1
|
Maile L, Mercado K, Baig L, Davidson S. Chronic unpredictable stress produces hyperalgesia and promotes inhibitory drive in medial prefrontal cortex. THE JOURNAL OF PAIN 2025:105452. [PMID: 40449675 DOI: 10.1016/j.jpain.2025.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 05/04/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Chronic stress and chronic pain exacerbate one another and worsen outcomes in clinical populations. The anatomical locations where neurophysiological changes underlying chronic stress and pain comorbidity could occur are poorly explored. In this study, we implemented a mouse model of chronic unpredictable stress (CUS) to test the effects of established stress on reflexive and nonreflexive pain behaviors and the ability to recover from painful neuropathy and post-operational injury. We further examined the effects of stress on neuronal structure and function in a subregion of the medial prefrontal cortex, the prelimbic cortex (PL), an area implicated in both stress and pain. CUS induced thermal hypersensitivity, mechanical allodynia, and reduced pain tolerance in male, but not in female, mice. Stressed male mice also showed persistent hypersensitivity and anxiety-like behavior compared to controls following chemotherapy and paw incision injuries. cFos expression in PL following an acute noxious stimulus was reduced in CUS mice indicating reduced prefrontal activity. However, PL layer V neurons that project to the ventrolateral periaqueductal gray (vlPAG) did not show changes in density of dendritic spines in distal branches of the apical dendrite, nor did they show changes in intrinsic membrane excitability following CUS. In contrast, CUS did produce increased spontaneous inhibitory drive onto PL-vlPAG neurons altering the excitatory to inhibitory ratio. Our results suggest that stress and pain work in conjunction to promote persistent hypersensitivity and negative affective behaviors, and provide evidence that stress increases inhibitory synaptic transmission onto mPFC-vlPAG descending projection neurons. Perspective: Chronic unpredictable stress produced hypersensitivity and worsened outcomes after a painful injury in male mice. The prelimbic cortex is identified as an important region where chronic stress may modulate pain. We demonstrate a clinically relevant model that can be used to investigate neural correlates underlying stress and pain interactions.
Collapse
Affiliation(s)
- Laura Maile
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Krista Mercado
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Leena Baig
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Steve Davidson
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; NYU Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
| |
Collapse
|
2
|
Kilpatrick LA, Church A, Meriwether D, Mahurkar-Joshi S, Li VW, Sohn J, Reist J, Labus JS, Dong T, Jacobs JP, Naliboff BD, Chang L, Mayer EA. Differential brainstem connectivity according to sex and menopausal status in healthy male and female individuals. Biol Sex Differ 2025; 16:25. [PMID: 40251694 PMCID: PMC12007138 DOI: 10.1186/s13293-025-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Brainstem nuclei play a critical role in both ascending monoaminergic modulation of cortical function and arousal, and in descending bulbospinal pain modulation. Even though sex-related differences in the function of both systems have been reported in animal models, a complete understanding of sex differences, as well as menopausal effects, in brainstem connectivity in humans is lacking. This study evaluated resting-state connectivity of the dorsal raphe nucleus, right and left locus coeruleus complex (LCC), and periaqueductal gray (PAG) according to sex and menopausal status in healthy individuals. In addition, relationships between systemic estrogen levels and brainstem-network connectivity were examined in a subset of participants. METHODS Resting-state fMRI was performed in 47 healthy male (age, 31.2 ± 8.0 years), 53 healthy premenopausal female (age, 24.7 ± 7.3 years; 22 in the follicular phase, 31 in the luteal phase), and 20 postmenopausal female participants (age, 54.6 ± 7.2 years). Permutation Analysis of Linear Models (5000 permutations) was used to evaluate differences in brainstem-network connectivity according to sex and menopausal status, controlling for age. In 10 males and 17 females (9 premenopausal; 8 postmenopausal), estrogen and estrogen metabolite levels in plasma and stool were determined by liquid chromatography-mass spectrometry/mass spectrometry. Relationships between estrogen levels and brainstem-network connectivity were evaluated by partial least squares analysis. RESULTS Left LCC-executive control network connectivity showed an overall sex difference (p = 0.02), with higher connectivity in females than in males; however, this was mainly due to differences between males and premenopausal females (p = 0.008). Additional sex differences were dependent on menopausal status: PAG-default mode network (DMN) connectivity was higher in postmenopausal females than in males (p = 0.04), and PAG-sensorimotor network (SMN) connectivity was higher in premenopausal females than in males (p = 0.03) and postmenopausal females (p = 0.007). Notably, higher free 2-hydroxyestrone levels in stool were reliably associated with higher PAG-SMN and PAG-DMN connectivity in premenopausal females (p < 0.01). CONCLUSIONS Healthy females show higher brainstem-network connectivity involved in cognitive control, sensorimotor function, and self-relevant processes than males, dependent on their menopausal status. Further, 2-hydroxyestrone, implicated in pain, may modulate PAG connectivity in premenopausal females. These findings may relate to differential vulnerabilities to chronic stress-sensitive disorders at different life stages.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Arpana Church
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - David Meriwether
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Swapna Mahurkar-Joshi
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Vince W Li
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jessica Sohn
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana Reist
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, Gonda (Goldschmied) Neuroscience and Genetics Research Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Tien Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Bruce D Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Ho YC, Chiu WC, Chen JY, Huang YH, Teng YN. Reversal potentials of Tween 20 in ABC transporter-mediated multidrug-resistant cancer and treatment-resistant depression through interacting with both drug-binding and ATP-binding areas on MDR proteins. J Drug Target 2025; 33:410-423. [PMID: 39530732 DOI: 10.1080/1061186x.2024.2429006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Drug efflux transporters, especially those belonging to the ATP-binding cassette (ABC) transporter superfamily, play a crucial role in various drug resistance issues, including multidrug resistance (MDR) in cancer and treatment-resistant depression (TRD) in individuals with major depressive disorder. Key transporters in this context include P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). This study aimed to investigate the modulatory effects of polyoxyethylene (20) sorbitan monolaurate (Tween 20) on these efflux transporters in vitro and to evaluate its potential for overcoming drug resistance in two models: an in vitro cancer MDR model and an in vivo TRD model. The findings indicated that 0.001% Tween 20 significantly inhibited the efflux actions of all three transporters. Additionally, 0.005% Tween 20 effectively reversed resistance to paclitaxel, vincristine, doxorubicin, and mitoxantrone in various cancer MDR cell lines. In the in vivo depression-like behaviour model, 0.01% Tween 20 markedly enhanced the antidepressant and anxiolytic effects of fluoxetine. Given its strong inhibitory effects on P-gp, MRP1, and BCRP, along with its capacity to reverse drug resistance both in vitro and in vivo, Tween 20 is a compelling candidate for tackling transporter-mediated drug resistance.
Collapse
Affiliation(s)
- Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Wen-Chin Chiu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Jing-Yi Chen
- Department of Medical Laboratory Science, College of medical science and technology, I-Shou University, Kaohsiung, Taiwan, R.O.C
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Yu-Hsin Huang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
- Department of Pharmacy, E-Da Cancer Hospital, Kaohsiung, Taiwan, R.O.C
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung City, Taiwan, R.O.C
| |
Collapse
|
4
|
Zhang AY, Elias E, Manners MT. Sex-dependent astrocyte reactivity: Unveiling chronic stress-induced morphological changes across multiple brain regions. Neurobiol Dis 2024; 200:106610. [PMID: 39032799 PMCID: PMC11500746 DOI: 10.1016/j.nbd.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic stress is a major precursor to various neuropsychiatric disorders and is linked with increased inflammation in the brain. However, the bidirectional association between inflammation and chronic stress has yet to be fully understood. Astrocytes are one of the key inflammatory regulators in the brain, and the morphological change in reactive astrocytes serves as an important indicator of inflammation. In this study, we evaluated the sex-specific astrocyte response to chronic stress or systemic inflammation in key brain regions associated with mood disorders. We conducted the unpredictable chronic mild stress (UCMS) paradigm to model chronic stress, or lipopolysaccharide (LPS) injection to model systemic inflammation. To evaluate stress-induced morphological changes in astrocyte complexity, we measured GFAP fluorescent intensity for astrocyte expression, branch bifurcation by quantifying branch points and terminal points, branch arborization by conducting Sholl analysis, and calculated the ramification index. Our analysis indicated that chronic stress-induced morphological changes in astrocytes in all brain regions investigated. The effects of chronic stress were region and sex specific. Notably, females had greater stress or inflammation-induced astrocyte activation in the hypothalamus (HYPO), CA1, CA3, and amygdala (AMY) than males. These findings indicate that chronic stress induces astrocyte activation that may drive sex and region-specific effects in females, potentially contributing to sex-dependent mechanisms of disease.
Collapse
Affiliation(s)
- Ariel Y Zhang
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Melissa T Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
5
|
Kilpatrick LA, Gupta A, Meriwether D, Mahurkar-Joshi S, Li VW, Sohn J, Reist J, Labus JS, Dong T, Jacobs JP, Naliboff BD, Chang L, Mayer EA. Differential brainstem connectivity according to sex and menopausal status in healthy men and women. RESEARCH SQUARE 2024:rs.3.rs-4875269. [PMID: 39184081 PMCID: PMC11343298 DOI: 10.21203/rs.3.rs-4875269/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Brainstem nuclei play a critical role in both ascending monoaminergic modulation of cortical function and arousal, and in descending bulbospinal pain modulation. Even though sex-related differences in the function of both systems have been reported in animal models, a complete understanding of sex differences, as well as menopausal effects, in brainstem connectivity in humans is lacking. This study evaluated resting-state connectivity of the dorsal raphe nucleus (DRN), right and left locus coeruleus complex (LCC), and periaqueductal gray (PAG) according to sex and menopausal status in healthy individuals. In addition, relationships between systemic estrogen levels and brainstem-network connectivity were examined in a subset of participants. Methods Resting-state fMRI was performed in 50 healthy men (age, 31.2 ± 8.0 years), 53 healthy premenopausal women (age, 24.7 ± 7.3 years; 22 in the follicular phase, 31 in the luteal phase), and 20 postmenopausal women (age, 54.6 ± 7.2 years). Permutation Analysis of Linear Models (5000 permutations) was used to evaluate differences in brainstem-network connectivity according to sex and menopausal status, controlling for age. In 10 men and 17 women (9 premenopausal; 8 postmenopausal), estrogen and estrogen metabolite levels in plasma and stool were determined by liquid chromatography-mass spectrometry/mass spectrometry. Relationships between estrogen levels and brainstem-network connectivity were evaluated by partial least squares analysis. Results Left LCC-executive control network (ECN) connectivity showed an overall sex difference (p = 0.02), with higher connectivity in women than in men; however, this was mainly due to differences between men and pre-menopausal women (p = 0.008). Additional sex differences were dependent on menopausal status: PAG-default mode network (DMN) connectivity was higher in postmenopausal women than in men (p = 0.04), and PAG-sensorimotor network (SMN) connectivity was higher in premenopausal women than in men (p = 0.03) and postmenopausal women (p = 0.007). Notably, higher free 2-hydroxyestrone levels in stool were associated with higher PAG-SMN and PAG-DMN connectivity in premenopausal women (p < 0.01). Conclusions Healthy women show higher brainstem-network connectivity involved in cognitive control, sensorimotor function, and self-relevant processes than men, dependent on their menopausal status. Further, 2-hydroxyestrone, implicated in pain, may modulate PAG connectivity in premenopausal women. These findings may relate to differential vulnerabilities to chronic stress-sensitive disorders at different life stages.
Collapse
|
6
|
Zhu X, Zhang C, Hu Y, Wang Y, Xiao S, Zhu Y, Sun H, Sun J, Xu C, Xu Y, Chen Y, He X, Liu B, Liu J, Du J, Liang Y, Liu B, Li X, Jiang Y, Shen Z, Shao X, Fang J. Modulation of Comorbid Chronic Neuropathic Pain and Anxiety-Like Behaviors by Glutamatergic Neurons in the Ventrolateral Periaqueductal Gray and the Analgesic and Anxiolytic Effects of Electroacupuncture. eNeuro 2024; 11:ENEURO.0454-23.2024. [PMID: 39084906 PMCID: PMC11360982 DOI: 10.1523/eneuro.0454-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Comorbid chronic neuropathic pain and anxiety is a common disease that represents a major clinical challenge. The underlying mechanisms of chronic neuropathic pain and anxiety are not entirely understood, which limits the exploration of effective treatment methods. Glutamatergic neurons in the ventrolateral periaqueductal gray (vlPAG) have been implicated in regulating pain, but the potential roles of the vlPAG in neuropathic pain-induced anxiety have not been investigated. Herein, whole-cell recording and immunofluorescence showed that the excitability of CamkIIα neurons in the vlPAG (vlPAGCamkIIα+ neurons) was decreased in mice with spared nerve injury (SNI), while electroacupuncture (EA) activated these neurons. We also showed that chemogenetic inhibition of vlPAGCamkIIα+ neurons resulted in allodynia and anxiety-like behaviors in naive mice. Furthermore, chemogenetic activation of vlPAGCamkIIα+ neurons reduced anxiety-like behaviors and allodynia in mice with SNI, and EA had a similar effect in alleviating these symptoms. Nevertheless, EA combined with chemogenetic activation failed to further relieve allodynia and anxiety-like behaviors. Artificial inhibition of vlPAGCamkIIα+ neurons abolished the analgesic and anxiolytic effects of EA. Overall, our study reveals a novel mechanism of neuropathic pain-induced anxiety and shows that EA may relieve comorbid chronic neuropathic pain and anxiety by activating vlPAGCamkIIα+ neurons.
Collapse
Affiliation(s)
- Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuxin Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifang Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haiju Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yunyun Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinggen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyu Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Zhang H, Zhu Z, Ma WX, Kong LX, Yuan PC, Bu LF, Han J, Huang ZL, Wang YQ. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front Neurosci 2024; 18:1380171. [PMID: 38650618 PMCID: PMC11034386 DOI: 10.3389/fnins.2024.1380171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhe Zhu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Lee MT, Peng WH, Wu CC, Kan HW, Wang DW, Teng YN, Ho YC. Impaired Ventrolateral Periaqueductal Gray-Ventral Tegmental area Pathway Contributes to Chronic Pain-Induced Depression-Like Behavior in Mice. Mol Neurobiol 2023; 60:5708-5724. [PMID: 37338803 DOI: 10.1007/s12035-023-03439-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Chronic pain conditions within clinical populations are correlated with a high incidence of depression, and researchers have reported their high rate of comorbidity. Clinically, chronic pain worsens the prevalence of depression, and depression increases the risk of chronic pain. Individuals suffering from chronic pain and depression respond poorly to available medications, and the mechanisms underlying the comorbidity of chronic pain and depression remain unknown. We used spinal nerve ligation (SNL) in a mouse model to induce comorbid pain and depression. We combined behavioral tests, electrophysiological recordings, pharmacological manipulation, and chemogenetic approaches to investigate the neurocircuitry mechanisms of comorbid pain and depression. SNL elicited tactile hypersensitivity and depression-like behavior, accompanied by increased and decreased glutamatergic transmission in dorsal horn neurons and midbrain ventrolateral periaqueductal gray (vlPAG) neurons, respectively. Intrathecal injection of lidocaine, a sodium channel blocker, and gabapentin ameliorated SNL-induced tactile hypersensitivity and neuroplastic changes in the dorsal horn but not depression-like behavior and neuroplastic alterations in the vlPAG. Pharmacological lesion of vlPAG glutamatergic neurons induced tactile hypersensitivity and depression-like behavior. Chemogenetic activation of the vlPAG-rostral ventromedial medulla (RVM) pathway ameliorated SNL-induced tactile hypersensitivity but not SNL-elicited depression-like behavior. However, chemogenetic activation of the vlPAG-ventral tegmental area (VTA) pathway alleviated SNL-produced depression-like behavior but not SNL-induced tactile hypersensitivity. Our study demonstrated that the underlying mechanisms of comorbidity in which the vlPAG acts as a gating hub for transferring pain to depression. Tactile hypersensitivity could be attributed to dysfunction of the vlPAG-RVM pathway, while impairment of the vlPAG-VTA pathway contributed to depression-like behavior.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
- Centre of Research for Mental Health and Wellbeing, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, Republic of China
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
- Department of Psychiatry, E-Da Hospital, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China.
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan.
| |
Collapse
|
9
|
Vázquez-León P, Miranda-Páez A, Valencia-Flores K, Sánchez-Castillo H. Defensive and Emotional Behavior Modulation by Serotonin in the Periaqueductal Gray. Cell Mol Neurobiol 2023; 43:1453-1468. [PMID: 35902460 PMCID: PMC11412428 DOI: 10.1007/s10571-022-01262-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Serotonin 5-hydroxytryptamine (5-HT) is a key neurotransmitter for the modulation and/or regulation of numerous physiological processes and psychiatric disorders (e.g., behaviors related to anxiety, pain, aggressiveness, etc.). The periaqueductal gray matter (PAG) is considered an integrating center for active and passive defensive behaviors, and electrical stimulation of this area has been shown to evoke behavioral responses of panic, fight-flight, freezing, among others. The serotonergic activity in PAG is influenced by the activation of other brain areas such as the medial hypothalamus, paraventricular nucleus of the hypothalamus, amygdala, dorsal raphe nucleus, and ventrolateral orbital cortex. In addition, activation of other receptors within PAG (i.e., CB1, Oxytocin, µ-opioid receptor (MOR), and γ-aminobutyric acid (GABAA)) promotes serotonin release. Therefore, this review aims to document evidence suggesting that the PAG-evoked behavioral responses of anxiety, panic, fear, analgesia, and aggression are influenced by the activation of 5-HT1A and 5-HT2A/C receptors and their participation in the treatment of various mental disorders.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Wilfrido Massieu esq. Manuel Stampa S/N Col. Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City, CP:07738, Mexico
| | - Kenji Valencia-Flores
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Hugo Sánchez-Castillo
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico.
- Research Unit of Psychobiology and Neurosciences (UIPyN), Psychology School, UNAM, CDMX Mexico, CP 04510, Mexico.
| |
Collapse
|
10
|
Xu Y, Yu Z, Chen S, Li Z, Long X, Chen M, Lee CS, Peng HY, Lin TB, Hsieh MC, Lai CY, Chou D. (2R,6R)-hydroxynorketamine targeting the basolateral amygdala regulates fear memory. Neuropharmacology 2023; 225:109402. [PMID: 36565854 DOI: 10.1016/j.neuropharm.2022.109402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
(2R,6R)-Hydroxynorketamine (HNK), a ketamine metabolite, has been proposed as an ideal next-generation antidepressant due to its rapid-acting and long-lasting antidepression-relevant actions. Interestingly, recent studies have shown that (2R,6R)-HNK may have diverse impacts on memory formation. However, its effect on fear memory extinction is still unknown. In the present study, we assessed the effects of (2R,6R)-HNK on synaptic transmission and plasticity in the basolateral amygdala (BLA) and explored its actions on auditory fear memory extinction. Adult male C57BL/6J mice were used in this study. The extracellular electrophysiological recording was conducted to assay synaptic transmission and plasticity. The auditory fear conditioning paradigm was performed to test fear extinction. The results showed that (2R,6R)-HNK at 30 mg/kg increased the number of c-fos-positive cells in the BLA. Moreover, (2R,6R)-HNK enhanced the induction and maintenance of long-term potentiation (LTP) in the BLA in a dose-dependent manner (at 1, 10, and 30 mg/kg). In addition, (2R,6R)-HNK at 30 mg/kg and directly slice perfusion of (2R,6R)-HNK enhanced BLA synaptic transmission. Furthermore, intra-BLA application and systemic administration of (2R,6R)-HNK reduced the retrieval of recent fear memory and decreased the retrieval of remote fear memory. Both local and systemic (2R,6R)-HNK also inhibited the spontaneous recovery of remote fear memory. Taken together, these results indicated that (2R,6R)-HNK could regulate BLA synaptic transmission and plasticity and act through the BLA to modulate fear memory. The results revealed that (2R,6R)-HNK may be a potential drug to treat posttraumatic stress disorder (PTSD) patients.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Zhenfei Yu
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Si Chen
- Department of Human Anatomy and Histology & Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Zhenlong Li
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Xiting Long
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Mengxu Chen
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Chau-Shoun Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Hsien-Yu Peng
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Tzer-Bin Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chun Hsieh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Dylan Chou
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| |
Collapse
|
11
|
Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine's antidepressant actions. Pharmacol Biochem Behav 2023; 223:173531. [PMID: 36841543 DOI: 10.1016/j.pbb.2023.173531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; Department of Psychology, University of Wisconsin Milwaukee, WI 53211, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
12
|
Kan HW, Peng WH, Wu CC, Wang DW, Lee MT, Lee YK, Chu TH, Ho YC. Rapid antidepressant-like effects of muscarinic receptor antagonists require BDNF-dependent signaling in the ventrolateral periaqueductal gray. Psychopharmacology (Berl) 2022; 239:3805-3818. [PMID: 36221037 DOI: 10.1007/s00213-022-06250-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE Clinical reports reveal that scopolamine, an acetylcholine muscarinic receptor antagonist, exerts rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic effects have not been fully identified. OBJECTIVES The present study examines the cellular mechanisms by which scopolamine produces antidepressant-like effects through its action in the ventrolateral midbrain periaqueductal gray (vlPAG). METHODS We used a well-established mouse model of depression induced by chronic restraint stress (CRS) exposure for 14 days. Behaviors were tested using the forced swim test (FST), tail suspension test (TST), female urine sniffing test (FUST), novelty-suppressed feeding test (NSFT), and locomotor activity (LMA). Synaptic transmission in the vlPAG was measured by whole-cell patch-clamp recordings. IntravlPAG microinjection was used to pharmacologically verify the signaling cascades of scopolamine in the vlPAG. RESULTS The results demonstrated that intraperitoneal injection of scopolamine produced antidepressant-like effects in a dose-dependent manner without affecting locomotor activity. CRS elicited depression-like behaviors, whereas intraperitoneal injection of scopolamine alleviated CRS-induced depression-like behaviors. CRS diminished glutamatergic transmission in the vlPAG, while scopolamine reversed the above effects. Moreover, intravlPAG microinjection of the L-type voltage-dependent calcium channel (VDCC) blocker verapamil, tropomyosin-related kinase B (TrkB) receptor antagonist ANA-12, mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) antagonist CNQX prevented scopolamine-induced antidepressant-like effects. CONCLUSIONS Scopolamine ameliorated CRS-elicited depression-like behavior required activation of VDCC, resulting in activity-dependent release of brain-derived neurotrophic factor (BDNF), engaging the TrkB receptor and downstream mTORC1 signaling in the vlPAG.
Collapse
Affiliation(s)
- Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China.,School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, Republic of China
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China.,Department of Psychiatry, E-Da Hospital, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 80284, Taiwan, Republic of China
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 80284, Taiwan, Republic of China
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China.
| |
Collapse
|
13
|
Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, Moaddel R, Kang HJ, Zanos P, Gould TD, Thomas CJ, Sibley DR, Zarate CA, Michaelides M. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry 2022; 27:4144-4156. [PMID: 35768639 PMCID: PMC10013843 DOI: 10.1038/s41380-022-01673-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Catalonia, Spain
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Meghan L Carlton
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Marta Sanchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Hye Jin Kang
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, 27599, NC, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, 20892, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
| |
Collapse
|
14
|
Lee MT, Peng WH, Kan HW, Wu CC, Wang DW, Ho YC. Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain-Focusing on AMPA Receptor. Biomedicines 2022; 10:biomedicines10051005. [PMID: 35625742 PMCID: PMC9138646 DOI: 10.3390/biomedicines10051005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric disorder affecting the mood and mental well-being. Its pathophysiology remains elusive due to the complexity and heterogeneity of this disorder that affects millions of individuals worldwide. Chronic stress is frequently cited as the one of the risk factors for MDD. To date, the conventional monoaminergic theory (serotonin, norepinephrine, and/or dopamine dysregulation) has received the most attention in the treatment of MDD, and all available classes of antidepressants target these monoaminergic systems. However, the contributions of other neurotransmitter systems in MDD have been widely reported. Emerging preclinical and clinical findings reveal that maladaptive glutamatergic neurotransmission might underlie the pathophysiology of MDD, thus revealing its critical role in the neurobiology of MDD and as the therapeutic target. Aiming beyond the monoaminergic hypothesis, studies of the neurobiological mechanisms underlying the stress-induced impairment of AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-glutamatergic neurotransmission in the brain could provide novel insights for the development of a new generation of antidepressants without the detrimental side effects. Here, the authors reviewed the recent literature focusing on the role of AMPA-glutamatergic neurotransmission in stress-induced maladaptive responses in emotional and mood-associated brain regions, including the hippocampus, amygdala, prefrontal cortex, nucleus accumbens and periaqueductal gray.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Department of Psychiatry, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Correspondence:
| |
Collapse
|