1
|
Ibrahim MM, Azmi MN, Alhawarri MB, Kamal NNSNM, AbuMahmoud H. Synthesis, characterization and bioactivity of new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives. Mol Divers 2025; 29:1569-1587. [PMID: 39009909 DOI: 10.1007/s11030-024-10934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Pyridone heterocycles, such as furo[2,3-b]pyridines, have emerged as prominent scaffolds in medicinal chemistry due to their versatile pharmacological properties, including significant anticancer activity. In this study, we successfully synthesized new pyridine-2(H)-one, nicotinonitrile, and furo[2,3-b]pyridine derivatives from chalcones bearing 4-(benzyloxy)phenyl and dichlorothiophenyl subunits to explore their therapeutic potential against breast cancer. By employing a synthetic strategy involving Claisen-Schmidt condensation followed by sequential cyclizations and functional modifications, we synthesized and characterized four compounds (MI-S0, MI-S1, MI-S2, and MI-S3) using various spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, DEPT, H,H- and C,H-COSY, and HRMS. The in vitro cytotoxic activity of these compounds was evaluated against two breast cancer cell lines, MCF-7 and MDA-MB-231, and compared with a noncancerous breast cell line, MCF-10A. All compounds exhibited potent cytotoxic activities with minimal selectivity toward normal cells. Molecular docking studies targeting the serine/threonine kinase AKT1, estrogen receptor alpha (ERα), and human epidermal growth factor receptor 2 (HER2) revealed strong binding affinities, suggesting a mechanism involving the disruption of key cellular signaling pathways. These findings underscore the potential of furo[2,3-b]pyridine derivatives as promising candidates for further development into anticancer agents, laying the groundwork for future investigations into their selective therapeutic efficacy and molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad M Ibrahim
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan.
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O.Box 733, Irbid, 21110, Jordan
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Hasan AbuMahmoud
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. BOX 130040, Al-Mafraq, 25113, Jordan
| |
Collapse
|
2
|
Feng X, Zhang J, Yang R, Lei H, Chen W, Bai J, Feng K, Gao F, Yang W, Jiang X, Zhang B. The novel peptide PEP-Z-2 potentially treats renal fibrosis in vivo and in vitro by regulating TGF-β/Smad/AKT/MAPK signaling. Eur J Pharmacol 2024; 982:176942. [PMID: 39182546 DOI: 10.1016/j.ejphar.2024.176942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Renal fibrosis is a process in which excessive deposition of extracellular matrix leads to an increase in tissue hardness and gradual destruction of the renal parenchyma. Chronic kidney disease (CKD) commonly progresses to end-stage renal disease (ESRD), ultimately leading to renal failure. This disease has high incidence and mortality rates, but to date, effective treatment options are lacking. PEP-Z-2 is a collagen peptide isolated from redlip croaker scales and may have potential fibroprotective activity. In this study, PEP-Z-2 was found to alleviate unilateral ureteral obstruction (UUO)- and folic acid (FA)-induced kidney injury in a mouse model, reduce collagen deposition in tissues, normalize renal function, reduce the expression of fibrosis markers, reduce reactive oxygen species (ROS) production, and restore the balance of the oxidant/antioxidant system. In vitro experiments also demonstrated that PEP-Z-2 inhibits the TGF-β-induced differentiation of fibroblasts and renal tubular epithelial cells into myofibroblasts and reduces the production of extracellular matrix (ECM) proteins such as fibronectin, Col I, and α-SMA, demonstrating notable therapeutic effects on renal fibrosis. This effect is achieved by regulating the TGF-β/Smad/AKT/MAPK pathway. Our research suggested that PEP-Z-2 is a potential therapeutic drug for renal fibrosis, and peptides from aquatic organisms may constitute a new class of candidate drugs for the treatment of renal fibrosis and even other types of organ fibrosis.
Collapse
Affiliation(s)
- Xiaocui Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jianfeng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Hong Lei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Wanru Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jingya Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China; Northwest Minzu University, Lanzhou, 730030, China.
| | - Kai Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Outer Ring Road, Guangzhou, 510006, China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Yan T, Cheng J, He Q, Wang Y, Zhang C, Huang D, Liu J, Wang Z. Polymeric Dural Biomaterials in Spinal Surgery: A Review. Gels 2024; 10:579. [PMID: 39330181 PMCID: PMC11431199 DOI: 10.3390/gels10090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Laminectomy is a commonly performed surgical procedure by orthopedic and neurosurgeons, aimed at alleviating nerve compression and reducing pain. However, in some cases, excessive proliferation of fibrous scar tissue in the epidural space post-surgery can lead to persistent and intractable lower back pain, a condition known as Failed Back Surgery Syndrome (FBSS). The persistent fibrous tissue causes both physical and emotional distress for patients and also makes follow-up surgeries more challenging due to reduced visibility and greater technical difficulty. It has been established that the application of biomaterials to prevent epidural fibrosis post-lumbar surgery is more beneficial than revision surgeries to relieve dural fibrosis. Hydrogel-based biomaterials, with their excellent biocompatibility, degradability, and injectability and tunable mechanical properties, have been increasingly introduced by clinicians and researchers. This paper, building on the foundation of epidural fibrosis, primarily discusses the strategies for the preparation of natural and polymeric biomaterials to prevent epidural fibrosis, their physicochemical properties, and their ability to mitigate the excessive proliferation of fibroblasts. It also emphasizes the challenges that need to be addressed to translate laboratory research into clinical practice and the latest advancements in this field.
Collapse
Affiliation(s)
- Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Qing He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (T.Y.); (J.C.); (Y.W.); (C.Z.)
| |
Collapse
|
4
|
Lewik G, Lewik G, Müller LS, von Glinski A, Schulte TL, Lange T. Postoperative Epidural Fibrosis: Challenges and Opportunities - A Review. Spine Surg Relat Res 2024; 8:133-142. [PMID: 38618214 PMCID: PMC11007250 DOI: 10.22603/ssrr.2023-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 04/16/2024] Open
Abstract
Postoperative epidural fibrosis (EF) is still a major limitation to the success of spine surgery. Fibrotic adhesions in the epidural space, initiated via local trauma and inflammation, can induce difficult-to-treat pain and constitute the main cause of failed back surgery syndrome, which not uncommonly requires operative revision. Manifold agents and methods have been tested for EF relief in order to mitigate this longstanding health burden and its socioeconomic consequences. Although several promising strategies could be identified, few have thus far overcome the high translational hurdle, and there has been little change in standard clinical practice. Nonetheless, notable research progress in the field has put new exciting avenues on the horizon. In this review, we outline the etiology and pathogenesis of EF, portray its clinical and surgical presentation, and critically appraise current efforts and novel approaches toward enhanced prevention and treatment.
Collapse
Affiliation(s)
- Guido Lewik
- Department of Orthopedics and Trauma Surgery, Katholisches Klinikum Bochum - St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gerrit Lewik
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lena S Müller
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Alexander von Glinski
- Department of Orthopedics and Trauma Surgery, Katholisches Klinikum Bochum - St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Tobias L Schulte
- Department of Orthopedics and Trauma Surgery, Katholisches Klinikum Bochum - St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Tobias Lange
- Department of Orthopedics and Trauma Surgery, Katholisches Klinikum Bochum - St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Xu Z, Hu B, Zheng G, Yu W, Yang C, Wang H, Chen K, He S, Liang L, Xu C, Wu X, Zang F, Yuan WE, Chen H. Metformin-grafted polycaprolactone nanoscaffold targeting sensory nerve controlled fibroblasts reprograming to alleviate epidural fibrosis. J Control Release 2024; 367:791-805. [PMID: 38341179 DOI: 10.1016/j.jconrel.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Epidural fibrosis (EF), associated with various biological factors, is still a major troublesome clinical problem after laminectomy. In the present study, we initially demonstrate that sensory nerves can attenuate fibrogenic progression in EF animal models via the secretion of calcitonin gene-related peptide (CGRP), suggesting a new potential therapeutic target. Further studies showed that CGRP could inhibit the reprograming activation of fibroblasts through PI3K/AKT signal pathway. We subsequently identified metformin (MET), the most widely prescribed medication for obesity-associated type 2 diabetes, as a potent stimulator of sensory neurons to release more CGRP via activating CREB signal way. We copolymerized MET with innovative polycaprolactone (PCL) nanofibers to develop a metformin-grafted PCL nanoscaffold (METG-PCLN), which could ensure stable long-term drug release and serve as favorable physical barriers. In vivo results demonstrated that local implantation of METG-PCLN could penetrate into dorsal root ganglion cells (DRGs) to promote the CGRP synthesis, thus continuously inhibit the fibroblast activation and EF progress for 8 weeks after laminectomy, significantly better than conventional drug loading method. In conclusion, this study reveals the unprecedented potential of sensory neurons to counteract EF through CGRP signaling and introduces a novel strategy employing METG-PCLN to obstruct EF by fine-tuning sensory nerve-regulated fibrogenesis.
Collapse
Affiliation(s)
- Zeng Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hui Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Keyi Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shatong He
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lei Liang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
6
|
Wang D, Diao S, Zhou X, Zhou J, Liu Y. A new method regulates bone fracture tissue exosome lncRNA-mRNA to promote mesenchymal stem cell proliferation and migration. Injury 2024; 55:111210. [PMID: 38006783 DOI: 10.1016/j.injury.2023.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Post-injury adaptation (PIA) is a simple and convenient method to promote bone healing, but its mechanism is unclear. This study was to discuss the role of fracture site tissue exosomes lncRNAs-mRNAs networks on PIA promoting bone mesenchymal stem cells (BMSCs) proliferation and migration. Firstly, the effects of PIA accelerating BMSCs proliferation and migration were confirmed by rat fracture model and bone fracture environment in vitro. Besides, the fracture site tissue exosomes were isolated and authenticated. Then the tissue exosomes were the key factor in PIA promoting BMSCs proliferation and migration authenticated by in vitro and in vivo experiments. The high throughput sequencing and RT-PCR were used to analyze the tissue exosomes lncRNAs-mRNAs networks. It was found that PIA treatment upregulated 118 lncRNAs, 295 mRNAs, and downregulated 111 lncRNAs, 2706 mRNAs in tissue exosomes. A total 12,211 genes were the target genes. Akt1, Actb and Uba52 were the hub mRNAs in tissue exosomes. In additions, tissue-derived exosomes of PIA treated rats upregulated 49 genes, 3 lncRNAs and downregulated 28 genes, 1 lncRNA in BMSCs. Kif11 was the hub gene. Overall, PIA promoted BMSCs proliferation and migration in the early stage of fracture healing, which was closely related to the fracture site tissue exosomes. Akt1, Actb and Uba52 were the hub mRNAs in the exosomes. Besides, Kif11 might be the key gene in BMSC regulated by tissue-derived exosomes of PIA treated rats.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shuo Diao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaobin Zhou
- Third Department of Traumatology, The Third Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
7
|
Zhu X, Zeng B, Wu C, Chen Z, Yu M, Yang Y. Inhibition of TGF-β2-Induced Trabecular Meshwork Fibrosis by Pirfenidone. Transl Vis Sci Technol 2023; 12:21. [PMID: 37975842 PMCID: PMC10664722 DOI: 10.1167/tvst.12.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose Trabecular meshwork (TM) fibrosis is a crucial pathophysiological process in the development of primary open-angle glaucoma. Pirfenidone (PFD) is a new, broad-spectrum antifibrotic agent approved for the treatment of idiopathic pulmonary fibrosis. This study investigated the inhibitory effect of PFD on TM fibrosis and evaluated its efficacy in lowering intraocular pressure (IOP). Methods Human TM cells were isolated, cultured, and characterized. Cell Counting Kit-8 was used to evaluate the proliferation and toxicity of different concentrations of PFD on normal or fibrotic TM cells. TM cells were treated with transforming growth factor beta-2 (TGF-β2) in the absence or presence of PFD. Western blotting and immunofluorescence analyses were used to analyze changes in the TM cell cytoskeleton and extracellular matrix (ECM) proteins, including alpha-smooth muscle actin (α-SMA), F-actin, collagen IV (COL IV), and fibronectin (FN). An ocular hypertension (OHT) mouse model was induced with Ad-TGF-β2C226/228S and then treated with PFD or latanoprost (LT) eye drops to confirm the efficacy of PFD in lowering IOP. Results PFD inhibited the proliferation of fibrotic TM cells in a dose-dependent manner and inhibited TGF-β2-induced overexpression of α-SMA, COL IV, and FN in TM cells. PFD stabilized F-actin. In vivo, PFD eye drops reduced the IOP of the OHT models and showed no significant difference compared with LT eye drops. Conclusions PFD inhibited TGF-β2-induced TM cell fibrosis by rearranging the disordered cytoskeleton and decreasing ECM deposition, thereby enhancing the aqueous outflow from the TM outflow pathway and lowering IOP, which provides a potential new approach to treating glaucoma. Translational Relevance Our work with pirfenidone provides a new approach to treat glaucoma.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zidong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
8
|
Ganesh V, Kancherla Y, Igram CM, Pugely AJ, Salem AK, Shin K, Lim TH, Seol D. Pharmacotherapies to prevent epidural fibrosis after laminectomy: a systematic review of in vitro and in vivo animal models. Spine J 2023; 23:1471-1484. [PMID: 37187251 PMCID: PMC10538436 DOI: 10.1016/j.spinee.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND CONTEXT Excessive production of epidural fibrosis in the nerve root can be a pain source after laminectomy. Pharmacotherapy is a minimally invasive treatment option to attenuate epidural fibrosis by suppressing proliferation and activation of fibroblasts, inflammation, and angiogenesis, and inducing apoptosis. PURPOSE We reviewed and tabulated pharmaceuticals with their respective signaling axes implicated in reducing epidural fibrosis. Additionally, we summarized current literature for the feasibility of novel biologics and microRNA to lessen epidural fibrosis. STUDY DESIGN/SETTING Systematic Review. METHODS According to the PRISMA guidelines, we systematically reviewed the literature in October 2022. The exclusion criteria included duplicates, nonrelevant articles, and insufficient detail of drug mechanism. RESULTS We obtained a total of 2,499 articles from PubMed and Embase databases. After screening the articles, 74 articles were finally selected for the systematic review and classified based on the functions of drugs and microRNAs which included inhibition of fibroblast proliferation and activation, pro-apoptosis, anti-inflammation, and antiangiogenesis. In addition, we summarized various pathways to prevent epidural fibrosis. CONCLUSION This study allows a comprehensive review of pharmacotherapies to prevent epidural fibrosis during laminectomy. CLINICAL SIGNIFICANCE We expect that our review would enable researchers and clinicians to better understand the mechanism of anti-fibrosis drugs for the clinical application of epidural fibrosis therapies.
Collapse
Affiliation(s)
- Venkateswaran Ganesh
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Roy J Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Yochana Kancherla
- School of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Cassim M Igram
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew J Pugely
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Kyungsup Shin
- Department of Orthodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
| | - Tae-Hong Lim
- Roy J Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Dongrim Seol
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Orthodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines 2023; 11:657. [PMID: 36979636 PMCID: PMC10045591 DOI: 10.3390/biomedicines11030657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Conjunctival fibrosis remains the major impediment to the success of glaucoma filtration surgery. Anti-metabolites remain the gold standard for mitigating post-surgical fibrosis, but they are associated with high complication rates and surgical failure rates. Establishing a more targeted approach to attenuate conjunctival fibrosis may revolutionize the surgical approach to glaucoma. A new strategy is needed to prevent progressive tissue remodeling and formation of a fibrotic scar, subsequently increasing surgical success and reducing the prevalence of glaucoma-related vision loss. Advancements in our understanding of molecular signaling and biomechanical cues in the conjunctival tissue architecture are broadening the horizon for new therapies and biomaterials for the mitigation of fibrosis. This review aims to highlight the strategies and current state of promising future approaches for targeting fibrosis in glaucoma filtration surgery.
Collapse
Affiliation(s)
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Aaron D. Webel
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
10
|
Jia D, Chen H, Dai J, He S, Liu Y, Liu Z, Zhang Y, Li X, Sun Y, Wang Q. Human Infrapatellar Fat Pad Mesenchymal Stem Cell-Derived Extracellular Vesicles Inhibit Fibroblast Proliferation by Regulating MT2A to Reduce Knee Arthrofibrosis. Stem Cells Int 2023; 2023:9067621. [PMID: 37091533 PMCID: PMC10115539 DOI: 10.1155/2023/9067621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 04/25/2023] Open
Abstract
Knee arthrofibrosis is one of the most serious complications of knee surgery; however, its pathogenesis is unclear, and current treatment methods have not achieved satisfactory results. Mesenchymal stem cells (MSCs) have good anti-inflammatory and antifibrotic properties, and studies have reported that human infrapatellar fat pad-derived MSCs (IPFSCs) have the advantages of strong proliferative and differentiating ability, ease of acquisition, and minimal harm to the donor. Increasing evidence has shown that MSCs function through their paracrine extracellular vesicles (EVs). Our study is aimed at exploring the effects of human IPFSC-derived EVs (IPFSC-EVs) on knee arthrofibrosis and the underlying mechanisms in vivo and in vitro. In the in vivo study, injecting IPFSC-EVs into the knee joint cavity effectively reduced surgery-induced knee arthrofibrosis in rats. In the in vitro study, IPFSC-EVs were found to inhibit the proliferation of fibroblasts in the inflammatory environment. Additionally, we screened a potential IPFSC-EV molecular target, metallothionein 2A (MT2A), using RNA sequencing. We found that silencing MT2A partially reversed the inhibitory effect of IPFSC-EVs on fibroblast proliferation in the inflammatory environment. In conclusion, IPFSC-EVs inhibit the progression of knee arthrofibrosis by regulating MT2A, which inhibits fibroblast proliferation in the inflammatory environment.
Collapse
Affiliation(s)
- Dazhou Jia
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225001 Jiangsu, China
| | - Hui Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Shiping He
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yangyang Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225001 Jiangsu, China
| | - Zhendong Liu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaxin Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaolei Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Hou B, Wen Y, Zhu X, Qi M, Cai W, Du B, Sun H, Qiu L. Preparation and characterization of vaccarin, hypaphorine and chitosan nanoparticles and their promoting effects on chronic wounds healing. Int J Biol Macromol 2022; 221:1580-1592. [PMID: 35961560 DOI: 10.1016/j.ijbiomac.2022.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Chronic wounds have become an important factor hindering human health, affecting tens of millions of people worldwide, especially diabetic wounds. Based on the antibacterial properties of chitosan, the angiogenesis promoting effect of vaccarin (VAC) and the anti-inflammatory effect of hypaphorine (HYP), nanoparticles with high bioavailability were prepared. VAC, HYP and chitosan nanoparticles (VAC + HYP-NPS) were used to the treatment of chronic wounds. Transmission electron microscopy (TEM) images showed the nanoparticles were spherical. ZetaPALS showed the potential of nanoparticles were -12.8 ± 5.53 mV and the size were 166.8 ± 29.95 nm. Methyl thiazolyl tetrazolium (MTT) assay showed that VAC + HYP-NPS had no toxicity and the biocompatibility was satisfactory. In the treatment of chronic wounds in diabetic rats, VAC + HYP-NPS significantly promoted the re-epithelialization of chronic wounds and accelerated the healing of chronic wounds. In the process of chronic wounds healing, VAC + HYP-NPS played the antibacterial effect of chitosan, the angiogenic effect of VAC and the anti-inflammatory effect of HYP, and finally promoted the chronic wounds healing. Overall, the developed VAC + HYP-NPS have potential application in chronic wounds healing. In view of the complexity of the causes of chronic wounds, multi-target drug administration may be an effective way to treat chronic wounds.
Collapse
Affiliation(s)
- Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Xuerui Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Mengting Qi
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China.
| |
Collapse
|
12
|
Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, Luo P. Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Pharmacol 2021; 911:174503. [PMID: 34547247 DOI: 10.1016/j.ejphar.2021.174503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Renal fibrosis, a characteristic of all chronic kidney diseases, lacks effective therapeutic drugs currently. Pirfenidone (PFD), a small molecule drug with good oral bioavailability, is widely used in idiopathic pulmonary fibrosis and exerts anti-fibrotic, anti-inflammatory, antioxidant, and anti-apoptotic effects. These effects have been attributed to the suppression of cell growth factors (in particular, but not exclusively, transforming growth factor-β) and the epithelial-mesenchymal transition, as well as the possible down-regulation of pro-inflammatory mediators (such as tumour necrosis factor-α), the protection of mitochondrial function, and the regulation of inflammatory cells. Considering the activation of similar anti-fibrotic pathways in lung and kidney disease and the broad activity of PFD, this drug has improved the treatment of the renal fibrotic disease. In this review, we briefly summarize the pharmacokinetics and safety of PFD as well as the mechanisms of PFD focusing on kidney disease. We summarize the effects of PFD on renal function and pathological alterations based on animal experiments, as well as changes in growth factors based on both animal and renal cell experiments. Moreover, given the activation of similar profibrotic pathways in pulmonary diseases and other disorders, we reviewed in-depth the possible signalling pathways targeted by PFD to attenuate renal fibrosis and protect renal function. Finally, we provide an overview of the current clinical trials of PFD for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|