1
|
Donaty L, Giansily-Blaizot M, Bertchansky I, Cunat S, Azoury V, Mahe P, Aguilar Martinez P. Iron overload in hereditary spherocytosis: Are genetic factors the cause? Br J Haematol 2024. [PMID: 39632350 DOI: 10.1111/bjh.19941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Non-transfusional iron overload (IOL) in hereditary spherocytosis (HS) is poorly documented compared with other red blood cell disorders. We studied 13 HS adults with confirmed IOL to identify potential genetic factors. Using a next-generation sequencing panel of 46 genes related to HS, anaemia and iron metabolism, we found no association between IOL and the genes involved in HS nor the HFE:p.(Cys282Tyr) variant responsible for hereditary haemochromatosis. However, potential genetic factors contributing to IOL were identified in some patients, including variants in HJV (haemojuvelin), SLC40A1 (ferroportin), PKLR (pyruvate kinase), ABCG5 and ABCB8, highlighting the need for larger studies.
Collapse
Affiliation(s)
- Lucie Donaty
- Department of Biological Haematology, Montpellier University Hospital, Montpellier, France
| | - Muriel Giansily-Blaizot
- Department of Biological Haematology, Montpellier University Hospital, Montpellier, France
- Reference Centre for Rare Red Blood Cell Disorders, Montpellier University Hospital, Montpellier, France
| | - Ivan Bertchansky
- Reference Centre for Rare Red Blood Cell Disorders, Montpellier University Hospital, Montpellier, France
| | - Séverine Cunat
- Department of Biological Haematology, Montpellier University Hospital, Montpellier, France
| | - Vincent Azoury
- Department of Biological Haematology, Montpellier University Hospital, Montpellier, France
| | - Perrine Mahe
- Reference Centre for Rare Red Blood Cell Disorders, Montpellier University Hospital, Montpellier, France
| | - Patricia Aguilar Martinez
- Department of Biological Haematology, Montpellier University Hospital, Montpellier, France
- Reference Centre for Rare Red Blood Cell Disorders, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
2
|
Barton JC, Wiener HW, Acton RT. Estimates of West African Ancestry in African Americans Using Alleles of Iron-Related Genes HJV, SLC40A1, and TFR2. Genet Test Mol Biomarkers 2022; 26:96-102. [PMID: 35225679 DOI: 10.1089/gtmb.2021.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Few studies have estimated African ancestry of African Americans (AA). In sub-Saharan West African (WA) Blacks, some nonancestral alleles of iron-related genes HJV, SLC40A1, and TFR2 are common, whereas in European Americans (EA) the same alleles are rare. These alleles have not been used to estimate WA Black ancestry in AA. Methods: We estimated WA Black ancestry in AA (M) using published HJV c.929C>G (rs7540883), SLC40A1 c.744G>T (rs11568350), and TFR2 c.713C>T (rs34242818) allele frequencies in WA Blacks, AA, and EA. We computed standard error (SE) and one-sided 95% confidence intervals (CI) for each M. Results: The combined representation of WA Blacks from The Gambia and Nigeria was 79-89%. Aggregate HJV, SLC40A1, and TFR2 allele frequencies in WA Blacks were 0.1025 [95% CI: 0.0835-0.1253] (n = 405), 0.0517 [0.0469-0.0569] (n = 3839), and 0.1432 [0.1202-0.1697] (n = 405), respectively. Aggregate HJV, SLC40A1, and TFR2 allele frequencies in AA were 0.0718 [0.0648-0.0797] (n = 2352), 0.0557 [0.0506-0.0613] (n = 3590), and 0.1224 [0.1132-0.1322] (n = 2352), respectively. Aggregate HJV, SLC40A1, and TFR2 allele frequencies in 4449 EA were 0.0002 [0-0.0009], 0.0003 [0.0001-0.0010], and 0.0004 [0.0001-0.0012], respectively. M (SE [one-sided 95% CI]) for HJV, SLC40A1, and TFR2 alleles was 0.7006 (0.0818 [0.5402-1.0000]), 1.0000 (0.0752 [0.9306-1.0000]), and 0.8546 (0.0810 [0.6959-1.0000]), respectively. Mean of these M is 0.8777 (87.8%). Conclusions: The mean proportional WA Black ancestry in AA of 87.8% using HJV c.929C>G, SLC40A1 c.744G>T, and TFR2 c.713C>T allele frequencies is consistent with that of previous studies that used other autosomal markers and methods.
Collapse
Affiliation(s)
- James C Barton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Southern Iron Disorders Center, Birmingham, Alabama, USA
| | - Howard W Wiener
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ronald T Acton
- Southern Iron Disorders Center, Birmingham, Alabama, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
DePalma RG, Hayes VW, O'Leary TJ. Optimal serum ferritin level range: iron status measure and inflammatory biomarker. Metallomics 2021; 13:6287580. [PMID: 34048587 PMCID: PMC8195161 DOI: 10.1093/mtomcs/mfab030] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
This report provides perspectives concerning dual roles of serum ferritin as a measure of both iron status and inflammation. We suggest benefits of a lower range of serum ferritin as has occurred for total serum cholesterol and fasting blood glucose levels. Observations during a prospective randomized study using phlebotomy in patients with peripheral arterial disease offered unique insights into dual roles of serum ferritin both as an iron status marker and acute phase reactant. Robust positive associations between serum ferritin, interleukin 6 [IL-6], tissue necrosis factor-alpha, and high sensitivity C-reactive protein were discovered. Elevated serum ferritin and IL-6 levels associated with increased mortality and with reduced mortality at ferritin levels <100 ng mL-1. Epidemiologic studies demonstrate similar outcomes. Extremely elevated ferritin and IL-6 levels also occur in individuals with high mortality due to SARS-CoV-2 infection. Disordered iron metabolism reflected by a high range of serum ferritin level signals disease severity and outcomes. Based upon experimental and epidemiologic data, we suggest testing the hypotheses that optimal ferritin levels for cardiovascular mortality reduction range from 20 to 100 ng mL-1 with % transferrin levels from 20 to 50%, to ensure adequate iron status and that ferritin levels above 194 ng mL-1 associate with all-cause mortality in population cohorts.
Collapse
Affiliation(s)
- Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC 20420, USA.,Department of Surgery, Uniformed University of the Health Sciences, Bethesda, MD 20814, USA
| | - Virginia W Hayes
- Virginia W Hayes, Ambulatory Care Service, Sierra Nevada Health Care System, Reno, NV 89502, USA
| | - Timothy J O'Leary
- Office of Research and Development, Department of Veterans Affairs, Washington, DC 20420, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Kang W, Barad A, Clark AG, Wang Y, Lin X, Gu Z, O'Brien KO. Ethnic Differences in Iron Status. Adv Nutr 2021; 12:1838-1853. [PMID: 34009254 PMCID: PMC8483971 DOI: 10.1093/advances/nmab035] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is unique among all minerals in that humans have no regulatable excretory pathway to eliminate excess iron after it is absorbed. Iron deficiency anemia occurs when absorbed iron is not sufficient to meet body iron demands, whereas iron overload and subsequent deposition of iron in key organs occur when absorbed iron exceeds body iron demands. Over time, iron accumulation in the body can increase risk of chronic diseases, including cirrhosis, diabetes, and heart failure. To date, only ∼30% of the interindividual variability in iron absorption can be captured by iron status biomarkers or iron regulatory hormones. Much of the regulation of iron absorption may be under genetic control, but these pathways have yet to be fully elucidated. Genome-wide and candidate gene association studies have identified several genetic variants that are associated with variations in iron status, but the majority of these data were generated in European populations. The purpose of this review is to summarize genetic variants that have been associated with alterations in iron status and to highlight the influence of ethnicity on the risk of iron deficiency or overload. Using extant data in the literature, linear mixed-effects models were constructed to explore ethnic differences in iron status biomarkers. This approach found that East Asians had significantly higher concentrations of iron status indicators (serum ferritin, transferrin saturation, and hemoglobin) than Europeans, African Americans, or South Asians. African Americans exhibited significantly lower hemoglobin concentrations compared with other ethnic groups. Further studies of the genetic basis for ethnic differences in iron metabolism and on how it affects disease susceptibility among different ethnic groups are needed to inform population-specific recommendations and personalized nutrition interventions for iron-related disorders.
Collapse
Affiliation(s)
- Wanhui Kang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Alexa Barad
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA,Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
5
|
Jallow MW, Cerami C, Clark TG, Prentice AM, Campino S. Differences in the frequency of genetic variants associated with iron imbalance among global populations. PLoS One 2020; 15:e0235141. [PMID: 32609760 PMCID: PMC7329092 DOI: 10.1371/journal.pone.0235141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Iron deficiency anaemia is a major health problem affecting approximately 1.2 billion people worldwide. Young children, women of reproductive age and pregnant women living in sub-Saharan Africa are the most vulnerable. It is estimated that iron deficiency accounts for half of anaemia cases. Apart from nutritional deficiency, infection, inflammation and genetic factors are the major drivers of anaemia. However, the role of genetic risk factors has not been thoroughly investigated. This is particularly relevant in African populations, as they carry high genetic diversity and have a high prevalence of anaemia. Multiple genetic variations in iron regulatory genes have been linked to impaired iron status. Here we conducted a literature review to identify genetic variants associated with iron imbalance among global populations. We compare their allele frequencies and risk scores and we investigated population-specific selection among populations of varying geographic origin using data from the Keneba Biobank representing individuals in rural Gambia and the 1000 Genomes Project. We identified a significant lack of data on the genetic determinants of iron status in sub-Saharan Africa. Most of the studies on genetic determinants of iron status have been conducted in Europeans. Also, we identified population differences in allele frequencies in candidate putative genetic risk factors. Given the disproportionately high genetic diversity in African populations coupled with their high prevalence of iron deficiency, there is need to investigate the genetic influences of low iron status in Sub-Saharan Africa. The resulting insights may inform the future implementation of iron intervention strategies.
Collapse
Affiliation(s)
- Momodou W. Jallow
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| | - Carla Cerami
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| |
Collapse
|
6
|
Walther B, Lett AM, Bordoni A, Tomás‐Cobos L, Nieto JA, Dupont D, Danesi F, Shahar DR, Echaniz A, Re R, Fernandez AS, Deglaire A, Gille D, Schmid A, Vergères G. GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Mol Nutr Food Res 2019; 63:e1900677. [PMID: 31483113 PMCID: PMC6900003 DOI: 10.1002/mnfr.201900677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Nutritional research is currently entering the field of personalized nutrition, to a large extent driven by major technological breakthroughs in analytical sciences and biocomputing. An efficient launching of the personalized approach depends on the ability of researchers to comprehensively monitor and characterize interindividual variability in the activity of the human gastrointestinal tract. This information is currently not available in such a form. This review therefore aims at identifying and discussing published data, providing evidence on interindividual variability in the processing of the major nutrients, i.e., protein, fat, carbohydrates, vitamins, and minerals, along the gastrointestinal tract, including oral processing, intestinal digestion, and absorption. Although interindividual variability is not a primary endpoint of most studies identified, a significant number of publications provides a wealth of information on this topic for each category of nutrients. This knowledge remains fragmented, however, and understanding the clinical relevance of most of the interindividual responses to food ingestion described in this review remains unclear. In that regard, this review has identified a gap and sets the base for future research addressing the issue of the interindividual variability in the response of the human organism to the ingestion of foods.
Collapse
Affiliation(s)
- Barbara Walther
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Aaron M. Lett
- Section for Nutrition ResearchDepartment of MedicineImperial College LondonLondonUK
| | - Alessandra Bordoni
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | | | | | - Didier Dupont
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Francesca Danesi
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | - Danit R. Shahar
- Department of Public HealthThe S. Daniel Abraham International Center for Health and NutritionBen‐Gurion University of the Negev84105Beer‐ShevaIsrael
| | - Ana Echaniz
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | - Roberta Re
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | | | - Amélie Deglaire
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Doreen Gille
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Alexandra Schmid
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Guy Vergères
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| |
Collapse
|
7
|
Vlasveld LT, Janssen R, Bardou-Jacquet E, Venselaar H, Hamdi-Roze H, Drakesmith H, Swinkels DW. Twenty Years of Ferroportin Disease: A Review or An Update of Published Clinical, Biochemical, Molecular, and Functional Features. Pharmaceuticals (Basel) 2019; 12:ph12030132. [PMID: 31505869 PMCID: PMC6789780 DOI: 10.3390/ph12030132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Iron overloading disorders linked to mutations in ferroportin have diverse phenotypes in vivo, and the effects of mutations on ferroportin in vitro range from loss of function (LOF) to gain of function (GOF) with hepcidin resistance. We reviewed 359 patients with 60 ferroportin variants. Overall, macrophage iron overload and low/normal transferrin saturation (TSAT) segregated with mutations that caused LOF, while GOF mutations were linked to high TSAT and parenchymal iron accumulation. However, the pathogenicity of individual variants is difficult to establish due to the lack of sufficiently reported data, large inter-assay variability of functional studies, and the uncertainty associated with the performance of available in silico prediction models. Since the phenotypes of hepcidin-resistant GOF variants are indistinguishable from the other types of hereditary hemochromatosis (HH), these variants may be categorized as ferroportin-associated HH, while the entity ferroportin disease may be confined to patients with LOF variants. To further improve the management of ferroportin disease, we advocate for a global registry, with standardized clinical analysis and validation of the functional tests preferably performed in human-derived enterocytic and macrophagic cell lines. Moreover, studies are warranted to unravel the definite structure of ferroportin and the indispensable residues that are essential for functionality.
Collapse
Affiliation(s)
- L Tom Vlasveld
- Department of Internal Medicine, Haaglanden MC-Bronovo, 2597AX The Hague, The Netherlands
| | - Roel Janssen
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Edouard Bardou-Jacquet
- Liver Diseases Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud, University Medical Center, P.O. Box 9191, 6500 HB Nijmegen, The Netherlands
| | - Houda Hamdi-Roze
- Molecular Genetics Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Muriuki JM, Mentzer AJ, Band G, Gilchrist JJ, Carstensen T, Lule SA, Goheen MM, Joof F, Kimita W, Mogire R, Cutland CL, Diarra A, Rautanen A, Pomilla C, Gurdasani D, Rockett K, Mturi N, Ndungu FM, Scott JAG, Sirima SB, Morovat A, Prentice AM, Madhi SA, Webb EL, Elliott AM, Bejon P, Sandhu MS, Hill AVS, Kwiatkowski DP, Williams TN, Cerami C, Atkinson SH. The ferroportin Q248H mutation protects from anemia, but not malaria or bacteremia. SCIENCE ADVANCES 2019; 5:eaaw0109. [PMID: 31517041 PMCID: PMC6726445 DOI: 10.1126/sciadv.aaw0109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Iron acquisition is critical for life. Ferroportin (FPN) exports iron from mature erythrocytes, and deletion of the Fpn gene results in hemolytic anemia and increased fatality in malaria-infected mice. The FPN Q248H mutation (glutamine to histidine at position 248) renders FPN partially resistant to hepcidin-induced degradation and was associated with protection from malaria in human studies of limited size. Using data from cohorts including over 18,000 African children, we show that the Q248H mutation is associated with modest protection against anemia, hemolysis, and iron deficiency, but we found little evidence of protection against severe malaria or bacteremia. We additionally observed no excess Plasmodium growth in Q248H erythrocytes ex vivo, nor evidence of selection driven by malaria exposure, suggesting that the Q248H mutation does not protect from malaria and is unlikely to deprive malaria parasites of iron essential for their growth.
Collapse
Affiliation(s)
- John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alexander J. Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gavin Band
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James J. Gilchrist
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Swaib A. Lule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Morgan M. Goheen
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- University of North Carolina School of Medicine, CB 7435, Chapel Hill, North Carolina USA
| | - Fatou Joof
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Wandia Kimita
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Reagan Mogire
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Clare L. Cutland
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amidou Diarra
- Centre de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso
| | - Anna Rautanen
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Kirk Rockett
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neema Mturi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Francis M. Ndungu
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - J. Anthony G. Scott
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- London School of Hygiene and Tropical Medicine, London, UK
| | - Sodiomon B. Sirima
- Centre de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso
| | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford, UK
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Shabir A. Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Emily L. Webb
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M. Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Adrian V. S. Hill
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Dominic P. Kwiatkowski
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Thomas N. Williams
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Medicine, Imperial College, London, UK
| | - Carla Cerami
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Paediatrics, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Zhang DL, Wu J, Shah BN, Greutélaers KC, Ghosh MC, Ollivierre H, Su XZ, Thuma PE, Bedu-Addo G, Mockenhaupt FP, Gordeuk VR, Rouault TA. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science 2018; 359:1520-1523. [PMID: 29599243 DOI: 10.1126/science.aal2022] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/15/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Malaria parasites invade red blood cells (RBCs), consume copious amounts of hemoglobin, and severely disrupt iron regulation in humans. Anemia often accompanies malaria disease; however, iron supplementation therapy inexplicably exacerbates malarial infections. Here we found that the iron exporter ferroportin (FPN) was highly abundant in RBCs, and iron supplementation suppressed its activity. Conditional deletion of the Fpn gene in erythroid cells resulted in accumulation of excess intracellular iron, cellular damage, hemolysis, and increased fatality in malaria-infected mice. In humans, a prevalent FPN mutation, Q248H (glutamine to histidine at position 248), prevented hepcidin-induced degradation of FPN and protected against severe malaria disease. FPN Q248H appears to have been positively selected in African populations in response to the impact of malaria disease. Thus, FPN protects RBCs against oxidative stress and malaria infection.
Collapse
Affiliation(s)
- De-Liang Zhang
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Binal N Shah
- Sickle Cell Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Katja C Greutélaers
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin 13353, Germany
| | - Manik C Ghosh
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hayden Ollivierre
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - George Bedu-Addo
- Komfo Anokye Teaching Hospital, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frank P Mockenhaupt
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin 13353, Germany
| | - Victor R Gordeuk
- Sickle Cell Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tracey A Rouault
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Gordeuk VR, Brannon PM. Ethnic and genetic factors of iron status in women of reproductive age. Am J Clin Nutr 2017; 106:1594S-1599S. [PMID: 29070555 PMCID: PMC5701719 DOI: 10.3945/ajcn.117.155853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: African Americans are at increased risk of iron deficiency (ID) but also have higher serum ferritin (SF) concentrations than those of the general population. The Hemochromatosis and Iron Overload Screening (HEIRS) Study was a multicenter study of ethnically diverse participants that tested for the hemochromatosis (HFE) C282Y genotype and iron status.Objective: We sought to determine the prevalence and predictors of ID (SF concentration ≤15 μg/L) and elevated iron stores (SF concentration >300 μg/L) in HEIRS women of reproductive age (25-44 y).Design: The HEIRS Study was a cross-sectional study of iron status and HFE mutations in primary care patients at 5 centers in the United States and Canada. We analyzed data for women of reproductive age according to whether or not they were pregnant or breastfeeding at the time of the study.Results: ID was present in 12.5% of 20,080 nonpregnant and nonbreastfeeding women compared with 19.2% of 1962 pregnant or breastfeeding women (P < 0.001). Asian American ethnicity (OR ≤0.9; P ≤ 0.049) and HFE C282Y (OR ≤0.84; P ≤ 0.060) were independently associated with a decreased risk of ID in nonpregnant and nonbreastfeeding women and in pregnant or breastfeeding women. Hispanic ethnicity (OR: 1.8; P < 0.001) and African American ethnicity (OR: 1.6; P < 0.001) were associated with an increased risk of ID in nonpregnant and nonbreastfeeding women. Elevated iron stores were shown in 1.7% of nonpregnant and nonbreastfeeding women compared with 0.7% of pregnant or breastfeeding women (P = 0.001). HFE C282Y homozygosity had the most marked independent association with elevated iron stores in nonpregnant and nonbreastfeeding women and in pregnant or breastfeeding women (OR >49.0; P < 0.001), but African American ethnicity was also associated with increased iron stores in both groups of women (OR >2.0; P < 0.001). Asian American ethnicity (OR: 1.8; P = 0.001) and HFE C282Y heterozygosity (OR: 1.9; P = 0.003) were associated with increased iron stores in nonpregnant and nonbreastfeeding women.Conclusions: Both ID and elevated iron stores are present in women of reproductive age and are influenced by ethnicity and HFE C282Y. Efforts to optimize iron status should keep these findings in view. This study was registered at clinicaltrials.gov as NCT03276247.
Collapse
Affiliation(s)
- Victor R Gordeuk
- Division of Hematology & Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL;
| | - Patsy M Brannon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, and,Office of Dietary Supplements, NIH, Bethesda, MD
| |
Collapse
|
11
|
Kawabata H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol 2017; 107:31-43. [PMID: 29134618 DOI: 10.1007/s12185-017-2365-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Hereditary hemochromatosis (HH) is a group of genetic iron overload disorders that manifest with various symptoms, including hepatic dysfunction, diabetes, and cardiomyopathy. Classic HH type 1, which is common in Caucasians, is caused by bi-allelic mutations of HFE. Severe types of HH are caused by either bi-allelic mutations of HFE2 that encodes hemojuvelin (type 2A) or HAMP that encodes hepcidin (type 2B). HH type 3, which is of intermediate severity, is caused by bi-allelic mutations of TFR2 that encodes transferrin receptor 2. Mutations of SLC40A1 that encodes ferroportin, the only cellular iron exporter, causes either HH type 4A (loss-of-function mutations) or HH type 4B (gain-of-function mutations). Studies on these gene products uncovered a part of the mechanisms of the systemic iron regulation; HFE, hemojuvelin, and TFR2 are involved in iron sensing and stimulating hepcidin expression, and hepcidin downregulates the expression of ferroportin of the target cells. Phlebotomy is the standard treatment for HH, and early initiation of the treatment is essential for preventing irreversible organ damage. However, because of the rarity and difficulty in making the genetic diagnosis, a large proportion of patients with non-HFE HH might have been undiagnosed; therefore, awareness of this disorder is important.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa-ken, 920-0293, Japan.
| |
Collapse
|
12
|
Cikomola JC, Kishabongo AS, Vandepoele K, Mulder MD, Katchunga PB, Laukens B, Schie LV, Grootaert H, Callewaert N, Speeckaert MM, Delanghe JR. A simple colorimetric assay for measuring fructosamine 3 kinase activity. Clin Chem Lab Med 2017; 55:154-159. [PMID: 27394048 DOI: 10.1515/cclm-2016-0441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fructosamine 3 kinase (FN3K) is a deglycating enzyme, which may play a key role in reducing diabetes-induced organ damage by removing bound glucose from glycated proteins. We wanted to develop a simple colorimetric method for assaying FN3K activity in human body fluids. METHODS Glycated bovine serum albumin (BSA) was obtained by glycation with a 10% glucose solution at 37 °C. After 72 h, glycated BSA was dialyzed against phosphate buffered saline (0.1 mol/L, pH 7.4). The dialyzed solution (containing ±1000 µmol/L fructosamine) was used as an FN3K substrate. In the assay, 300 µL of substrate was incubated with 50 µL of serum and 100 µL of MgCl2 (0.7 mmol/L)/ATP (3.2 mmol/L). The fructosamine concentration was determined at the start and after incubation (120 min, 25 °C). The decrease in fructosamine concentration over time is a measure for the FN3K activity (1 U corresponding to 1 µmol/min). Concomitantly, the FN3K SNP rs1056534 and the ferroportin SNP rs1156350 were genotyped. RESULTS Within-assay CV was 6.0%. Reference values for FN3K activity in serum were 14.2±1.6 U/L (n=143). Reference values for FN3K were neither age- nor sex-dependent. The various FN3K SNP rs1056534 genotypes showed no significant differences in serum FN3K activity. In diabetics (n=191), values (14.0±2.2 U/L) were comparable to those of the controls. FN3K activity in erythrocytes was significantly higher (170.3±7.6 U/L). The intra-erythrocytic FN3K activity makes the results prone to hemolysis. FN3K activity depended on the ferroportin Q248H genotypes, with the highest value for the wild type genotype. Neither transferrin saturation nor ferritin were confounders for the FN3K activity. FN3K activity was significantly (p<0.0001) correlated with HbA1c values, although the correlation between FN3K and HbA1c was weak. CONCLUSIONS The simple colorimetric method allows determining FN3K activity in human serum. The assay may be useful for studying the impact of deglycation processes in diabetes mellitus.
Collapse
|
13
|
Cikomola JC, Vandepoele K, Katchunga PB, Kishabongo AS, Padalko EY, Speeckaert MM, Delanghe JR. The association between fructosamine-3 kinase 900C/G polymorphism, transferrin polymorphism and human herpesvirus-8 infection in diabetics living in South Kivu. Acta Trop 2016; 163:14-9. [PMID: 27461879 DOI: 10.1016/j.actatropica.2016.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/17/2016] [Indexed: 02/08/2023]
Abstract
Prevalences of human herpesvirus-8 (HHV-8) infection and diabetes mellitus are very common in certain parts of Africa, containing iron-rich soils. We hypothesized that some genetic factors could have a link with susceptibility to HHV-8 infection. We focused on ferroportin Q248H mutation (rs11568350), transferrin (TF) polymorphism and fructosamine-3 kinase (FN3K) 900C/G polymorphism (rs1056534). The study population consisted of 210 type 2 diabetic adults and 125 healthy controls recruited in Bukavu (South Kivu). In the whole study population (diabetics+healthy controls), ferroportin Q248H mutation was detected in 47 subjects (14.0%) with 43 heterozygotes and 4 homozygotes. TF phenotype frequencies were 88.1% (CC), 10.4% (CD) and 1.5% (BC). Genotype frequencies of FN3K 900C/G polymorphism were respectively 9,3% (CC), 43.3% (GC) and 47.4% (GG). Prevalence of HHV8-infection in the study population was 77.3%. HHV-8 infection rate and HHV-8 IgG antibody titer were significantly higher in diabetics then in controls (p<0.0001). Significant differences were observed in HHV-8 infection rate and in HHV-8 IgG antibody titer according to FN3K rs1056534 (p<0.05 and p<0.05, respectively) and TF polymorphism (p<0.05 and p=0.005, respectively). No significant differences in HHV-8 infection rate and in HHV-8 IgG antibody titer were observed in the ferroportin Q248H mutation carriers (rs11568350) in comparison with ferroportin wild type. In a multiple regression analysis, FN3K rs1056534, TF polymorphism and presence of diabetes mellitus were predictors for HHV-8 infection. In contrast to these findings, ferroportin Q248H mutation (rs11568350) did not influence the susceptibility for an HHV-8 infection in sub-Saharan Africans.
Collapse
|
14
|
Abstract
Maintaining physiologic iron concentrations in tissues is critical for metabolism and host defense. Iron absorption in the duodenum, recycling of iron from senescent erythrocytes, and iron mobilization from storage in macrophages and hepatocytes constitute the major iron flows into plasma for distribution to tissues, predominantly for erythropoiesis. All iron transfer to plasma occurs through the iron exporter ferroportin. The concentration of functional membrane-associated ferroportin is controlled by its ligand, the iron-regulatory hormone hepcidin, and fine-tuned by regulatory mechanisms serving iron homeostasis, oxygen utilization, host defense, and erythropoiesis. Fundamental questions about the structure and biology of ferroportin remain to be answered.
Collapse
|
15
|
Kasvosve I, Tshwenyego U, Phuthego T, Koto G, Zachariah M, Nyepetsi NG, Motswaledi MS. Serum ferritin concentration is affected by ferroportin Q248H mutation in Africans. Clin Chim Acta 2015; 444:257-9. [PMID: 25744489 DOI: 10.1016/j.cca.2015.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ferroportin Q248H mutation is common in populations with African ancestry. Studies have reported that the mutation does not alter the ferroportin-hepcidin axis, but there is evidence suggesting that the mutation may lead to hyperferritinemia. We report on the relationship of ferroportin Q248H mutation on serum ferritin (SF) in health adults. SUBJECTS AND METHODS A total of 174 apparently healthy adults from Botswana were studied. SF was measured using an enzyme immunoassay and ferroportin Q248H mutation was identified by polymerase chain reaction and restriction enzyme digestion. Independent sample Mann-Whitney U test was used to correlate the presence of the mutation with SF. RESULTS Ferroportin Q248H mutation was identified in 30 individuals (17.2%) (one homozygote, 29 heterozygotes) and was absent in 144 individuals (82.8%), with Q248H allele frequency of 8.9%. In males, SF was significantly higher in ferroportin Q248H heterozygotes compared to wild types, p=0.029, but the relationship between ferroportin Q248H mutation and iron stores was blunted in females. CONCLUSION Our study of healthy adults provides further evidence that ferroportin Q248H mutation affects SF concentration in Africans.
Collapse
Affiliation(s)
- Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.
| | - Uyapo Tshwenyego
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Thato Phuthego
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Garesego Koto
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Matshediso Zachariah
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Naledi G Nyepetsi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Modisa S Motswaledi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| |
Collapse
|
16
|
Callebaut I, Joubrel R, Pissard S, Kannengiesser C, Gérolami V, Ged C, Cadet E, Cartault F, Ka C, Gourlaouen I, Gourhant L, Oudin C, Goossens M, Grandchamp B, De Verneuil H, Rochette J, Férec C, Le Gac G. Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients. Hum Mol Genet 2014; 23:4479-90. [PMID: 24714983 DOI: 10.1093/hmg/ddu160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hemochromatosis type 4 is a rare form of primary iron overload transmitted as an autosomal dominant trait caused by mutations in the gene encoding the iron transport protein ferroportin 1 (SLC40A1). SLC40A1 mutations fall into two functional categories (loss- versus gain-of-function) underlying two distinct clinical entities (hemochromatosis type 4A versus type 4B). However, the vast majority of SLC40A1 mutations are rare missense variations, with only a few showing strong evidence of causality. The present study reports the results of an integrated approach collecting genetic and phenotypic data from 44 suspected hemochromatosis type 4 patients, with comprehensive structural and functional annotations. Causality was demonstrated for 10 missense variants, showing a clear dichotomy between the two hemochromatosis type 4 subtypes. Two subgroups of loss-of-function mutations were distinguished: one impairing cell-surface expression and one altering only iron egress. Additionally, a new gain-of-function mutation was identified, and the degradation of ferroportin on hepcidin binding was shown to probably depend on the integrity of a large extracellular loop outside of the hepcidin-binding domain. Eight further missense variations, on the other hand, were shown to have no discernible effects at either protein or RNA level; these were found in apparently isolated patients and were associated with a less severe phenotype. The present findings illustrate the importance of combining in silico and biochemical approaches to fully distinguish pathogenic SLC40A1 mutations from benign variants. This has profound implications for patient management.
Collapse
Affiliation(s)
- Isabelle Callebaut
- IMPMC, Sorbonne Universités - UMR CNRS 7590, UPMC Univ Paris 06, Muséum d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Rozenn Joubrel
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | - Serge Pissard
- Laboratoire de Génétique, UPEC (Université Paris Est Creteil), GHU Henri Mondor, Créteil, France
| | - Caroline Kannengiesser
- Hôpital Bichat, Département de Génétique, Inserm U1149 - Center for Research on Inflammation, Université Paris Diderot, AP-HP, Paris, France
| | | | - Cécile Ged
- Inserm U1035, Biothérapies des Maladies Génétiques et Cancers, Université de Bordeaux, CHU de Bordeaux, Pôle de Biologie et Pathologie, Bordeaux, France
| | - Estelle Cadet
- Laboratoire de Génétique Moléculaire, UPJV EA4666, CHU d'Amiens, Amiens, France
| | | | - Chandran Ka
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | - Isabelle Gourlaouen
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | | | - Claire Oudin
- Hôpital Bichat, Département de Génétique, Inserm U1149 - Center for Research on Inflammation, Université Paris Diderot, AP-HP, Paris, France
| | - Michel Goossens
- Laboratoire de Génétique, UPEC (Université Paris Est Creteil), GHU Henri Mondor, Créteil, France
| | - Bernard Grandchamp
- Hôpital Bichat, Département de Génétique, Inserm U1149 - Center for Research on Inflammation, Université Paris Diderot, AP-HP, Paris, France
| | - Hubert De Verneuil
- Inserm U1035, Biothérapies des Maladies Génétiques et Cancers, Université de Bordeaux, CHU de Bordeaux, Pôle de Biologie et Pathologie, Bordeaux, France
| | - Jacques Rochette
- Laboratoire de Génétique Moléculaire, UPJV EA4666, CHU d'Amiens, Amiens, France
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | - Gérald Le Gac
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France CHRU de Brest, Inserm CIC0502, Brest, France
| |
Collapse
|
17
|
Beguin Y, Aapro M, Ludwig H, Mizzen L, Osterborg A. Epidemiological and nonclinical studies investigating effects of iron in carcinogenesis--a critical review. Crit Rev Oncol Hematol 2013; 89:1-15. [PMID: 24275533 DOI: 10.1016/j.critrevonc.2013.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/17/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
The efficacy and tolerability of intravenous (i.v.) iron in managing cancer-related anemia and iron deficiency has been clinically evaluated and reviewed recently. However, long-term data in cancer patients are not available; yet, long-term i.v. iron treatment in hemodialysis patients is not associated with increased cancer risk. This review summarizes epidemiological and nonclinical data on the role of iron in carcinogenesis. In humans, epidemiological data suggest correlations between certain cancers and increased iron exposure or iron overload. Nonclinical models that investigated whether iron can enhance carcinogenesis provide only limited evidence relevant for cancer patients since they were typically based on high iron doses as well as injection routes and iron formulations which are not used in the clinical setting. Nevertheless, in the absence of long-term outcome data from prospectively defined trials in i.v. iron-treated cancer patients, iron supplementation should be limited to periods of concomitant anti-tumor treatment.
Collapse
Affiliation(s)
| | | | - Heinz Ludwig
- Center for Oncology and Haematology, Wilhelminenspital, Vienna, Austria
| | | | - Anders Osterborg
- Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Abstract
Ferroportin (FPN) is the sole iron export membrane protein identified in mammals that is abundantly expressed on absorptive enterocytes and macrophages, and is essential for physiological regulation of cellular iron. The expression of FPN is positively induced by cellular iron and is suppressed by liver hepcidin in response to either increased systemic iron or inflammatory stimuli. Hepcidin binds to cell surface FPN inducing FPN internalization followed by lysosomal degradation of the protein and consequently iron efflux from macrophages is blocked and there is suboptimal iron absorption by duodenal enterocytes. Dozens of FPN gene mutations have been identified in different ethnic populations and some of the mutations are associated with autosomal dominant iron overload disorder described as FPN disease or hemochromatosis type 4 that is distinct from hereditary hemochromatosis due to HFE mutations. Clinical manifestations of iron overload FPN disease can be classified into two groups according to whether there is selective macrophage iron loading or parenchymal and reticuloendothelial iron accumulation. There is evidence suggesting that altered hepcidin-FPN interaction can modulate host's response to infection. Resistance to hepcidin promotes iron egress from cells and this inhibits growth of intracellular pathogens. Conversely, iron retention due to loss of iron export activity by mutated FPN results in intracellular iron accumulation and a permissive environment for intracellular pathogens.
Collapse
Affiliation(s)
- Ishmael Kasvosve
- Department of Medical Laboratory Sciences Faculty of Health Sciences, University of Botswana Private Bag UB 00712, Gaborone, Botswana.
| |
Collapse
|
19
|
Nekhai S, Xu M, Foster A, Kasvosve I, Diaz S, Machado RF, Castro OL, Kato GJ, Taylor JG, Gordeuk VR. Reduced sensitivity of the ferroportin Q248H mutant to physiological concentrations of hepcidin. Haematologica 2012; 98:455-63. [PMID: 23065513 DOI: 10.3324/haematol.2012.066530] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ferroportin Q248H mutation has an allele frequency of 2.2-13.4% in African populations and is associated with a mild tendency to increased serum ferritin in the general population. Some investigators have reported that ferroportin Q248H is degraded after exposure to hepcidin in exactly the same manner as wild-type ferroportin, but supraphysiological concentrations of hepcidin were used. The aim of our study was to determine whether ferroportin Q248H may have reduced sensitivity to physiological concentrations of hepcidin. The sensitivity of ferroportin Q248H to hepcidin was determined in 293T cells transiently expressing ferroportin using immunoblotting and fluorescence analysis. Ferritin concentrations were measured in these cells and also in human primary monocytes derived from humans with different ferroportin genotypes. The effect of Q248H on serum iron measures was examined in patients with sickle cell anemia. Immunoblotting and fluorescence analysis showed decreased sensitivity of ferroportin Q248H to physiological concentrations of hepcidin. Lower ferritin concentrations were observed after incubation with iron and hepcidin in 293T cells expressing ferroportin Q248H and in primary monocytes from ferroportin Q248H subjects. In sickle cell anemia, ferroportin Q248H heterozygotes had lower serum ferritin concentrations than wild-type subjects, consistent with enhanced iron release by macrophage ferroportin Q248H. A clinical benefit of ferroportin Q248H was suggested by lower echocardiographic estimates of pulmonary artery pressure in patients carrying mutant alleles. In conclusion, our results suggest that ferroportin Q248H protein is resistant to physiological concentrations of hepcidin and that this mutation has discernible effects on iron metabolism-related clinical complications of sickle cell anemia. They provide a mechanistic explanation for the effect of ferroportin Q248H on iron status in individuals of African descent and suggest that these changes in iron metabolism may be beneficial under certain disease-specific circumstances. (ClinicalTrials.gov Identifier:NCT00011648).
Collapse
Affiliation(s)
- Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baker MA, Wilson D, Wallengren K, Sandgren A, Iartchouk O, Broodie N, Goonesekera SD, Sabeti PC, Murray MB. Polymorphisms in the Gene That Encodes the Iron Transport Protein Ferroportin 1 Influence Susceptibility to Tuberculosis. J Infect Dis 2012; 205:1043-7. [DOI: 10.1093/infdis/jis026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
21
|
Masaisa F, Breman C, Gahutu JB, Mukiibi J, Delanghe J, Philippé J. Ferroportin (SLC40A1) Q248H mutation is associated with lower circulating serum hepcidin levels in Rwandese HIV-positive women. Ann Hematol 2012; 91:911-6. [DOI: 10.1007/s00277-011-1400-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/28/2011] [Indexed: 12/11/2022]
|
22
|
Albuquerque D, Manco L, Loua KM, Arez AP, Trovoada MDJ, Relvas L, Millimono TS, Rath SL, Lopes D, Nogueira F, Varandas L, Alvarez M, Ribeiro ML. SLC40A1 Q248H allele frequencies and associated SLC40A1 haplotypes in three West African population samples. Ann Hum Biol 2011; 38:378-81. [PMID: 21231898 DOI: 10.3109/03014460.2010.541496] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ferroportin is a transmembrane protein responsible for iron export from enterocytes and macrophages. Mutation c.744G → T (Q248H), located in exon 6 of the ferroportin gene SLC40A1, is found as a polymorphism in populations of African origin. This mutation has been extensively analysed in African-Americans, but poorly studied in native African populations. AIM To increase information about Q248H mutation frequency in native sub-Saharan populations examining three West African populations. SUBJECTS AND METHODS Samples from S. Tomé e Príncipe (n = 115), Angola (n = 156) and Republic of Guinea (n = 170) were analysed for Q248H mutation and for two polymorphisms, IVS1( - 24)G → C and microsatellite (CGG)(n), using standard molecular methodology. RESULTS The estimated frequencies of Q248H allele were 2.2% in S. Tomé e Príncipe, 3.5% in Angola and 4.1% in Republic of Guinea. Analysis of polymorphisms IVS1( - 24)G → C and (CGG)(n) showed mutation allele c.744T to be strongly associated with haplotype IVS1( - 24)G/(CGG)(7). CONCLUSIONS This study confirmed the presence of Q248H mutation at polymorphic frequencies in three native sub-Saharan populations. Analysis of two additional markers in the same gene support a single origin of the mutant allele c.744T in the haplotype background IVS1( - 24)G/(CGG)(7).
Collapse
|
23
|
Al Wayli H, Rastogi S, Verma N. Hereditary hemochromatosis of tongue. ACTA ACUST UNITED AC 2011; 111:e1-5. [DOI: 10.1016/j.tripleo.2010.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/27/2010] [Accepted: 09/06/2010] [Indexed: 11/26/2022]
|
24
|
Harrison-Findik DD. Gender-related variations in iron metabolism and liver diseases. World J Hepatol 2010; 2:302-10. [PMID: 21161013 PMCID: PMC2999297 DOI: 10.4254/wjh.v2.i8.302] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/30/2010] [Accepted: 07/07/2010] [Indexed: 02/06/2023] Open
Abstract
The regulation of iron metabolism involves multiple organs including the duodenum, liver and bone marrow. The recent discoveries of novel iron-regulatory proteins have brought the liver to the forefront of iron homeostasis. The iron overload disorder, genetic hemochromatosis, is one of the most prevalent genetic diseases in individuals of Caucasian origin. Furthermore, patients with non-hemochromatotic liver diseases, such as alcoholic liver disease, chronic hepatitis C or nonalcoholic steatohepatitis, often exhibit elevated serum iron indices (ferritin, transferrin saturation) and mild to moderate hepatic iron overload. Clinical data indicate significant differences between men and women regarding liver injury in patients with alcoholic liver disease, chronic hepatitis C or nonalcoholic steatohepatitis. The penetrance of genetic hemochromatosis also varies between men and women. Hepcidin has been suggested to act as a modifier gene in genetic hemochromatosis. Hepcidin is a circulatory antimicrobial peptide synthesized by the liver. It plays a pivotal role in the regulation of iron homeostasis. Hepcidin has been shown to be regulated by iron, inflammation, oxidative stress, hypoxia, alcohol, hepatitis C and obesity. Sex and genetic background have also been shown to modulate hepcidin expression in mice. The role of gender in the regulation of human hepcidin gene expression in the liver is unknown. However, hepcidin may play a role in gender-based differences in iron metabolism and liver diseases. Better understanding of the mechanisms associated with gender-related differences in iron metabolism and chronic liver diseases may enable the development of new treatment strategies.
Collapse
Affiliation(s)
- Duygu D Harrison-Findik
- Duygu D Harrison-Findik, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5820, United States
| |
Collapse
|
25
|
Cantonwine D, Hu H, Téllez-Rojo MM, Sánchez BN, Lamadrid-Figueroa H, Ettinger AS, Mercado-García A, Hernández-Avila M, Wright RO. HFE gene variants modify the association between maternal lead burden and infant birthweight: a prospective birth cohort study in Mexico City, Mexico. Environ Health 2010; 9:43. [PMID: 20659343 PMCID: PMC2916893 DOI: 10.1186/1476-069x-9-43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 07/26/2010] [Indexed: 05/11/2023]
Abstract
BACKGROUND Neonatal growth is a complex process involving genetic and environmental factors. Polymorphisms in the hemochromatosis (HFE) iron regulatory genes have been shown to modify transport and toxicity of lead which is known to affect birth weight. METHODS We investigated the role of HFE C282Y, HFE H63 D, and transferrin (TF) P570 S gene variants in modifying the association of lead and infant birthweight in a cohort of Mexican mother-infant pairs. Subjects were initially recruited between 1994-1995 from three maternity hospitals in Mexico City and 411 infants/565 mothers had archived blood available for genotyping. Multiple linear regression models, stratified by either maternal/infant HFE or TF genotype and then combined with interaction terms, were constructed examining the association of lead and birthweight after controlling for covariates. RESULTS 3.1%, 16.8% and 17.5% of infants (N=390) and 1.9%, 14.5% and 18.9% of mothers (N=533) carried the HFE C282Y, HFE H63D, and TF P570 S variants, respectively. The presence of infant HFE H63 D variants predicted 110.3 g (95% CI -216.1, -4.6) decreases in birthweight while maternal HFE H63 D variants predicted reductions of 52.0 g (95% CI -147.3 to 43.2). Interaction models suggest that both maternal and infant HFE H63 D genotype may modify tibia lead's effect on infant birthweight in opposing ways. In our interaction models, maternal HFE H63 D variant carriers had a negative association between tibia lead and birthweight. CONCLUSIONS These results suggest that the HFE H63 D genotype modifies lead's effects on infant birthweight in a complex fashion that may reflect maternal-fetal interactions with respect to the metabolism and transport of metals.
Collapse
Affiliation(s)
- David Cantonwine
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Howard Hu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha Maria Téllez-Rojo
- Division of Statistics, Center for Evaluation Research and Surveys, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Héctor Lamadrid-Figueroa
- Division of Statistics, Center for Evaluation Research and Surveys, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Adrienne S Ettinger
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana Mercado-García
- Division of Environmental Health, Center for Population Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | | | - Robert O Wright
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Kasvosve I, Debebe Z, Nekhai S, Gordeuk VR. Ferroportin (SLC40A1) Q248H mutation is associated with lower circulating plasma tumor necrosis factor-alpha and macrophage migration inhibitory factor concentrations in African children. Clin Chim Acta 2010; 411:1248-52. [PMID: 20460119 DOI: 10.1016/j.cca.2010.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Iron deficiency and the Q248H mutation in the gene, SLC40A1, that encodes for the cellular iron exporter, ferroportin, are both common in African children. The iron status of macrophages influences the pro-inflammatory response of these cells. We hypothesized that Q248H mutation may modify the inflammatory response by influencing iron levels within macrophages. METHODS The Q248H mutation and circulating concentrations of ferritin, C-reactive protein and selected pro-inflammatory cytokines (interleukin-12, interferon-gamma, TNF-alpha, and macrophage migration inhibitory factor) and anti-inflammatory cytokines (interleukin-4 and interleukin-10) were measured in 69 pre-school children recruited from well-child clinics in Harare, Zimbabwe. RESULTS In multivariate analysis, both ferroportin Q248H and ferritin <10ug/L were associated with significantly lower circulating concentrations of tumor necrosis factor-alpha. Ferroportin Q248H but not low iron stores was associated with lower circulating macrophage migration inhibitory factor as well. Anti-inflammatory cytokine levels were not significantly associated with either ferroportin Q248H or iron status. CONCLUSIONS Ferroportin Q248H and low iron stores are both associated with lower circulating tumor necrosis factor-alpha, while only ferroportin Q248H is associated with lower circulating macrophage migration inhibitory factor. Whether the reduced production of tumor necrosis factor-alpha observed in ferroportin Q248H heterozygotes may be of significance in anemia of chronic disease is yet to be determined.
Collapse
Affiliation(s)
- Ishmael Kasvosve
- Department of Chemical Pathology, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe.
| | | | | | | |
Collapse
|
27
|
Abstract
Primary iron overload is one of the most common inherited diseases worldwide. Several genetic mutations underlie the various forms of the disease, which have similar pathophysiological profiles but distinct clinical presentations. Patients with hereditary hemochromatosis absorb too much iron from the diet, which accumulates over time within parenchymal cells. This accumulation leads to eventual organ failure as a consequence of iron-mediated formation of free radicals. The mechanism underlying this excessive absorption of iron is a sensing defect caused by the reduced formation of hepcidin, the master regulator of iron homeostasis, as a consequence of mutations in the genes encoding several membrane-bound signaling molecules present on hepatocytes. A considerable number of carriers of these specific genetic mutations, however, do not develop iron overload, indicating that additional genetic and environmental factors modify the severity and clinical penetrance of disease. In affected patients, early initiation of treatment by phlebotomy can prevent organ damage. Genetic screening of first-degree relatives can be also used to identify individuals at risk. Our expanding knowledge of the regulation of iron metabolism and the role of factors that modify the severity of the disease may lead to the design of new and improved treatments.
Collapse
|
28
|
Barton JC, Lafreniere SA, Leiendecker-Foster C, Li H, Acton RT, Press RD, Eckfeldt JH. HFE, SLC40A1, HAMP, HJV, TFR2, and FTL mutations detected by denaturing high-performance liquid chromatography after iron phenotyping and HFE C282Y and H63D genotyping in 785 HEIRS Study participants. Am J Hematol 2009; 84:710-4. [PMID: 19787796 DOI: 10.1002/ajh.21524] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We sought to identify mutations that could explain iron phenotype heterogeneity in adults with previous HFE genotyping to detect C282Y and H63D. HEIRS Study participants genotyped for C282Y and H63D were designated as high transferrin saturation (TS) and/or serum ferritin (SF) (high TS/SF), low TS/SF, or controls. We grouped 191 C282Y homozygotes as high TS/SF, low TS/SF, or controls, and 594 other participants by race/ethnicity as high TS/SF or controls. Using denaturing high-performance liquid chromatography (DHPLC), we screened 20 regions of HFE, SLC40A1, HAMP, HJV, TFR2, and FTL in each participant. DHPLC analyses were successful in 99.3% of 791 participants and detected 117 different mutations. In C282Y homozygotes, 4.0% of high TS/SF participants had SLC40A1 Q248H, HAMP -72C>T, or HAMP R59G heterozygosity (0% Controls; P = 0.1200). In whites, 4.1% with high TS/SF and 1.3% of controls had HFE S65C or E168Q (P = 0.3049). HJV c.-6C>G and FTL L55L frequencies were greater in whites with high TS/SF than controls (0.0811 vs. 0.0200, P = 0.0144; 0.5743 vs. 0.4400, P = 0.0204, respectively). One Hispanic with high TS/SF (1.3%) had HAMP G71D heterozygosity. In blacks, SLC40A1 Q248H frequencies did not differ significantly between high TS/SF and control participants. Among Asians, 2.8% with high TS/SF were HFE V295A heterozygotes. Mutations other than HFE C282Y and H63D reported to be pathogenic were infrequently detected in high TS/SF participants. Genetic regions in linkage disequilibrium with HJV c.-6C>G and FTL L55L could partly explain high TS/SF phenotypes in whites. Am. J. Hematol., 2009. Published 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, Alabama, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gan EK, Trinder D, Ayonrinde OT, Olynyk JK. Genetics of hereditary hemochromatosis: a clinical perspective. Expert Rev Endocrinol Metab 2009; 4:225-239. [PMID: 30743791 DOI: 10.1586/eem.09.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hereditary hemochromatosis due to homozygosity for the C282Y mutation in the HFE gene product is the most common autosomal recessive genetic disorder in populations of northern European descent, where it attains a maximum prevalence of approximately one in 200. Cross-sectional and longitudinal studies have revealed that clinically significant iron-overload disease develops in at least 28% of male and 1% of female HFE C282Y homozygotes. The relatively low clinical penetrance is largely unexplained. Current evidence suggests a limited role for digenic inheritance of mutations in iron homeostasis genes in modifying the penetrance of hemochromatosis. Male gender is a strong genetic factor, promoting expression of clinical disease. Dietary intake of alcohol and noncitrus fruit may also act as important environmental modifiers of penetrance. With genetic analyses becoming simpler to perform, new genetic modifiers of hepatic iron loading and liver fibrogenesis are likely to be forthcoming.
Collapse
Affiliation(s)
- Eng K Gan
- a School of Medicine & Pharmacology, Fremantle Hospital, PO Box 480, Fremantle 6959, WA, Australia.
| | - Debbie Trinder
- b School of Medicine & Pharmacology, Fremantle Hospital, PO Box 480, Fremantle 6959, WA, Australia.
| | - Oyekoya T Ayonrinde
- c School of Medicine & Pharmacology, Fremantle Hospital, PO Box 480, Fremantle 6959, WA, Australia.
| | - John K Olynyk
- d Professor, School of Medicine & Pharmacology, Fremantle Hospital, PO Box 480, Fremantle 6959, WA, Australia.
| |
Collapse
|
30
|
Ferritin and increased vs upper reference interval tibc saturation to identify increased iron stores in African Americans. Clin Chim Acta 2009; 405:71-5. [PMID: 19362082 DOI: 10.1016/j.cca.2009.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increased serum ferritin (SF) in combination with increased total iron binding capacity saturation (TS) in the upper reference internal was evaluated to identify African Americans with increased iron stores. METHODS Among 16,856 primary care-based African Americans screened at Howard University Field Center of the Hereditary Hemochromatosis and Iron Overload Screening (HEIRS) Study, 142 with SF >500 microg/l women or >700 microg/l men and increased TS (>45% women or >50% men; main study) and 146 with similar ferritin increases and upper reference interval TS (30-45% women or 35-50% men; ancillary study) were offered clinical evaluation to confirm increased SF and identify the cause. RESULTS Repeat SF remained increased in 83% of 92 participants with increased TS initially (main study) vs 58% of 64 with upper reference interval TS initially (ancillary study) (P=0.0002). These persistent SF increases were associated with blood transfusions (treatment for sickle cell disease) in 20% of 76 main study and 11% of 37 ancillary study participants (P=0.4). Ninety percent of participants with persistent non-transfusional increased SF in the main study and 85% in the ancillary study had alanine-aminotransferase, aspartate-aminotransferase, C-reactive protein and/or hemoglobin values outside of the reference interval. Increased iron stores were documented by phlebotomy or liver biopsy in 4 of 7 main study and 2 of 2 ancillary study participants with persistent non-transfusional increase in SF. CONCLUSION Increased iron stores occur in African Americans with increased SF in combination with either increased or upper reference interval TS. Limiting clinical evaluation to only those individuals with both increased SF and increased TS will miss individuals with increased iron stores.
Collapse
|
31
|
McLaren GD, Gordeuk VR. Hereditary hemochromatosis: insights from the Hemochromatosis and Iron Overload Screening (HEIRS) Study. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:195-206. [PMID: 20008199 PMCID: PMC3829617 DOI: 10.1182/asheducation-2009.1.195] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hemochromatosis comprises a group of inherited disorders resulting from mutations of genes involved in regulating iron metabolism. The multicenter, multi-ethnic Hemochromatosis and Iron Overload Screening (HEIRS) Study screened approximately 100,000 participants in the US and Canada, testing for HFE mutations, serum ferritin and transferrin saturation. As in other studies, HFE C282Y homozygosity was common in Caucasians but rare in other ethnic groups, and there was a marked heterogeneity of disease expression in C282Y homozygotes. Nevertheless, this genotype was often associated with elevations of serum ferritin and transferrin saturation and with iron stores of more than four grams in men but not in women. If liver biopsy was performed, in some cases because of evidence of hepatic dysfunction, fibrosis or cirrhosis was often found. Combined elevations of serum ferritin and transferrin saturation were observed in non-C282Y homozygotes of all ethnic groups, most prominently Asians, but not often with iron stores of more than four grams. Future studies to discover modifier genes that affect phenotypic expression in C282Y hemochromatosis should help identify patients who are at greatest risk of developing iron overload and who may benefit from continued monitoring of iron status to detect progressive iron loading.
Collapse
Affiliation(s)
- Gordon D McLaren
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA.
| | | |
Collapse
|
32
|
Gordeuk VR, Diaz SF, Onojobi GO, Kasvosve I, Debebe Z, Edossa A, Pantin JM, Xiong S, Nekhai S, Nouraie M, Tsukamoto H, Taylor RE. Ferroportin Q248h, dietary iron, and serum ferritin in community African-Americans with low to high alcohol consumption. Alcohol Clin Exp Res 2008; 32:1947-53. [PMID: 18782341 DOI: 10.1111/j.1530-0277.2008.00782.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alcohol consumption is associated with increased iron stores. In sub-Saharan Africa, high dietary ionic iron and the ferroportin Q248H allele have also been implicated in iron accumulation. We examined the associations of ferroportin Q248H, alcohol and dietary iron with serum ferritin, aspartate aminotransaminase (AST) and alanine aminotransaminase (ALT) concentrations in African-Americans. METHODS Inner-city African-Americans (103 men, 40 women) were recruited from the community according to reported ingestion of >4 alcoholic drinks/d or <2/wk. Typical daily heme iron, nonheme iron and alcohol were estimated using University of Hawaii's multiethnic dietary questionnaire. Based on dietary questionnaire estimates we established categories of < versus > or =56 g alcohol/d, equivalent to 4 alcoholic drinks/d assuming 14 g alcohol per drink. RESULTS Among 143 participants, 77% drank <56 g alcohol/d and 23%> or =56 g/d as estimated by the questionnaire. The prevalence of ferroportin Q248H was 23.3% with alcohol >56 g/d versus 7.5% with lower amounts (p = 0.014). Among subjects with no history of HIV disease, serum ferritin concentration had positive relationships with male gender (p = 0.041), alcohol consumption (p = 0.021) and ALT concentration (p = 0.0001) but not with dietary iron intake or ferroportin Q248H. Serum AST and ALT concentrations had significant positive associations with male gender and hepatitis C seropositivity but not with alcohol or dietary iron intake or ferroportin Q248H. CONCLUSIONS Our findings suggest a higher prevalence of ferroportin Q248H with greater alcohol consumption, and this higher prevalence raises the possibility that the allele might ameliorate the toxicity of alcohol. Our results suggest that alcohol but not dietary iron contributes to higher body iron stores in African-Americans. Studies with larger numbers of participants are needed to further clarify the relationship of ferroportin Q248H with the toxicity of alcohol consumption.
Collapse
Affiliation(s)
- Victor R Gordeuk
- College of Medicine, Howard University, Washington, DC 20060, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Following the discovery of the HFE gene in 1996 and its linkage to the iron overload disorder hereditary hemochromatosis (HH) there have been profound developments in our understanding of the pathogenesis of the biochemical and clinical manifestations of a number of iron overload disorders. This article provides an update of recent developments and key issues relating to iron homeostasis and inherited disorders of iron overload, with emphasis on HFE-related HH, and is based on the content of the American Association for the Study of Liver Diseases Single-Topic Conference entitled "Hemochromatosis: What has Happened After HFE?" which was held at the Emory Convention Center in Atlanta, September 7-9, 2007.
Collapse
Affiliation(s)
- John K Olynyk
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
34
|
Brissot P, Troadec MB, Bardou-Jacquet E, Le Lan C, Jouanolle AM, Deugnier Y, Loréal O. Current approach to hemochromatosis. Blood Rev 2008; 22:195-210. [PMID: 18430498 DOI: 10.1016/j.blre.2008.03.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron overload diseases of genetic origin are an ever changing world, due to major advances in genetics and molecular biology. Five major categories are now established: HFE-related or type1 hemochromatosis, frequently found in Caucasians, and four rarer diseases which are type 2 (A and B) hemochromatosis (juvenile hemochromatosis), type 3 hemochromatosis (transferrin receptor 2 hemochromatosis), type 4 (A and B) hemochromatosis (ferroportin disease), and a(hypo)ceruloplasminemia. Increased duodenal iron absorption and enhanced macrophagic iron recycling, both due to an impairment of hepcidin synthesis, account for the development of cellular excess in types 1, 2, 3, and 4B hemochromatosis whereas decreased cellular iron egress is involved in the main form of type 4A) hemochromatosis and in aceruloplasminemia. Non-transferrin bound iron plays an important role in cellular iron excess and damage. The combination of magnetic resonance imaging (for diagnosing visceral iron overload) and of genetic testing has drastically reduced the need for liver biopsy. Phlebotomies remain an essential therapeutic tool but the improved understanding of the intimate mechanisms underlying these diseases paves the road for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Liver Disease Unit, Liver Research Unit Inserm U-522, IFR 140, University of Rennes1, Hemochromatosis Reference Center, Laboratory of Molecular Genetics, University Hospital Pontchaillou, Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood 2008; 111:4456-62. [PMID: 18316631 DOI: 10.1182/blood-2007-11-122374] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hereditary hemochromatosis is a genetic disorder of iron metabolism leading to inappropriate iron absorption and iron loading in various organs especially the liver. Despite the genetic mutation being relatively common in those of Anglo Celtic descent, cirrhosis of the liver occurs in only a small proportion of affected individuals. The risk of hepatic fibrosis and cirrhosis relates to the degree of iron loading with threshold hepatic iron concentrations being identified from population studies. However, other environmental and possibly genetic factors appear to modify this risk. Excess alcohol consumption appears to be one of the most important cofactors with steatosis and coexistent viral infection also implicated. Genetic polymorphisms in genes associated with fibrogenesis, antioxidant activity, and inflammation have been investigated in several different forms of chronic liver disease. The variability in the expression of these genes that predispose patients with hemochromatosis to increased risk of severe liver disease is the subject of ongoing investigations. Clearly the progression of iron loading to cirrhosis marks a crucial stage in the natural history of a patient's disease and therefore therapy and prognosis. This review explores recent developments in knowledge of environmental and genetic modifiers of this process.
Collapse
|
36
|
Allen KJ, Gurrin LC, Constantine CC, Osborne NJ, Delatycki MB, Nicoll AJ, McLaren CE, Bahlo M, Nisselle AE, Vulpe CD, Anderson GJ, Southey MC, Giles GG, English DR, Hopper JL, Olynyk JK, Powell LW, Gertig DM. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med 2008; 358:221-30. [PMID: 18199861 DOI: 10.1056/nejmoa073286] [Citation(s) in RCA: 492] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Most persons who are homozygous for C282Y, the HFE allele most commonly asssociated with hereditary hemochromatosis, have elevated levels of serum ferritin and transferrin saturation. Diseases related to iron overload develop in some C282Y homozygotes, but the extent of the risk is controversial. METHODS We assessed HFE mutations in 31,192 persons of northern European descent between the ages of 40 and 69 years who participated in the Melbourne Collaborative Cohort Study and were followed for an average of 12 years. In a random sample of 1438 subjects stratified according to HFE genotype, including all 203 C282Y homozygotes (of whom 108 were women and 95 were men), we obtained clinical and biochemical data, including two sets of iron measurements performed 12 years apart. Disease related to iron overload was defined as documented iron overload and one or more of the following conditions: cirrhosis, liver fibrosis, hepatocellular carcinoma, elevated aminotransferase levels, physician-diagnosed symptomatic hemochromatosis, and arthropathy of the second and third metacarpophalangeal joints. RESULTS The proportion of C282Y homozygotes with documented iron-overload-related disease was 28.4% (95% confidence interval [CI], 18.8 to 40.2) for men and 1.2% (95% CI, 0.03 to 6.5) for women. Only one non-C282Y homozygote (a compound heterozygote) had documented iron-overload-related disease. Male C282Y homozygotes with a serum ferritin level of 1000 mug per liter or more were more likely to report fatigue, use of arthritis medicine, and a history of liver disease than were men who had the wild-type gene. CONCLUSIONS In persons who are homozygous for the C282Y mutation, iron-overload-related disease developed in a substantial proportion of men but in a small proportion of women.
Collapse
Affiliation(s)
- Katrina J Allen
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Barton JC, Acton RT, Lee PL, West C. SLC40A1 Q248H allele frequencies and Q248H-associated risk of non-HFE iron overload in persons of sub-Saharan African descent. Blood Cells Mol Dis 2007; 39:206-11. [PMID: 17490902 PMCID: PMC1986732 DOI: 10.1016/j.bcmd.2007.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 02/09/2023]
Abstract
The ferroportin polymorphism SLC40A1 Q248H (exon 6, cDNA 744G-->T; Gln248His) occurs in persons of sub-Saharan African descent with and without iron overload, and is associated with elevated serum ferritin concentrations (SF). However, the risk of iron overload associated with Q248H has not been defined. We tabulated previously reported Q248H allele frequency estimates in African-Americans and Native Africans, and computed the risk of iron overload associated with Q248H in subjects who lacked HFE C282Y. The aggregate Q248H allele frequency in 1038 African-Americans in two cohorts from Alabama and one cohort each from Washington, DC and California was 0.0525 (95% CI: 0.0451, 0.0652); there was no significant difference in frequencies across these cohorts. The aggregate frequency in 259 Natives from southeast Africa in two cohorts was 0.0946 (95% CI: 0.0694, 0.1198); the difference between the frequencies of these cohorts was not significant. The aggregate Q248H frequencies in African-Americans and Native Africans differed significantly (0.0525 vs. 0.0946, respectively; p=0.0021). There were reports of 24 unrelated African-Americans and 15 unrelated Native Africans without HFE C282Y who had iron overload. In African-Americans, the odds ratio (OR) of Q248H-associated risk of iron overload using 610 C282Y-negative control subjects unselected for SF was 1.57 (95% CI: 0.52, 4.72; p=0.29). In Native Africans, the OR using 208 control subjects unselected for SF was 1.05 (95% CI: 0.28, 3.90; p=0.58). We conclude that the frequency of SLC40A1 Q248H is significantly lower in African-Americans than in Native Africans. Although OR estimates of iron overload in African-Americans and Native Africans with Q248H were greater than unity, the increased OR were not statistically significant.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, G105, 2022 Brookwood Medical Center Drive, Birmingham, AL 35209, USA.
| | | | | | | |
Collapse
|