, Boggeman L, Yao Z, Smith KA, Tasic B, Altshul J, Kenworthy MA, Valadon C, Nery JR, Castanon RG, Patne NS, Vu M, Rashid M, Jacobs M, Ito T, Osteen J, Emerson N, Lee J, Cho S, Rink J, Huang HH, Pinto-Duartec A, Dominguez B, Smith JB, O'Connor C, Zeng H, Chen S, Lee KF, Mukamel EA, Jin X, Margarita Behrens M, Ecker JR, Callaway EM. Brain-wide correspondence of neuronal epigenomics and distant projections. Nature 2023; 624:355-365. [PMID: 38092919 PMCID: PMC10719087 DOI: 10.1038/s41586-023-06823-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.
Collapse
Affiliation(s)
- Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Zhuzhu Zhang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - May Wu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yan Pang
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zihao Peng
- School of Mathematics and Computer Science, Nanchang University, Nanchang, China
- Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China
| | - Wubin Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Angeline Rivkin
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Will N Lagos
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elora Williams
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng-Ta Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Paula Assakura Miyazaki
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - J L Angelo Salinda
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naomi Claffey
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michelle Liem
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mia A Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cynthia Valadon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Neelakshi S Patne
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Minh Vu
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mohammad Rashid
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matthew Jacobs
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Ito
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nora Emerson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jasper Lee
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Silvia Cho
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jon Rink
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hsiang-Hsuan Huang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - António Pinto-Duartec
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bertha Dominguez
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jared B Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Shengbo Chen
- Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, China
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Xin Jin
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Edward M Callaway
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
3
|
Zapata-Cobo P, Salvador-Martín S, Velasco M, Palomino LM, Clemente S, Segarra O, Moreno-Álvarez A, Fernández-Lorenzo A, Pérez-Moneo B, Montraveta M, Sánchez C, Tolín M, Loverdos I, Fobelo MJ, Navas-López VM, Magallares L, García-Romero R, Sánchez-Hernández JG, Rodríguez A, Bossacoma F, Balboa MJ, Salcedo E, Sanjurjo-Sáez M, López-Fernández LA. Polymorphisms indicating risk of inflammatory bowel disease or antigenicity to anti-TNF drugs as biomarkers of response in children. Pharmacol Res 2023; 194:106859. [PMID: 37473877 DOI: 10.1016/j.phrs.2023.106859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Few genetic polymorphisms predict early response to anti-TNF drugs in inflammatory bowel disease (IBD), and even fewer have been identified in the pediatric population. However, it would be of considerable clinical interest to identify and validate genetic biomarkers of long-term response. Therefore, the aim of the study was to analyze the usefulness of biomarkers of response to anti-TNFs in pediatric IBD (pIBD) as long-term biomarkers and to find differences by type of IBD and type of anti-TNF drug. The study population comprised 340 children diagnosed with IBD who were treated with infliximab or adalimumab. Genotyping of 9 selected SNPs for their association with early response and/or immunogenicity to anti-TNFs was performed using real-time PCR. Variants C rs10508884 (CXCL12), A rs2241880 (ATG16L1), and T rs6100556 (PHACTR3) (p value 0.049; p value 0.03; p value 0.031) were associated with worse long-term response to anti-TNFs in pIBD. DNA variants specific to disease type and anti-TNF type were identified in the pediatric population. Genotyping of these genetic variants before initiation of anti-TNFs would enable, if validated in a prospective cohort, the identification of pediatric patients who are long-term responders to this therapy.
Collapse
Affiliation(s)
- Paula Zapata-Cobo
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Sara Salvador-Martín
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marta Velasco
- Hospital Universitario Infantil Niño Jesús, Madrid, Spain
| | | | | | | | | | | | | | | | - Cesar Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mar Tolín
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - María Jesús Fobelo
- Hospital Universitario Virgen de Valme, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | - Ferrán Bossacoma
- Servicio de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Sant Joan de Dèu, Barcelona, Spain
| | | | | | - María Sanjurjo-Sáez
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Luis A López-Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
4
|
Kozlova A, Zhang S, Kotlar AV, Jamison B, Zhang H, Shi S, Forrest MP, McDaid J, Cutler DJ, Epstein MP, Zwick ME, Pang ZP, Sanders AR, Warren ST, Gejman PV, Mulle JG, Duan J. Loss of function of OTUD7A in the schizophrenia- associated 15q13.3 deletion impairs synapse development and function in human neurons. Am J Hum Genet 2022; 109:1500-1519. [PMID: 35931052 PMCID: PMC9388388 DOI: 10.1016/j.ajhg.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.
Collapse
Affiliation(s)
- Alena Kozlova
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Alex V Kotlar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Pillar Biosciences Inc., Natick, MA 01760, USA
| | - Brendan Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Serena Shi
- Winston Churchill High School, Potomac, MD 20854, USA
| | - Marc P Forrest
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - John McDaid
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Senior Vice President for Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Marakhonov AV, Přechová M, Konovalov FA, Filatova AY, Zamkova MA, Kanivets IV, Solonichenko VG, Semenova NA, Zinchenko RA, Treisman R, Skoblov MY. Mutation in PHACTR1 associated with multifocal epilepsy with infantile spasms and hypsarrhythmia. Clin Genet 2021; 99:673-683. [PMID: 33463715 PMCID: PMC8629116 DOI: 10.1111/cge.13926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/28/2022]
Abstract
A young boy with multifocal epilepsy with infantile spasms and hypsarrhythmia with minimal organic lesions of brain structures underwent DNA diagnosis using whole‐exome sequencing. A heterozygous amino‐acid substitution p.L519R in a PHACTR1 gene was identified. PHACTR1 belongs to a protein family of G‐actin binding protein phosphatase 1 (PP1) cofactors and was not previously associated with a human disease. The missense single nucleotide variant in the proband was shown to occur de novo in the paternal allele. The mutation was shown in vitro to reduce the affinity of PHACTR1 for G‐actin, and to increase its propensity to form complexes with the catalytic subunit of PP1. These properties are associated with altered subcellular localization of PHACTR1 and increased ability to induce cytoskeletal rearrangements. Although the molecular role of the PHACTR1 in neuronal excitability and differentiation remains to be defined, PHACTR1 has been previously shown to be involved in Slack channelopathy pathogenesis, consistent with our findings. We conclude that this activating mutation in PHACTR1 causes a severe type of sporadic multifocal epilepsy in the patient.
Collapse
Affiliation(s)
- Andrey V Marakhonov
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| | - Magdalena Přechová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Signalling and Transcription Laboratory, Francis Crick Institute, London, UK
| | | | - Alexandra Yu Filatova
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| | - Maria A Zamkova
- Laboratory of Regulatory Mechanisms in Immunity, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Ilya V Kanivets
- Laboratory of Molecular Pathology, Genomed Ltd., Moscow, Russia.,Medical Genetic Centre, Filatov Moscow Pediatric Clinical Hospital, Moscow, Russia
| | | | - Natalia A Semenova
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| | - Rena A Zinchenko
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia.,N.A. Semashko National Research Institute of Public Health, Moscow, Russia
| | - Richard Treisman
- Signalling and Transcription Laboratory, Francis Crick Institute, London, UK
| | - Mikhail Yu Skoblov
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
6
|
Mizukoshi M, Nozawa A, Oomizo S, Ihara D, Shiota J, Kikuchi K, Kaito M, Ishibashi Y, Ishikawa M, Fukuchi M, Tsuda M, Takasaki I, Tabuchi A. Differential localization and roles of splice variants of rat suppressor of cancer cell invasion (SCAI) in neuronal cells. Biochem Biophys Res Commun 2020; 529:615-621. [PMID: 32736682 DOI: 10.1016/j.bbrc.2020.06.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Suppressor of cancer cell invasion (SCAI) is a suppressor of myocardin-related transcription factor (MRTF)-mediated transcription and cancer cell invasion. However, roles of SCAI in the brain and neuronal cells are not fully resolved. In this study, we initially investigated the distribution of Scai mRNA in the developing rat brain and in neurons. We found that, although Scai mRNA levels decreased during brain development, it was highly expressed in several brain regions and in neurons but not astrocytes. Subsequently, in addition to Scai variant 1, we identified novel rat Scai variants 2 and 3 and characterized their functions in Neuro-2a cells. The novel Scai variants 2 and 3 contain unique exons that possess stop codons and therefore encode shorter proteins compared with the full-length Scai variant 1. SCAI variants 2 and 3 possess a nuclear localization signal, but do not have an MRTF-binding site. Immunostaining of green fluorescent protein (GFP)-tagged SCAI variants revealed a nuclear localization of variant 1, whereas localization of variants 2 and 3 was throughout the cytoplasm and nucleus, suggesting that other nuclear localization signals, which act in Neuro-2a cells, exist in SCAI. All three SCAI variants suppressed the neuron-like morphological change of Neuro-2a cells induced by a Rho effector, constitutively active mDia; however, the suppressive effects of variants 2 and 3 were weaker than that of full-length SCAI variant 1, indicating that the SCAI-mediated change toward a neuronal morphology appeared to be consistent with their nuclear localization. These findings indicate that generation of multiple SCAI splice variants fines-tune neuronal morphology.
Collapse
Affiliation(s)
- Miho Mizukoshi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ayaka Nozawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Serina Oomizo
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jun Shiota
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Keietsu Kikuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Maki Kaito
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuta Ishibashi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mitsuru Ishikawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Physiology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, Graduate School of Innovative Life Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|