1
|
Kuryata O, Akimov O, Riabushko M, Kostenko H, Kostenko V, Mishchenko A, Nazarenko S, Solovyova N, Kostenko V. Therapeutic potential of 5-aminolevulinic acid in metabolic disorders: Current insights and future directions. iScience 2024; 27:111477. [PMID: 39720526 PMCID: PMC11667047 DOI: 10.1016/j.isci.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects. Additionally, it regulates the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, cytochrome c oxidase subunit IV, uncoupling proteins UCP1 and UCP2, glucose transporters GLUT1 and GLUT2, and sterol regulatory element-binding protein 1c in relevant tissues. Randomized controlled trials have confirmed the effects of 5-ALA on glucose control in both prediabetic and diabetic patients, noting its safety and tolerability, as well as the safety of its combined use with oral hypoglycemic agents. Only minor side effects have been reported. However, the impact of 5-ALA on markers of systemic inflammation, oxidative and nitrosative stress, and dyslipidemia was not evaluated in these studies. At the same time, preparations of 5-ALA may potentially be effective not only in the treatment of prediabetes and type 2 diabetes mellitus (T2DM), but also in other conditions associated with systemic inflammation, oxidative or nitrosative stress, mitochondrial dysfunction, as well as disorders of carbohydrate and lipid metabolism. It has been concluded that the promising advancement of formulations containing 5-ALA may pave the way for new strategies in preventing and treating these diseases, with subsequent preclinical and clinical trials likely to follow.
Collapse
Affiliation(s)
- Olexandr Kuryata
- Dnipro State Medical University, Department of Internal Medicine 2, Phthisiology, Occupational Diseases and Clinical Immunology, Dnipro, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Mykola Riabushko
- Poltava State Medical University, Department of Internal Medicine 2, Poltava, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Poltava, Ukraine
| | - Artur Mishchenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Svetlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Natalia Solovyova
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| |
Collapse
|
2
|
Kuwata T, Kaku Y, Biswas S, Matsumoto K, Shimizu M, Kawanami Y, Uraki R, Okazaki K, Minami R, Nagasaki Y, Nagashima M, Yoshida I, Sadamasu K, Yoshimura K, Ito M, Kiso M, Yamayoshi S, Imai M, Ikeda T, Sato K, Toyoda M, Ueno T, Inoue T, Tanaka Y, Kimura KT, Hashiguchi T, Sugita Y, Noda T, Morioka H, Kawaoka Y, Matsushita S. Induction of IGHV3-53 public antibodies with broadly neutralising activity against SARS-CoV-2 including Omicron subvariants in a Delta breakthrough infection case. EBioMedicine 2024; 110:105439. [PMID: 39488016 PMCID: PMC11565539 DOI: 10.1016/j.ebiom.2024.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Emergence of SARS-CoV-2 variants that escape neutralising antibodies hampers the development of vaccines and therapeutic antibodies against SARS-CoV-2. IGHV3-53/3-66-derived public antibodies, which are generally specific to the prototype virus and are frequently induced in infected or vaccinated individuals, show minimal affinity maturation and high potency against prototype SARS-CoV-2. METHODS Monoclonal antibodies isolated from a Delta breakthrough infection case were analysed for cross-neutralising activities against SARS-CoV-2 variants. The broadly neutralising antibody K4-66 was further analysed in a hamster model, and the effect of somatic hypermutations was assessed using the inferred germline precursor. FINDINGS Antibodies derived from IGHV3-53/3-66 showed broader neutralising activity than antibodies derived from IGHV1-69 and other IGHV genes. IGHV3-53/3-66 antibodies neutralised the Delta variant better than the IGHV1-69 antibodies, suggesting that the IGHV3-53/3-66 antibodies were further maturated by Delta breakthrough infection. One IGHV3-53/3-66 antibody, K4-66, neutralised all Omicron subvariants tested, including EG.5.1, BA.2.86, and JN.1, and decreased the viral load in the lungs of hamsters infected with Omicron subvariant XBB.1.5. The importance of somatic hypermutations was demonstrated by the loss of neutralising activity of the inferred germline precursor of K4-66 against Beta and Omicron variants. INTERPRETATION Broadly neutralising IGHV3-53/3-66 antibodies have potential as a target for the development of effective vaccines and therapeutic antibodies against newly emerging SARS-CoV-2 variants. FUNDING This work was supported by grants from AMED (JP23ym0126048, JP22ym0126048, JP21ym0126048, JP23wm0125002, JP233fa627001, JP223fa627009, JP24jf0126002, and JP22fk0108572), and the JSPS (JP21H02970, JK23K20041, and JPJSCCA20240006).
Collapse
Affiliation(s)
- Takeo Kuwata
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Yu Kaku
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shashwata Biswas
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kaho Matsumoto
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mikiko Shimizu
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yoko Kawanami
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Ryuta Uraki
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyo Okazaki
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Minami
- Internal Medicine, Clinical Research Institute, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Yoji Nagasaki
- Internal Medicine, Clinical Research Institute, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Isao Yoshida
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Mutsumi Ito
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mako Toyoda
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kanako Tarakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuzo Matsushita
- Collaborative Research Program with the Chemo-Sero-Therapeutic Research Institute for Anti-viral Agents and Hematological Diseases, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Doki T, Shimada J, Tokunaga M, To K, Orino K, Takano T. Protoporphyrin IX-Dependent Antiviral Effects of 5-Aminolevulinic Acid against Feline Coronavirus Type II. Viruses 2024; 16:1595. [PMID: 39459928 PMCID: PMC11512371 DOI: 10.3390/v16101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
5-Aminolevulinic acid (5-ALA), a non-proteinogenic amino acid, is an intermediate in the biosynthesis of heme and exerts antiviral effects against feline coronavirus (FCoV); however, the underlying mechanisms remain unclear. In the biosynthesis of heme, 5-ALA is condensed and converted to protoporphyrin IX (PpIX), which is then transformed into heme by the insertion of ferrous iron. Previous research has suggested that the metabolites generated during heme biosynthesis contribute to the antiviral effects of 5-ALA. Therefore, the present study investigated the in vitro mechanisms responsible for the antiviral effects of 5-ALA. The results obtained revealed that 5-ALA and PpIX both effectively reduced the viral titer in the supernatant of FCoV-infected fcwf-4 cells. Moreover, PpIX exerted virucidal effects against FCoV. We also confirmed that 5-ALA increased PpIX levels in cells. While hemin induced heme oxygenase-1 gene expression, it did not reduce the viral titer in the supernatant. Sodium ferrous citrate decreased PpIX levels and suppressed the antiviral effects of 5-ALA. Collectively, these results suggest that the antiviral effects of 5-ALA against FCoV are dependent on PpIX.
Collapse
Affiliation(s)
- Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Aomori, Japan; (T.D.)
| | - Junna Shimada
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Aomori, Japan; (T.D.)
| | - Misa Tokunaga
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Aomori, Japan; (T.D.)
| | - Kaito To
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Aomori, Japan; (T.D.)
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Aomori, Japan;
| | - Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Aomori, Japan; (T.D.)
| |
Collapse
|
4
|
Sakurai Y, Okada S, Ozeki T, Yoshikawa R, Kinoshita T, Yasuda J. SARS-CoV-2 Omicron subvariants progressively adapt to human cells with altered host cell entry. mSphere 2024; 9:e0033824. [PMID: 39191389 PMCID: PMC11423564 DOI: 10.1128/msphere.00338-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant exhibits high transmissibility with a strong immune escape ability and causes frequent large-scale global infections by producing predominant subvariants. Here, using human upper/lower airway and intestinal cells, we examined the previously dominant BA.1-BA.5 and BA.2.75 subvariants, together with the recently emerged XBB/BQ lineages, in comparison to the former Delta variant. We observed a tendency for each virus to demonstrate higher growth capability than the previously dominant subvariants. Unlike human bronchial and intestinal cells, nasal epithelial cells accommodated the efficient entry of certain Omicron subvariants, similar to the Delta variant. In contrast to the Delta's reliance on cell-surface transmembrane protease serine 2, all tested Omicron variants depended on endosomal cathepsin L. Moreover, S1/S2 cleavage of early Omicron spikes was less efficient, whereas recent viruses exhibit improved cleavage efficacy. Our results show that the Omicron variant progressively adapts to human cells through continuous endosome-mediated host cell entry.IMPORTANCESARS-CoV-2, the causative agent of coronavirus disease 2019, has evolved into a number of variants/subvariants, which have generated multiple global waves of infection. In order to monitor/predict virological features of emerging variants and determine appropriate strategies for anti-viral development, understanding conserved or altered features of evolving SARS-CoV-2 is important. In this study, we addressed previously or recently predominant Omicron subvariants and demonstrated the gradual adaptation to human cells. The host cell entry route, which was altered from the former Delta variant, was conserved among all tested Omicron subvariants. Collectively, this study revealed both changing and maintained features of SARS-CoV-2 during the Omicron variant evolution.
Collapse
Affiliation(s)
- Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Sayaka Okada
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Takehiro Ozeki
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Rokusuke Yoshikawa
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Isaiah S, Westerhuis JA, Loots DT, Solomons R, van Furth MT, van Elsland S, van der Kuip M, Mason S. The diagnostic potential of urine in paediatric patients undergoing initial treatment for tuberculous meningitis. Sci Rep 2024; 14:19471. [PMID: 39174657 PMCID: PMC11341861 DOI: 10.1038/s41598-024-70419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Tuberculous meningitis (TBM)-the extrapulmonary form of tuberculosis, is the most severe complication associated with tuberculosis, particularly in infants and children. The gold standard for the diagnosis of TBM requires cerebrospinal fluid (CSF) through lumbar puncture-an invasive sample collection method, and currently available CSF assays are often not sufficient for a definitive TBM diagnosis. Urine is metabolite-rich and relatively unexplored in terms of its potential to diagnose neuroinfectious diseases. We used an untargeted proton magnetic resonance (1H-NMR) metabolomics approach to compare the urine from 32 patients with TBM (stratified into stages 1, 2 and 3) against that from 39 controls in a South African paediatric cohort. Significant spectral bins had to satisfy three of our four strict cut-off quantitative statistical criteria. Five significant biological metabolites were identified-1-methylnicotinamide, 3-hydroxyisovaleric acid, 5-aminolevulinic acid, N-acetylglutamine and methanol-which had no correlation with medication metabolites. ROC analysis revealed that methanol lacked diagnostic sensitivity, but the other four metabolites showed good diagnostic potential. Furthermore, we compared mild (stage 1) TBM and severe (stages 2 and 3) TBM, and our multivariate metabolic model could successfully classify severe but not mild TBM. Our results show that urine can potentially be used to diagnose severe TBM.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North‒West University, Potchefstroom, South Africa
| | - Johan A Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North‒West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Pediatric Infectious Diseases and Immunology, Vrije Universiteit, Amsterdam University Medical Centers, Emma Children's Hospital, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Sabine van Elsland
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Vrije Universiteit, Amsterdam University Medical Centers, Emma Children's Hospital, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North‒West University, Potchefstroom, South Africa.
| |
Collapse
|
6
|
Whiley L, Lawler NG, Zeng AX, Lee A, Chin ST, Bizkarguenaga M, Bruzzone C, Embade N, Wist J, Holmes E, Millet O, Nicholson JK, Gray N. Cross-Validation of Metabolic Phenotypes in SARS-CoV-2 Infected Subpopulations Using Targeted Liquid Chromatography-Mass Spectrometry (LC-MS). J Proteome Res 2024; 23:1313-1327. [PMID: 38484742 PMCID: PMC11002931 DOI: 10.1021/acs.jproteome.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
To ensure biological validity in metabolic phenotyping, findings must be replicated in independent sample sets. Targeted workflows have long been heralded as ideal platforms for such validation due to their robust quantitative capability. We evaluated the capability of liquid chromatography-mass spectrometry (LC-MS) assays targeting organic acids and bile acids to validate metabolic phenotypes of SARS-CoV-2 infection. Two independent sample sets were collected: (1) Australia: plasma, SARS-CoV-2 positive (n = 20), noninfected healthy controls (n = 22) and COVID-19 disease-like symptoms but negative for SARS-CoV-2 infection (n = 22). (2) Spain: serum, SARS-CoV-2 positive (n = 33) and noninfected healthy controls (n = 39). Multivariate modeling using orthogonal projections to latent structures discriminant analyses (OPLS-DA) classified healthy controls from SARS-CoV-2 positive (Australia; R2 = 0.17, ROC-AUC = 1; Spain R2 = 0.20, ROC-AUC = 1). Univariate analyses revealed 23 significantly different (p < 0.05) metabolites between healthy controls and SARS-CoV-2 positive individuals across both cohorts. Significant metabolites revealed consistent perturbations in cellular energy metabolism (pyruvic acid, and 2-oxoglutaric acid), oxidative stress (lactic acid, 2-hydroxybutyric acid), hypoxia (2-hydroxyglutaric acid, 5-aminolevulinic acid), liver activity (primary bile acids), and host-gut microbial cometabolism (hippuric acid, phenylpropionic acid, indole-3-propionic acid). These data support targeted LC-MS metabolic phenotyping workflows for biological validation in independent sample sets.
Collapse
Affiliation(s)
- Luke Whiley
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Annie Xu Zeng
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Alex Lee
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Sung-Tong Chin
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Maider Bizkarguenaga
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Chiara Bruzzone
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Nieves Embade
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Julien Wist
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Elaine Holmes
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Department
of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial
College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Oscar Millet
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Jeremy K. Nicholson
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Institute
of Global Health Innovation, Faculty Building South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
| | - Nicola Gray
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| |
Collapse
|
7
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
8
|
Tanaka T, Tashiro M, Ota K, Fujita A, Sawai T, Kadota J, Fukuda Y, Sumiyoshi M, Ide S, Tachikawa N, Fujii H, Hibino M, Shiomi H, Izumida M, Matsui K, Yamauchi M, Takahashi K, Yamanashi H, Sugimoto T, Akabame S, Umeda M, Shimizu M, Hosogaya N, Kosai K, Takeda K, Iwanaga N, Ashizawa N, Hirayama T, Takazono T, Yamamoto K, Imamura Y, Miyazaki T, Kobayashi Y, Ariyoshi K, Mukae H, Yanagihara K, Kita K, Izumikawa K. Safety and efficacy of 5-aminolevulinic acid phosphate/iron in mild-to-moderate coronavirus disease 2019: A randomized exploratory phase II trial. Medicine (Baltimore) 2023; 102:e34858. [PMID: 37653769 PMCID: PMC10470697 DOI: 10.1097/md.0000000000034858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND 5-aminolevulinic acid (5-ALA), a natural amino acid that is marketed alongside sodium ferrous citrate (SFC) as a functional food, blocks severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proliferation in vitro and exerts anti-inflammatory effects. In this phase II open-label, prospective, parallel-group, randomized trial, we aimed to evaluate the safety and efficacy of 5-ALA in patients with mild-to-moderate coronavirus disease 2019. METHODS This trial was conducted in patients receiving 5-ALA/SFC (250/145 mg) orally thrice daily for 7 days, followed by 5-ALA/SFC (150/87 mg) orally thrice daily for 7 days. The primary endpoints were changes in SARS-CoV-2 viral load, clinical symptom scores, and 5-ALA/SFC safety (adverse events [AE] and changes in laboratory values and vital signs). RESULTS A total of 50 patients were enrolled from 8 institutions in Japan. The change in SARS-CoV-2 viral load from baseline was not significantly different between the 5-ALA/SFC (n = 24) and control (n = 26) groups. The duration to improvement was shorter in the 5-ALA/SFC group than in the control group, although the difference was not significant. The 5-ALA/SFC group exhibited faster improvement rates in "taste abnormality," "cough," "lethargy," and "no appetite" than the control group. Eight AEs were observed in the 5-ALA/SFC group, with 22.7% of patients experiencing gastrointestinal symptoms (decreased appetite, constipation, and vomiting). AEs occurred with 750/435 mg/day in 25.0% of patients in the first phase and with 450/261 mg/day of 5-ALA/SFC in 6.3% of patients in the second phase. CONCLUSION 5-ALA/SFC improved some symptoms but did not influence the SARS-CoV-2 viral load or clinical symptom scores over 14 days. The safety of 5-ALA/SFC in this study was acceptable. Further evaluation using a larger sample size or modified method is warranted.
Collapse
Affiliation(s)
- Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Masato Tashiro
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
| | - Kenji Ota
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Ayumi Fujita
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Toyomitsu Sawai
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center, Nagasaki-shi, Nagasaki, Japan
| | - Junichi Kadota
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center, Nagasaki-shi, Nagasaki, Japan
| | - Yuichi Fukuda
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo-shi, Nagasaki, Japan
| | - Makoto Sumiyoshi
- Department of Respiratory Medicine, Isahaya General Hospital, Japan Community Health Care Organization, Isahaya-shi, Nagasaki, Japan
| | - Shotaro Ide
- Department of Respiratory Medicine, Isahaya General Hospital, Japan Community Health Care Organization, Isahaya-shi, Nagasaki, Japan
| | - Natsuo Tachikawa
- Department of Infectious Diseases, Yokohama Municipal Citizen’s Hospital, Yokohama-shi, Kanagawa, Japan
| | - Hiroshi Fujii
- Department of Respiratory Medicine, Kobe City Medical Center West Hospital, Kobe-shi, Hyogo, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa-shi, Kanagawa, Japan
| | - Hisanori Shiomi
- Department of Surgery, Nagahama Red Cross Hospital, Nagahama-shi, Shiga, Japan
| | - Mai Izumida
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kohsuke Matsui
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Momoko Yamauchi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kensuke Takahashi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Hirotomo Yamanashi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of General Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Takashi Sugimoto
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Shogo Akabame
- Department of General Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Masataka Umeda
- Department of General Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Masumi Shimizu
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Naoki Hosogaya
- Clinical Research Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Nobuyuki Ashizawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Yusuke Kobayashi
- Clinical Development Department, Neopharma Japan Co. Ltd., Chiyoda-ku, Tokyo, Japan
| | - Koya Ariyoshi
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki-shi, Nagasaki, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine Nagasaki University, Nagasaki-shi, Nagasaki, Japan
| | - Koichi Izumikawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Nagasaki, Japan
| |
Collapse
|
9
|
Otaka Y, Kanai K, Okada D, Nagai N, Yamashita Y, Ichikawa Y, Tajima K. Effects of Oral 5-Aminolevulinic Acid on Lipopolysaccharide-Induced Ocular Inflammation in Rats. Vet Sci 2023; 10:vetsci10030207. [PMID: 36977246 PMCID: PMC10054159 DOI: 10.3390/vetsci10030207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
This study aimed to investigate the anti-inflammatory effect of 5-aminolevulinic acid (5-ALA) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Sprague Dawley rats by the subcutaneous injection of lipopolysaccharide (LPS). During LPS injection, 5-ALA diluted with saline was administered via gastric gavage. After 24 h, clinical scores were assessed after which aqueous humor (AqH) samples were obtained. The number of infiltrating cells, protein concentration, and levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), and prostaglandin E2 (PGE2) in AqH were measured. For histological examination, both eyes of some rats were enucleated. In vitro, a mouse macrophage cell line (RAW264.7 cells) was stimulated by LPS with or without 5-ALA. Western blot was used to analyze the expression of inducible NO synthase (iNOS) and cyclooxygenase-2. 5-ALA suppressed the EIU clinical scores, infiltrating cell number, and protein concentration while improving the histopathologic scores. In particular, 100 mg/kg 5-ALA reduced the concentrations of NO, PGE2, TNF-α, and IL-6 in AqH, similar to 1 mg/kg prednisolone. In addition, 5-ALA suppressed iNOS upregulation in LPS-stimulated RAW264.7 cells. Therefore, 5-ALA has an anti-inflammatory effect on EIU through the inhibition of the upregulation of inflammatory mediators.
Collapse
Affiliation(s)
- Yuya Otaka
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 ban-cho, Towada 034-8628, Aomori, Japan
- Correspondence: ; Tel.: +81-176-23-4371
| | - Daiki Okada
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 ban-cho, Towada 034-8628, Aomori, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yohei Yamashita
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 ban-cho, Towada 034-8628, Aomori, Japan
| | - Yoichiro Ichikawa
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazuki Tajima
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 ban-cho, Towada 034-8628, Aomori, Japan
| |
Collapse
|
10
|
Design and Techno–Economic Analysis of Levulinic Acid Production Process from Biomass by Using Co-product Formic Acid as a Catalyst with Minimal Waste Generation. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Unveiling the Effect of NCgl0580 Gene Deletion on 5-Aminolevulinic Acid Biosynthesis in Corynebacterium glutamicum. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
5-Aminolevulinic acid (5-ALA) has recently received much attention for its wide applications in medicine and agriculture. In this study, we investigated the effect of NCgl0580 in Corynebacterium glutamicum on 5-ALA biosynthesis as well as its possible mechanism. It was found that the overexpression of NCgl0580 increased 5-ALA production by approximately 53.3%. Interestingly, the knockout of this gene led to an even more significant 2.49-fold increase in 5-ALA production. According to transcriptome analysis and functional validation of phenotype-related targets, the deletion of NCgl0580 brought about considerable changes in the transcript levels of genes involved in central carbon metabolism, leading to fluxes redistribution toward the 5-ALA precursor succinyl-CoA as well as ATP-binding cassette (ABC) transporters affecting 5-ALA biosynthesis. In particular, the positive effects of enhanced sugar transport (by overexpressing NCgl1445 and iolT1), glycolysis (by overexpressing pyk2), iron uptake (by overexpressing afuABC), and phosphate uptake (by overexpressing pstSCAB and ugpQ) on 5-ALA biosynthesis were demonstrated for the first time. Thus, the transcriptional mechanism underlying the effect of NCgl0580 deletion on 5-ALA biosynthesis was elucidated, providing new strategies to regulate the metabolic network of C. glutamicum to achieve a further increase in 5-ALA production.
Collapse
|
12
|
Nara E, Lai HW, Imazato H, Ishizuka M, Nakajima M, Ogura SI. Suppression of angiotensin converting enzyme 2, a host receptor for SARS-CoV-2 infection, using 5-aminolevulinic acid in vitro. PLoS One 2023; 18:e0281399. [PMID: 36757984 PMCID: PMC9910746 DOI: 10.1371/journal.pone.0281399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2), an entry receptor found on the surface of host cells, is believed to be detrimental to the infectious capability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Scientists have been working on finding a cure since its outbreak with limited success. In this study, we evaluated the potential of 5-aminolevulinic acid hydrochloride (ALA) in suppressing ACE2 expression of host cells. ACE2 expression and the production of intracellular porphyrins following ALA administration were carried out. We observed the reduction of ACE2 expression and intracellular porphyrins following ALA administration. ALA suppressed the ACE2 expression in host cells which might prevent binding of SARS-CoV-2 to host cells. Co-administration of ALA and sodium ferrous citrate (SFC) resulted in a further decrease in ACE2 expression and increase in intracellular heme level. This suggests that the suppression of ACE2 expression by ALA might occur through heme production. We found that the inhibition of heme oxygenase-1 (HO-1), which is involved in heme degradation, also resulted in decrease in ACE2 expression, suggesting a potential role of HO-1 in suppressing ACE2 as well. In conclusion, we speculate that ALA, together with SFC administration, might serve as a potential therapeutic approach in reducing SARS-CoV-2 infectivity through suppression of ACE2 expression.
Collapse
Affiliation(s)
- Eriko Nara
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hung Wei Lai
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- * E-mail: (SIO); (HWL)
| | - Hideo Imazato
- SBI Pharmaceuticals Co. Ltd., Minato-ku, Tokyo, Japan
| | | | | | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- * E-mail: (SIO); (HWL)
| |
Collapse
|
13
|
Abe H, Ushijima Y, Bikangui R, Ondo GN, Moure A, Yali-Assy-Oyamli Y, Yoshikawa R, Lell B, Adegnika AA, Yasuda J. Long-term validation of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 from March 2020 to October 2021 in Central Africa, Gabon. PLoS Negl Trop Dis 2022; 16:e0010964. [PMID: 36455044 DOI: 10.1371/journal.pntd.0010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/13/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Despite the development of several methods for diagnosing COVID-19, long-term validation of such methods remains limited. In the early phase of the COVID-19 pandemic, we developed a rapid and sensitive diagnostic method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) methodology, which is suitable for point-of-care application or for use in resource-limited settings to detect SARS-CoV-2. To assess the applicability of the RT-LAMP assay technique to resource-limited regions, such as rural areas in Africa, and to verify the usability of the method against various SARS-CoV-2 variants, the method was validated using clinical samples collected longitudinally during the pandemic. METHODOLOGY/PRINCIPAL FINDINGS First, the sensitivity of the RT-LAMP assay for detecting 10 SARS-CoV-2 variants was evaluated using viral RNA samples extracted from cell culture with a portable battery-supported device, resulting in the successful detection of 20-50 copies of the viral genome within 15 min, regardless of the variant. COVID-19 positive samples collected in Gabon between March 2020 and October 2021 were used to evaluate the sensitivity of the assay and to calculate the copy number of the SARS-CoV-2 genome. More than 292 copies of the viral genome were detected with 100% probability within 15 min in almost all tests. CONCLUSIONS This long-term validation study clearly demonstrated the applicability of the RT-LAMP assay for the clinical diagnosis of COVID-19 in resource-limited settings of Africa, such as rural areas in Gabon. The results show the potential of the assay as a promising COVID-19 diagnostic method, especially in rural and remote regions located far from the official diagnosis facilities in urban or semi-urban areas.
Collapse
Affiliation(s)
- Haruka Abe
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | | | - Ayong Moure
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Rokusuke Yoshikawa
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Medical University of Vienna, Vienna, Austria
| | - Ayola A Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Saheb Sharif-Askari N, Soares NC, Mohamed HA, Saheb Sharif-Askari F, Alsayed HAH, Al-Hroub H, Salameh L, Osman RS, Mahboub B, Hamid Q, Semreen MH, Halwani R. Saliva metabolomic profile of COVID-19 patients associates with disease severity. Metabolomics 2022; 18:81. [PMID: 36271948 PMCID: PMC9589589 DOI: 10.1007/s11306-022-01936-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/27/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) is strongly linked to dysregulation of various molecular, cellular, and physiological processes that change abundance of different biomolecules including metabolites that may be ultimately used as biomarkers for disease progression and severity. It is important at early stage to readily distinguish those patients that are likely to progress to moderate and severe stages. OBJECTIVES This study aimed to investigate the utility of saliva and plasma metabolomic profiles as a potential parameter for risk stratifying COVID-19 patients. METHOD LC-MS/MS-based untargeted metabolomics were used to profile the changes in saliva and plasma metabolomic profiles of COVID-19 patients with different severities. RESULTS Saliva and plasma metabolites were screened in 62 COVID-19 patients and 18 non-infected controls. The COVID-19 group included 16 severe, 15 moderate, 16 mild, and 15 asymptomatic cases. Thirty-six differential metabolites were detected in COVID-19 versus control comparisons. SARS-CoV-2 induced metabolic derangement differed with infection severity. The metabolic changes were identified in saliva and plasma, however, saliva showed higher intensity of metabolic changes. Levels of saliva metabolites such as sphingosine and kynurenine were significantly different between COVID-19 infected and non-infected individuals; while linoleic acid and Alpha-ketoisovaleric acid were specifically increased in severe compared to non-severe patients. As expected, the two prognostic biomarkers of C-reactive protein and D-dimer were negatively correlated with sphingosine and 5-Aminolevulinic acid, and positively correlated with L-Tryptophan and L-Kynurenine. CONCLUSION Saliva disease-specific and severity-specific metabolite could be employed as potential COVID-19 diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
| | - Nelson Cruz Soares
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Hajer A. Mohamed
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | | | | | - Hamza Al-Hroub
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Laila Salameh
- Rashid Hospital, Dubai Health Authority, Dubai, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | | | - Bassam Mahboub
- Rashid Hospital, Dubai Health Authority, Dubai, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Qutayba Hamid
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Meakins-Christie Laboratories, McGill University, Montreal, QC Canada
| | - Mohammad H. Semreen
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Rabih Halwani
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
He G, Jiang M, Cui Z, Sun X, Chen T, Wang Z. Construction of 5-aminolevulinic acid synthase variants by cysteine-targeted mutation to release heme inhibition. J Biosci Bioeng 2022; 134:416-423. [PMID: 36089467 DOI: 10.1016/j.jbiosc.2022.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
5-Aminolevulinic acid (5-ALA), a vital precursor for the biosynthesis of tetrapyrrole compounds, has been widely applied in agriculture and medicine, while extremely potential for the treatment of cancers, corona virus disease 2019 (COVID-19) and metabolic diseases in recent years. With the development of metabolic engineering and synthetic biology, the biosynthesis of 5-ALA has attracted increasing attention. 5-Aminolevulinic acid synthase (ALAS), the key enzyme for 5-ALA synthesis in the C4 pathway, is subject to stringent feedback inhibition by heme. In this work, cysteine-targeted mutation of ALAS was proposed to overcome this drawback. ALAS from Rhodopseudomonas palustris (RP-ALAS) and Rhodobacter capsulatus (RC-ALAS) were selected for mutation and eight variants were generated. Variants RP-C132A and RC-C201A increased enzyme activities and released hemin inhibition, respectively, maintaining 82.5% and 81.9% residual activities in the presence of 15 μM hemin. Moreover, the two variants exhibited higher stability than that of their corresponding wild-type enzymes. Corynebacterium glutamicum overexpressing RP-C132A and RC-C201A produced 14.0% and 21.6% higher titers of 5-ALA than the control, respectively. These results strongly suggested that variants RP-C132A and RC-C201A obtained by utilizing cysteine-targeted mutation strategy released hemin inhibition, broadening their applications in 5-ALA biosynthesis.
Collapse
Affiliation(s)
- Guimei He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiru Jiang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenzhen Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xi Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Ngwe Tun MM, Sakura T, Sakurai Y, Kurosaki Y, Inaoka DK, Shioda N, Smith C, Yasuda J, Morita K, Kita K. 5-Aminolevulinic acid antiviral efficacy against SARS-CoV-2 omicron variant in vitro. Trop Med Health 2022; 50:30. [PMID: 35477500 PMCID: PMC9043503 DOI: 10.1186/s41182-022-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID 19) pandemic continues to pose a threat to global health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) has spread rapidly worldwide and became dominant in many countries. A natural 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC) has demonstrated antiviral activity in Wuhan, Alpha, Beta, Gamma, and Delta variants of SARS-CoV-2 infections in vitro. In this study, we report antiviral activity of 5-ALA, 5-ALA with SFC led to IC50 of 329 and 765/191, respectively after infection with Omicron variant of SARS-CoV-2 in vitro. Our finding suggests that 5-ALA could be used as antiviral drug candidate to treat Omicron variant infected patients.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yohei Kurosaki
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Graduate of School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chris Smith
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
18
|
Jiang M, Hong K, Mao Y, Ma H, Chen T, Wang Z. Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications. Front Bioeng Biotechnol 2022; 10:841443. [PMID: 35284403 PMCID: PMC8913508 DOI: 10.3389/fbioe.2022.841443] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is the key precursor for the biosynthesis of tetrapyrrole compounds, with wide applications in medicine, agriculture and other burgeoning fields. Because of its potential applications and disadvantages of chemical synthesis, alternative biotechnological methods have drawn increasing attention. In this review, the recent progress in biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts are summarized. The research progress on 5-ALA biosynthesis via the C4/C5 pathway in microbial cells is emphasized, and the corresponding biotechnological design strategies are highlighted and discussed in detail. In addition, the detection methods and applications of 5-ALA are also reviewed. Finally, perspectives on potential strategies for improving the biosynthesis of 5-ALA and understanding the related mechanisms to further promote its industrial application are conceived and proposed.
Collapse
Affiliation(s)
- Meiru Jiang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Kunqiang Hong
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yufeng Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Antiviral Effects of 5-Aminolevulinic Acid Phosphate against Classical Swine Fever Virus: In Vitro and In Vivo Evaluation. Pathogens 2022; 11:pathogens11020164. [PMID: 35215109 PMCID: PMC8877771 DOI: 10.3390/pathogens11020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The inhibitory effects of 5-aminolevulinic acid phosphate (5-ALA), an important amino acid for energy production in the host, against viral infections were previously reported. Here, the antiviral effects of 5-ALA against classical swine fever virus (CSFV) belonging to the genus Pestivirus in the Flaviviridae family and its possible mechanisms were investigated. CSFV replication was suppressed in swine cells supplemented with 5-ALA or its metabolite, protoporphyrin IX (PPIX). The infectivity titer of CSFV was decreased after mixing with PPIX extracellularly. In addition, the activities of the replication cycle were decreased in the presence of PPIX based on the CSFV replicon assay. These results showed that PPIX exerted antiviral effects by inactivating virus particles and inhibiting the replication cycle. To evaluate the in vivo efficacy of 5-ALA, pigs were supplemented daily with 5-ALA for 1 week before virus inoculation and then inoculated with a virulent CSFV strain at the 107.0 50% tissue culture infectious dose. The clinical scores of the supplemented group were significantly lower than those of the nonsupplemented group, whereas the virus growth was not. Taken together, 5-ALA showed antiviral effects against CSFV in vitro, and PPIX played a key role by inactivating virus particles extracellularly and inhibiting the replication cycle intracellularly.
Collapse
|
20
|
Ngwe Tun MM, Sakura T, Sakurai Y, Kurosaki Y, Inaoka DK, Shioda N, Yasuda J, Kita K, Morita K. Antiviral activity of 5-aminolevulinic acid against variants of severe acute respiratory syndrome coronavirus 2. Trop Med Health 2022; 50:6. [PMID: 34991723 PMCID: PMC8739347 DOI: 10.1186/s41182-021-00397-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to emerge in 2020 and have been spreading globally during the coronavirus disease 2019 (COVID-19) pandemic. Despite the presence of different COVID-19 vaccines, the discovery of effective antiviral therapeutics for the treatment of patients infected with SARS-CoV-2 are still urgently needed. A natural amino acid, 5-aminolevulinic acid (5-ALA), has exhibited both antiviral and anti-inflammatory activities. In a previous study, we demonstrated an in vitro antiviral effect of 5-ALA against SARS-CoV-2 infection without significant cytotoxicity. In the present study, we sought to investigate whether 5-ALA with or without sodium ferrous citrate (SFC) can inhibit in vitro both the original SARS-CoV-2 Wuhan strain and its variants, including the Alpha, Beta, Gamma and Delta strains. METHODS The antiviral activity of ALA with or without SFC was determined in Vero-E6 cell. The virus inhibition was quantified by real time RT-PCR. RESULTS Co-administration of 5-ALA and SFC inhibited the Wuhan, Alpha and Delta variants of SARS-CoV-2 with IC50 values of 235, 173 and 397 µM, respectively, and the Beta and Gamma variants with IC50 values of 1311 and 1516 µM. CONCLUSION Our study suggests that 5-ALA with SFC warrants accelerated clinical evaluation as an antiviral drug candidate for treating patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Takaya Sakura
- Shionogi Global Infectious Diseases Division, Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yohei Kurosaki
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Daniel Ken Inaoka
- Shionogi Global Infectious Diseases Division, Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
21
|
Negoro H, Chatziantonio C, Razzaque MS. Therapeutic potential of 5-aminolevulinic acid and sodium-ferrous citrate for viral insults: relevance to the COVID-19 crisis. Expert Rev Anti Infect Ther 2021; 20:657-661. [DOI: 10.1080/14787210.2022.2020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hideyuki Negoro
- Department of Project Design, The Graduate School of Project Design, Tokyo, Japan
- Inserm UMR S 1155- Sorbonne University, Tenon Hospital, Paris, France
| | | | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
22
|
Okuno K, Hiraki M, Chan B, Shirakawa S. Non-Enzymatic Kinetic Resolution and Desymmetrization of α-Quaternary Carboxylic Acids via Chiral Bifunctional Sulfide-Catalyzed Bromolactonization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ken Okuno
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mana Hiraki
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
23
|
Novel Molecules derived from 3-O-(6-galloylglucoside) inhibit Main Protease of SARS-CoV 2 In Silico. ACTA ACUST UNITED AC 2021; 76:785-796. [PMID: 34629698 PMCID: PMC8490610 DOI: 10.1007/s11696-021-01899-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 11/04/2022]
Abstract
The ongoing pandemic caused by the severe acute respiratory syndrome 2 (SARS-CoV 2) has led to more than 168 million confirmed cases with 3.5 million deaths as at 28th May, 2021 across 218 countries. The virus has a cysteine protease called main protease (Mpro) which is significant to it life cycle, tagged as a suitable target for novel antivirals. In this computer-assisted study, we designed 100 novel molecules through an artificial neural network-driven platform called LigDream (https://playmolecule.org/LigDream/) using 3-O-(6-galloylglucoside) as parent molecule for design. Druglikeness screening of the molecules through five (5) different rules was carried out, followed by a virtual screening of those molecules without a single violation of the druglike rules using AutoDock Vina against Mpro. The in silico pharmacokinetic features were predicted and finally, quantum mechanics/molecular mechanics (QM/MM) study was carried out using Molecular Orbital Package 2016 (MOPAC2016) on the overall hit compound with controls to determine the stability and reactivity of the lead molecule. The findings showed that eight (8) novel molecules violated none of the druglikeness rules of which three (3) novel molecules (C33, C35 and C54) showed the utmost binding affinity of −8.3 kcal/mol against Mpro; C33 showed a good in silico pharmacokinetic features with acceptable level of stability and reactively better than our controls based on the quantum chemical descriptors analysis. However, there is an urgent need to carry out more research on these novel molecules for the fight against the disease.
Collapse
|
24
|
Rapozzi V, Juarranz A, Habib A, Ihan A, Strgar R. Is haem the real target of COVID-19? Photodiagnosis Photodyn Ther 2021; 35:102381. [PMID: 34119708 PMCID: PMC8192263 DOI: 10.1016/j.pdpdt.2021.102381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Although a vaccination campaign has been launched in many countries, the COVID-19 pandemic is not under control. The main concern is the emergence of new variants of SARS-CoV-2; therefore, it is important to find approaches to prevent or reduce the virulence and pathogenicity of the virus. Currently, the mechanism of action of SARS-CoV-2 is not fully understood. Considering the clinical effects that occur during the disease, attacking the human respiratory and hematopoietic systems, and the changes in biochemical parameters (including decreases in haemoglobin [Hb] levels and increases in serum ferritin), it is clear that iron metabolism is involved. SARS-CoV-2 induces haemolysis and interacts with Hb molecules via ACE2, CD147, CD26, and other receptors located on erythrocytes and/or blood cell precursors that produce dysfunctional Hb. A molecular docking study has reported a potential link between the virus and the beta chain of haemoglobin and attack on haem. Considering that haem is involved in miRNA processing by binding to the DGCR8-DROSHA complex, we hypothesised that the virus may check this mechanism and thwart the antiviral response.
Collapse
Affiliation(s)
| | - Angeles Juarranz
- Department of Biology, University Autonoma of Madrid, Madrid 28049, Spain
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Alojz Ihan
- Institute for Microbiology and Immunology, Medical Faculty of Ljubljana, Slovenia
| | - Rebeka Strgar
- Institution of Applicative Biophotonics, Technological Park Ljubljana, Slovenia
| |
Collapse
|
25
|
Kaku Y, Kuwata T, Zahid HM, Hashiguchi T, Noda T, Kuramoto N, Biswas S, Matsumoto K, Shimizu M, Kawanami Y, Shimura K, Onishi C, Muramoto Y, Suzuki T, Sasaki J, Nagasaki Y, Minami R, Motozono C, Toyoda M, Takahashi H, Kishi H, Fujii K, Tatsuke T, Ikeda T, Maeda Y, Ueno T, Koyanagi Y, Iwagoe H, Matsushita S. Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19. Cell Rep 2021; 36:109385. [PMID: 34237284 PMCID: PMC8226103 DOI: 10.1016/j.celrep.2021.109385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Administration of convalescent plasma or neutralizing monoclonal antibodies (mAbs) is a potent therapeutic option for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, SARS-CoV-2 variants with mutations in the spike protein have emerged in many countries. To evaluate the efficacy of neutralizing antibodies induced in convalescent patients against emerging variants, we isolate anti-spike mAbs from two convalescent COVID-19 patients infected with prototypic SARS-CoV-2 by single-cell sorting of immunoglobulin-G-positive (IgG+) memory B cells. Anti-spike antibody induction is robust in these patients, and five mAbs have potent neutralizing activities. The efficacy of most neutralizing mAbs and convalescent plasma samples is maintained against B.1.1.7 and mink cluster 5 variants but is significantly decreased against variants B.1.351 from South Africa and P.1 from Brazil. However, mAbs with a high affinity for the receptor-binding domain remain effective against these neutralization-resistant variants. Rapid spread of these variants significantly impacts antibody-based therapies and vaccine strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Yu Kaku
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takeo Kuwata
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hasan Md Zahid
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takao Hashiguchi
- Labolatory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Noriko Kuramoto
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shashwata Biswas
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kaho Matsumoto
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mikiko Shimizu
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yoko Kawanami
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kazuya Shimura
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Chiho Onishi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tateki Suzuki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Jiei Sasaki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoji Nagasaki
- Division of Infectious Diseases, Clinical Research Institute, National Hospitalization Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Rumi Minami
- Internal Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Chihiro Motozono
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mako Toyoda
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiroshi Takahashi
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Hiroto Kishi
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Kazuhiko Fujii
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Tsuneyuki Tatsuke
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takamasa Ueno
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hajime Iwagoe
- Department of Infectious Disease, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
26
|
Zhang M, Wang N, Liu J, Wang C, Xu Y, Ma L. A review on biomass-derived levulinic acid for application in drug synthesis. Crit Rev Biotechnol 2021; 42:220-253. [DOI: 10.1080/07388551.2021.1939261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mingyue Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Nan Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Jianguo Liu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ying Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Longlong Ma
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
27
|
Yadav V, Mai Y, McCoubrey LE, Wada Y, Tomioka M, Kawata S, Charde S, Basit AW. 5-Aminolevulinic Acid as a Novel Therapeutic for Inflammatory Bowel Disease. Biomedicines 2021; 9:biomedicines9050578. [PMID: 34065300 PMCID: PMC8160866 DOI: 10.3390/biomedicines9050578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a naturally occurring nonprotein amino acid licensed as an optical imaging agent for the treatment of gliomas. In recent years, 5-ALA has been shown to possess anti-inflammatory and immunoregulatory properties through upregulation of heme oxygenase-1 via enhancement of porphyrin, indicating that it may be beneficial for the treatment of inflammatory conditions. This study systematically examines 5-ALA for use in inflammatory bowel disease (IBD). Firstly, the ex vivo colonic stability and permeability of 5-ALA was assessed using human and mouse fluid and tissue. Secondly, the in vivo efficacy of 5-ALA, in the presence of sodium ferrous citrate, was investigated via the oral and intracolonic route in an acute DSS colitis mouse model of IBD. Results showed that 5-ALA was stable in mouse and human colon fluid, as well as in colon tissue. 5-ALA showed more tissue restricted pharmacokinetics when exposed to human colonic tissue. In vivo dosing demonstrated significantly improved colonic inflammation, increased local heme oxygenase-1 levels, and decreased concentrations of proinflammatory cytokines TNF-α, IL-6, and IL-1β in both plasma and colonic tissue. These effects were superior to that measured concurrently with established anti-inflammatory treatments, ciclosporin and 5-aminosalicylic acid (mesalazine). As such, 5-ALA represents a promising addition to the IBD armamentarium, with potential for targeted colonic delivery.
Collapse
Affiliation(s)
- Vipul Yadav
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Correspondence: (V.Y.); (A.W.B.)
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-sen University, Guangzhou 510275, China;
| | - Laura E. McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
| | - Yasufumi Wada
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Motoyasu Tomioka
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Satofumi Kawata
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Shrikant Charde
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Abdul W. Basit
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
- Correspondence: (V.Y.); (A.W.B.)
| |
Collapse
|
28
|
Kobayashi E. Testing of human equivalent dose of health food 5-aminolevulinic acid using the experimental pig. Biomed Pharmacother 2021; 139:111629. [PMID: 33906080 PMCID: PMC8065248 DOI: 10.1016/j.biopha.2021.111629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
29
|
Joseph B, Prasanth CS. Is photodynamic therapy a viable antiviral weapon against COVID-19 in dentistry? Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:118-119. [PMID: 33627293 PMCID: PMC7846478 DOI: 10.1016/j.oooo.2021.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Betsy Joseph
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - C S Prasanth
- Department of Physics, Mahatma Gandhi College, Trivandrum, India
| |
Collapse
|
30
|
[Isolation of anti-SARS-CoV-2 neutralizing monoclonal antibodies cross effective to variants aiming at antibody therapy]. Uirusu 2021; 71:163-168. [PMID: 37245978 DOI: 10.2222/jsv.71.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We isolated five mAbs with potent neutralizing activities against SARS-CoV-2 from two convalescent COVID-19 patients infected with prototype virus. Among them, the 9-105 antibody that have a highest affinity for the receptor-binding domain (RBD), cross-neutralize variants, such as B.1.1.7 (alfa), mink cluster 5 variant, B.1.351 (beta), P.1 (gamma), C.37 (lambda), B.1.617.1 (kappa), B.1.617.2 (delta) and B.1.621 (mu). A single amino acid mutation at K417 of RBD decreased neutralization sensitivity of 9-105. A 9-105 homology model revealed that 9-105 light chain binds to RBD including K417 by the same angle as ACE2.
Collapse
|