1
|
Habara A. Exploratory Review and In Silico Insights into circRNA and RNA-Binding Protein Roles in γ-Globin to β-Globin Switching. Cells 2025; 14:312. [PMID: 39996784 PMCID: PMC11854342 DOI: 10.3390/cells14040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
β-globin gene cluster regulation involves complex mechanisms to ensure proper expression and function in RBCs. During development, switching occurs as γ-globin is replaced by β-globin. Key regulators, like BCL11A and ZBTB7A, repress γ-globin expression to facilitate this transition with other factors, like KLF1, LSD1, and PGC-1α; these regulators ensure an orchestrated transition from γ- to β-globin during development. While these mechanisms have been extensively studied, circRNAs have recently emerged as key contributors to gene regulation, but their role in β-globin gene cluster regulation remains largely unexplored. Although discovered in the 1970s, circRNAs have only recently been recognized for their functional roles, particularly in interactions with RNA-binding proteins. Understanding how circRNAs contribute to switching from γ- to β-globin could lead to new therapeutic strategies for hemoglobinopathies, such as sickle cell disease and β-thalassemia. This review uses the circAtlas 3.0 database to explore circRNA expressions in genes related to switching from γ- to β-globin expression, focusing on blood, bone marrow, liver, and spleen. It emphasizes the exploration of the potential interactions between circRNAs and RNA-binding proteins involved in β-globin gene cluster regulatory mechanisms, further enhancing our understanding of β-globin gene cluster expression.
Collapse
Affiliation(s)
- Alawi Habara
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
2
|
Suali L, Mohammad Salih FA, Ibrahim MY, Bin Jeffree MS, Suali E, Siew Moy F, Shook Fe Y, Sunggip C. The Effect of Single Nucleotide Polymorphisms on Clinical Phenotypes of Sabahan Transfusion-Dependent β-Thalassemia Patients with Homozygous Filipino β 0-Deletion. Hemoglobin 2025; 49:10-19. [PMID: 39806862 DOI: 10.1080/03630269.2024.2448175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Sabah has the highest prevalence of β-thalassemia in Malaysia, with the Filipino β0-deletion as the predominant mutation. Patients with the homozygous Filipino β0-deletion exhibit phenotypic heterogeneity due to various genetic modifiers, yet the effects of these modifiers on the clinical phenotype remain poorly understood. This study investigated the effects of the coinheritance of α-thalassemia, XmnI-Gγ rs7482144, BCL11A rs766432, and 5'HS4 rs16912979 polymorphisms on the clinical phenotype of homozygous Filipino β0-deletion patients in Sabah. Molecular analyses were performed on 124 homozygous Filipino β0-deletion patients using gap-PCR, PCR-RFLP, multiplex PCR, ARMS-PCR, gel electrophoresis, and DNA sequencing. Data showed that the coinheritance of the -α3.7 deletion significantly affected the clinical phenotypes of homozygous Filipino β0-deletion patients (p < 0.05). Patients with the -α3.7/-α3.7 genotype (5.6%) had a less severe clinical phenotype compared to those with the αα/αα (71.8%) and -α3.7/αα (22.6%) genotypes. Our data further revealed that the MAFs of the XmnI-Gγ rs7482144 and BCL11A rs766432 polymorphisms in these patients were 0.032 and 0.194, respectively. Interestingly, none of these single nucleotide polymorphisms significantly influenced the clinical phenotype of the patients. The effect of the 5'HS4 rs16912979 polymorphism on the clinical phenotype could not be assessed due to its rarity (1.6%). However, a novel 5'HS4 c.733+G mutation was identified, warranting further investigation of its potential impact on β-thalassemia pathogenesis. Our findings indicate that the clinical phenotype of patients with the homozygous Filipino β0-deletion is strongly influenced by the coinheritance of the -α3.7 deletion, but not by the XmnI-Gγ rs7482144 and BCL11A rs766432 polymorphisms.
Collapse
Affiliation(s)
- Latifah Suali
- Department of Biomedical and Science Therapeutic, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | - Mohammad Yusof Ibrahim
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohammad Saffree Bin Jeffree
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Emma Suali
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Fong Siew Moy
- Department of Pediatrics, Likas Women's and Children's Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Yap Shook Fe
- Department of Pediatrics, Likas Women's and Children's Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical and Science Therapeutic, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
3
|
McManus M, Frangoul H, Steinberg MH. CRISPR-based gene therapy for the induction of fetal hemoglobin in sickle cell disease. Expert Rev Hematol 2024; 17:957-966. [PMID: 39535263 DOI: 10.1080/17474086.2024.2429605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Sickle cell disease is ameliorated and perhaps can be 'cured' if enough fetal hemoglobin is present in most erythrocytes. Hydroxyurea, which increases fetal hemoglobin levels, is widely available and effective, especially in children. Nevertheless, only cell-based gene therapy can achieve a 'curative' fetal hemoglobin threshold. AREAS COVERED We cover the path to modulating fetal hemoglobin gene expression and the use of CRISPR/Cas9 gene editing as a viable clinical modality for treating severe sickle cell disease relying on references obtained from PubMed. Mobilized autologous hematopoietic stem and progenitor cells are engineered with vectors that derepress genes that regulate fetal hemoglobin gene expression. Following myeloablative conditioning, gene-edited cells are reinfused, engrafted, and make large amounts of fetal hemoglobin. Within months, fetal hemoglobin forms more than 40% of the total hemoglobin and hemoglobin levels normalize; symptoms of sickle cell disease disappear. EXPERT OPINION Optimistically, these patients are 'cured,' but long term follow-up is needed. Although approved by regulatory agencies and highly efficacious, because of its technical imperatives and cost, this first gene editing therapeutic will be unavailable to most people with severe sickle cell disease. It is highly likely that improved methods of genomic editing will simplify gene therapy, reduce its costs, and lead to its wider applicability.
Collapse
Affiliation(s)
- Meghann McManus
- Sarah Cannon Pediatric Hematology/Oncology & Cellular Therapy @TriStar Centennial, Nashville, TN, USA
| | - Haydar Frangoul
- Sarah Cannon Pediatric Hematology/Oncology & Cellular Therapy @TriStar Centennial, Nashville, TN, USA
| | - Martin H Steinberg
- Department of Medicine, Division of Hematology and Medical Oncology, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Stephanou C, Menzel S, Philipsen S, Kountouris P. Genetic Polymorphisms Associated with Fetal Hemoglobin (HbF) Levels and F-Cell Numbers: A Systematic Review of Genome-Wide Association Studies. Int J Mol Sci 2024; 25:11408. [PMID: 39518961 PMCID: PMC11546522 DOI: 10.3390/ijms252111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Elevated fetal hemoglobin (HbF), which is partly controlled by genetic modifiers, ameliorates disease severity in β hemoglobinopathies. Understanding the genetic basis of this trait holds great promise for personalized therapeutic approaches. PubMed, MedRxiv, and the GWAS Catalog were searched up to May 2024 to identify eligible GWAS studies following PRISMA guidelines. Four independent reviewers screened, extracted, and synthesized data using narrative and descriptive methods. Study quality was assessed using a modified version of the Q-Genie tool. Pathway enrichment analysis was conducted on gene lists derived from the selected GWAS studies. Out of 113 initially screened studies, 62 underwent full-text review, and 16 met the inclusion criteria for quality assessment and data synthesis. A total of 939 significant SNP-trait associations (p-value < 1 × 10-5) were identified, mapping to 133 genes (23 with overlapping variant positions) and 103 intergenic sequences. Most SNP-trait associations converged around BCL11A (chr.2), HBS1L-MYB, (chr.6), olfactory receptor and beta globin (HBB) gene clusters (chr.11), with less frequent loci including FHIT (chr.3), ALDH8A1, BACH2, RPS6KA2, SGK1 (chr.6), JAZF1 (chr.7), MMP26 (chr.11), COCH (chr.14), ABCC1 (chr.16), CTC1, PFAS (chr.17), GCDH, KLF1, NFIX, and ZBTB7A (chr.19). Pathway analysis highlighted Gene Ontology (GO) terms and pathways related to olfaction, hemoglobin and haptoglobin binding, and oxygen carrier activity. This systematic review confirms established genetic modifiers of HbF level, while highlighting less frequently associated loci as promising areas for further research. Expanding research across ethnic populations is essential for advancing personalized therapies and enhancing outcomes for individuals with sickle cell disease or β-thalassemia.
Collapse
Affiliation(s)
- Coralea Stephanou
- Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Stephan Menzel
- School of Cancer & Pharmaceutical Sciences, King's College London, London SE5 9NU, UK
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Petros Kountouris
- Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
5
|
Caria CA, Faà V, Porcu S, Marongiu MF, Poddie D, Perseu L, Meloni A, Vaccargiu S, Ristaldi MS. Post-GWAS Validation of Target Genes Associated with HbF and HbA 2 Levels. Cells 2024; 13:1185. [PMID: 39056767 PMCID: PMC11274989 DOI: 10.3390/cells13141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Genome-Wide Association Studies (GWASs) have identified a huge number of variants associated with different traits. However, their validation through in vitro and in vivo studies often lags well behind their identification. For variants associated with traits or diseases of biomedical interest, this gap delays the development of possible therapies. This issue also impacts beta-hemoglobinopathies, such as beta-thalassemia and sickle cell disease (SCD). The definitive cures for these diseases are currently bone marrow transplantation and gene therapy. However, limitations regarding their effective use restrict their worldwide application. Great efforts have been made to identify whether modulators of fetal hemoglobin (HbF) and, to a lesser extent, hemoglobin A2 (HbA2) are possible therapeutic targets. Herein, we performed the post-GWAS in vivo validation of two genes, cyclin D3 (CCND3) and nuclear factor I X (NFIX), previously associated with HbF and HbA2 levels. The absence of Ccnd3 expression in vivo significantly increased g (HbF) and d (HbA2) globin gene expression. Our data suggest that CCND3 is a possible therapeutic target in sickle cell disease. We also confirmed the association of Nfix with γ-globin gene expression and present data suggesting a possible role for Nfix in regulating Kruppel-like transcription factor 1 (Klf1), a master regulator of hemoglobin switching. This study contributes to filling the gap between GWAS variant identification and target validation for beta-hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Serafina Ristaldi
- Istituto di Ricerca Genetica e Biomedica, Cittadella Universitaria di Monserrato, SS 554, Bivio Sestu Km 4,500, 09042 Cagliari, Italy; (C.A.C.); (V.F.); (S.P.); (M.F.M.); (D.P.); (L.P.); (A.M.); (S.V.)
| |
Collapse
|
6
|
Kirkham JK, Estepp JH, Weiss MJ, Rashkin SR. Genetic Variation and Sickle Cell Disease Severity: A Systematic Review and Meta-Analysis. JAMA Netw Open 2023; 6:e2337484. [PMID: 37851445 PMCID: PMC10585422 DOI: 10.1001/jamanetworkopen.2023.37484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
Importance Sickle cell disease (SCD) is a monogenic disorder, yet clinical outcomes are influenced by additional genetic factors. Despite decades of research, the genetics of SCD remain poorly understood. Objective To assess all reported genetic modifiers of SCD, evaluate the design of associated studies, and provide guidelines for future analyses according to modern genetic study recommendations. Data Sources PubMed, Web of Science, and Scopus were searched through May 16, 2023, identifying 5290 publications. Study Selection At least 2 reviewers identified 571 original, peer-reviewed English-language publications reporting genetic modifiers of human SCD phenotypes, wherein the outcome was not treatment response, and the comparison was not between SCD subtypes or including healthy controls. Data Extraction and Synthesis Data relevant to all genetic modifiers of SCD were extracted, evaluated, and presented following STREGA and PRISMA guidelines. Weighted z score meta-analyses and pathway analyses were conducted. Main Outcomes and Measures Outcomes were aggregated into 25 categories, grouped as acute complications, chronic conditions, hematologic parameters or biomarkers, and general or mixed measures of SCD severity. Results The 571 included studies reported on 29 670 unique individuals (50% ≤ 18 years of age) from 43 countries. Of the 17 757 extracted results (4890 significant) in 1552 genes, 3675 results met the study criteria for meta-analysis: reported phenotype and genotype, association size and direction, variability measure, sample size, and statistical test. Only 173 results for 62 associations could be cross-study combined. The remaining associations could not be aggregated because they were only reported once or methods (eg, study design, reporting practice) and genotype or phenotype definitions were insufficiently harmonized. Gene variants regulating fetal hemoglobin and α-thalassemia (important markers for SCD severity) were frequently identified: 19 single-nucleotide variants in BCL11A, HBS1L-MYB, and HBG2 were significantly associated with fetal hemoglobin (absolute value of Z = 4.00 to 20.66; P = 8.63 × 10-95 to 6.19 × 10-5), and α-thalassemia deletions were significantly associated with increased hemoglobin level and reduced risk of albuminuria, abnormal transcranial Doppler velocity, and stroke (absolute value of Z = 3.43 to 5.16; P = 2.42 × 10-7 to 6.00 × 10-4). However, other associations remain unconfirmed. Pathway analyses of significant genes highlighted the importance of cellular adhesion, inflammation, oxidative and toxic stress, and blood vessel regulation in SCD (23 of the top 25 Gene Ontology pathways involve these processes) and suggested future research areas. Conclusions and Relevance The findings of this comprehensive systematic review and meta-analysis of all published genetic modifiers of SCD indicated that implementation of standardized phenotypes, statistical methods, and reporting practices should accelerate discovery and validation of genetic modifiers and development of clinically actionable genetic profiles.
Collapse
Affiliation(s)
- Justin K. Kirkham
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jeremie H. Estepp
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee
- Now with Agios Pharmaceuticals, Cambridge, Massachusetts
| | - Mitch J. Weiss
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara R. Rashkin
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
7
|
Caro-Consuegra R, Lucas-Sánchez M, Comas D, Bosch E. Identifying signatures of positive selection in human populations from North Africa. Sci Rep 2023; 13:8166. [PMID: 37210386 DOI: 10.1038/s41598-023-35312-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Krüppel-Like Factor 1: A Pivotal Gene Regulator in Erythropoiesis. Cells 2022; 11:cells11193069. [PMID: 36231031 PMCID: PMC9561966 DOI: 10.3390/cells11193069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Krüppel-like factor 1 (KLF1) plays a crucial role in erythropoiesis. In-depth studies conducted on mice and humans have highlighted its importance in erythroid lineage commitment, terminal erythropoiesis progression and the switching of globin genes from γ to β. The role of KLF1 in haemoglobin switching is exerted by the direct activation of β-globin gene and by the silencing of γ-globin through activation of BCL11A, an important γ-globin gene repressor. The link between KLF1 and γ-globin silencing identifies this transcription factor as a possible therapeutic target for β-hemoglobinopathies. Moreover, several mutations have been identified in the human genes that are responsible for various benign phenotypes and erythroid disorders. The study of the phenotype associated with each mutation has greatly contributed to the current understanding of the complex role of KLF1 in erythropoiesis. This review will focus on some of the principal functions of KLF1 on erythroid cell commitment and differentiation, spanning from primitive to definitive erythropoiesis. The fundamental role of KLF1 in haemoglobin switching will be also highlighted. Finally, an overview of the principal human mutations and relative phenotypes and disorders will be described.
Collapse
|
9
|
Sales RR, Nogueira BL, Belisário AR, Faria G, Mendes F, Viana MB, Luizon MR. Fetal hemoglobin-boosting haplotypes of BCL11A gene and HBS1L-MYB intergenic region in the prediction of clinical and hematological outcomes in a cohort of children with sickle cell anemia. J Hum Genet 2022; 67:701-709. [PMID: 36167770 DOI: 10.1038/s10038-022-01079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Single nucleotide polymorphisms (SNPs) of BCL11A gene and HBS1L-MYB intergenic region (named HMIP-2) affect both fetal hemoglobin (HbF) concentration and clinical outcomes in patients with sickle cell anemia (SCA). However, no previous study has examined the interaction among these SNPs in the regulation of HbF. We examined whether HbF-boosting haplotypes combining alleles of functional SNPs of BCL11A and HMIP-2 were associated with clinical outcomes and hematological parameters, and whether they interact to regulate HbF in a cohort of Brazilian children with SCA. The minor haplotype of BCL11A ("TCA", an allele combination of rs1427407, rs766432, and rs4671393) was associated with higher HbF, hemoglobin and lower reticulocytes count compared to reference haplotype "GAG". The minor haplotype of HMIP-2 ("CGC", an allele combination of rs9399137, rs4895441, and rs9494145) was associated with higher HbF and hemoglobin compared to reference haplotype "TAT". Subjects carrying minor haplotypes showed reduced rate of clinical complications compared to reference haplotypes. Non-carriers of both minor haplotypes for BCL11A and HMIP-2 showed the lowest HbF concentration. Subjects carrying only the minor haplotype of BCL11A showed significantly higher HbF concentration than non-carriers of any minor haplotype, which showed no significant difference compared to subjects carrying only the minor haplotype of HMIP-2. Interestingly, subjects carrying both minor haplotypes of BCL11A ("TCA") and HMIP-2 ("CGC") showed significantly higher HbF levels than subjects carrying only the minor haplotype of BCL11A. Our novel findings suggest that HbF-boosting haplotypes of BCL11A and HMIP-2 can predict clinical outcomes and may interact to regulate HbF in patients with SCA.
Collapse
Affiliation(s)
- Rahyssa Rodrigues Sales
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bárbara Lisboa Nogueira
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - André Rolim Belisário
- Centro de Tecidos Biológicos de Minas Gerais, Fundação Hemominas, Lagoa Santa, Minas Gerais, 33400-000, Brazil
| | - Gabriela Faria
- Serviço de Pesquisa, Fundação Hemominas, Belo Horizonte, Minas Gerais, 30130-110, Brazil
| | - Fabiola Mendes
- Serviço de Pesquisa, Fundação Hemominas, Belo Horizonte, Minas Gerais, 30130-110, Brazil
| | - Marcos Borato Viana
- Faculdade de Medicina/NUPAD, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Marcelo Rizzatti Luizon
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil. .,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
10
|
Abstract
INTRODUCTION Sickle cell disease and β thalassemia are the principal β hemoglobinopathies. The complex pathophysiology of sickle cell disease is initiated by sickle hemoglobin polymerization. In β thalassemia, insufficient β-globin synthesis results in excessive free α globin, ineffective erythropoiesis and severe anemia. Fetal hemoglobin (HbF) prevents sickle hemoglobin polymerization; in β thalassemia HbF compensates for the deficit of normal hemoglobin. When HbF constitutes about a third of total cell hemoglobin, the complications of sickle cell disease are nearly totally prevented. Similarly, sufficient HbF in β thalassemia diminishes or prevents ineffective erythropoiesis and hemolysis. AREAS COVERED This article examines the pathophysiology of β hemoglobinopathies, the physiology of HbF, intracellular distribution and the regulation of HbF expression. Inducing high levels of HbF by targeting its regulatory pathways pharmacologically or with cell-based therapeutics provides major clinical benefit and perhaps a "cure." EXPERT OPINION Erythrocytes must contain about 10 pg of HbF to "cure" sickle cell disease. If HbF is the only hemoglobin present, much higher levels are needed to "cure" β thalassemia. These levels of HbF can be obtained by different iterations of gene therapy. Small molecule drugs that can achieve even modest pancellular HbF concentrations are a major unmet need.
Collapse
Affiliation(s)
- Martin H Steinberg
- Professor of Medicine, Pediatrics, Pathology and Laboratory Medicine, Boston University School of Medicine.,Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA.,Department of Medicine, Boston University School of Medicine, 72 E. Concord St. Boston, MA 02118. ., Tel
| |
Collapse
|
11
|
Novel histone deacetylase inhibitor CT-101 induces γ-globin gene expression in sickle erythroid progenitors with targeted epigenetic effects. Blood Cells Mol Dis 2022; 93:102626. [PMID: 34856533 PMCID: PMC9733664 DOI: 10.1016/j.bcmd.2021.102626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Induction of fetal hemoglobin (HbF) expression ameliorates the clinical severity and prolong survival in persons with sickle cell disease (SCD). Hydroxyurea (HU) is the only FDA-approved HbF inducer however, additional therapeutics that produce an additive effect in SCD are needed. To this end, development of potent Class I histone deacetylase inhibitors (HDACi) for HbF induction represents a rational molecularly targeted approach. In studies here, we evaluated CT-101, a novel Class I-restricted HDACi, a Largazole derivative, for pharmacodynamics, cytotoxicity, and targeted epigenetic effects. In SCD-derived erythroid progenitors, CT-101 induced HbF expression with additive activity in combination with HU. CT-101 preferentially activated γ-globin gene transcription, increased acetylated histone H3 levels, and conferred an open chromatin conformation in the γ-globin promoter. These data indicate CT-101 represents a strong potential candidate as a molecularly targeted inducer of HbF.
Collapse
|
12
|
Yamsri S, Prommetta S, Srivorakun H, Taweenan W, Sanchaisuriya K, Chaibunruang A, Fucharoen G, Fucharoen S. α 0-thalassemia in affected fetuses with hemoglobin E-β 0-thalassemia disease in a high-risk population in Thailand. Am J Transl Res 2022; 14:1315-1323. [PMID: 35273733 PMCID: PMC8902522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES A co-inheritance of α0-thalassemia can ameliorate the clinical severity of the hemoglobin (Hb) E-β-thalassemia disease. This information should be provided at prenatal diagnosis. Identification of α0-thalassemia in an affected fetus is therefore valuable. We have explored this genetic interaction in a large cohort of affected fetuses with hemoglobin (Hb) E-β-thalassemia in northeast Thailand. METHODS A study was done retrospectively on 1,592 couples at risk of having fetuses with Hb E-β0-thalassemia, encountered from January 2011 to December 2019. A total of 415 left-over DNA specimens of the affected fetuses with Hb E-β0-thalassemia disease were further investigated. Examination of α0-thalassemia was done using gap-PCR or a multiplex PCR assay for simultaneous detection of Hb E and α0-thalassemia mutations. RESULTS Of the 415 affected fetuses, the two most common β0-thalassemia genes found were the codons 41/42 (-TTCT) (199/415; 48.0%) and codon 17 (A-T) (115/415; 27.7%). α0-thalassemia was found unexpectedly in 21 (5.1%) fetuses. Hematologic phenotypes of the parents indicated that it was impossible to differentiate a pure β0-thalassemia carrier from a double β0-thalassemia/α0-thalassemia heterozygote unless DNA analysis is performed. In contrast, a reduced level of Hb E in the Hb E carrier (<25%) is a valuable marker for predicting double heterozygosity for Hb E/α0-thalassemia. This could be further confirmed using a multiplex PCR assay. CONCLUSIONS There is a high prevalence of co-inheritance of α0-thalassemia in fetuses with Hb E-β0-thalassemia disease. In a high-risk population such as Thailand, we recommend screening for α0-thalassemia in all affected fetuses with Hb E-β0-thalassemia disease and providing complete genetic information to the parents to make appropriate decisions at prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Supawadee Yamsri
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| | - Simaporn Prommetta
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| | - Hataichanok Srivorakun
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| | - Wachiraporn Taweenan
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| | - Kanokwan Sanchaisuriya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| | - Attawut Chaibunruang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| | - Goonnapa Fucharoen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| | - Supan Fucharoen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Wu H, Huang Q, Yu Z, Zhong Z. Molecular analysis of alpha- and beta-thalassemia in Meizhou region and comparison of gene mutation spectrum with different regions of southern China. J Clin Lab Anal 2021; 35:e24105. [PMID: 34752669 PMCID: PMC8649333 DOI: 10.1002/jcla.24105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Thalassemia is a group of inherited autosomal recessive hemolytic anemia disease caused by reduced or absent synthesis of globin chain/chains of hemoglobin. Only few studies showed the molecular characterization of α- and β-thalassemia in Meizhou city of China. METHODS A total of 22,401 individuals were collected; hematological and hemoglobin electrophoresis analysis and thalassemia genetic testing were performed. RESULTS Eleven thousand and thirty (49.24%) cases with microcytosis (mean corpuscular volume (MCV) < 82 fl), 11,074 (49.44%) cases with hypochromia (mean corpuscular Hb (MCH) < 27 pg) in 22,401 subjects, 11,085 cases with abnormal hemoglobin results were identified in subjects aged ≥6 months. 7,322 (32.69%) subjects harbored thalassemia mutations, including 4,841 (21.61%) subjects with α-thalassemia, 2,237 (9.99%) with β-thalassemia, and 244 (1.09%) with α-thalassemia combined β-thalassemia. 18 genotypes of α-thalassemia mutations and 27 genotypes of β-thalassemia mutations were characterized. The most frequent α gene mutation was --SEA (64.69%), followed by -α3.7 (19.93%), -α4.2 (7.73%), αCS α (3.97%), and αWS α (2.83%). The six most common β-thalassemia mutations were IVS-II-654 (C>T) (39.79%), CD41-42 (-TCTT) (33.02%), -28 (A>G) (10.38%), CD17 (A>T) (9.08%), CD27-28 (+C) (2.14%), and CD26 (G>A) (2.02%). In addition, MCV and MCH were sensitive markers for α- and β-thalassemia except for -α3.7 /αα, -α4.2 /αα, αCS α/αα, αWS α/αα, and βCap+40-43 /βN . CONCLUSIONS The --SEA , -α3.7 , and -α4.2 deletions were the main mutations of α-thalassemia, while IVS-II-654 (C>T), CD41-42 (-TCTT), -28 (A>G), and CD17 (A>T) mutations of β-thalassemia in Meizhou. There were some differences in thalassemia mutation frequencies in Meizhou city from other populations in China.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision MedicineMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody TherapeuticsMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Qingyan Huang
- Center for Precision MedicineMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody TherapeuticsMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Zhikang Yu
- Center for Precision MedicineMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody TherapeuticsMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| | - Zhixiong Zhong
- Center for Precision MedicineMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody TherapeuticsMeizhou People's Hospital (Huangtang Hospital)Meizhou Academy of Medical SciencesMeizhouChina
| |
Collapse
|
14
|
Long-term safety and efficacy of hydroxyurea in patients with non-transfusion-dependent β-thalassemia: a comprehensive single-center experience. Ann Hematol 2021; 100:2901-2907. [PMID: 34383102 DOI: 10.1007/s00277-021-04627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Over the past 20 years, hydroxyurea (HU) has emerged as an effective therapeutic agent in thalassemic patients to improve anemia and decrease the transfusion dependency. We evaluated long-term safety and clinical response to HU in patients with non-transfusion-dependent β-thalassemia (NTDT). In this retrospective study, medical records of 181 patients with NTDT were evaluated during October to December 2020 in Southern Iran. No requirement to blood transfusion was considered as sustained transfusion independence response. All patients were regularly examined and monitored for the occurrence of any adverse event (AE) of HU. The mean duration of HU consumption ± SD was 18.2 ± 4.0 (8-22) years. Overall, 149 patients (82.3%) had sustained transfusion independence response. β-globin gene mutations and XmnI polymorphisms were not significantly associated with clinical response (P > 0.05). Mild and transient AEs were reported in 60 patients (33%) with no requirement to drug interruption. Hydroxyurea with the dose of 8-15 mg/kg can be used as a safe and effective treatment in NTDT patients. It was well tolerated in long term without any serious complication or secondary malignancy. No relationship between XmnI or β-globin gene mutations with HU response was observed in this geographic area of the world.
Collapse
|
15
|
Pace BS, Perrine S, Li B, Makala L, Xu H, Takezaki M, Wolf RF, Wang A, Xu X, Huang J, Alimardanov A, Tawa GJ, Sangerman J, Faller A, Zheng W, Toney L, Haugabook SJ. Benserazide racemate and enantiomers induce fetal globin gene expression in vivo: Studies to guide clinical development for beta thalassemia and sickle cell disease. Blood Cells Mol Dis 2021; 89:102561. [PMID: 33744514 PMCID: PMC8409227 DOI: 10.1016/j.bcmd.2021.102561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Increased expression of developmentally silenced fetal globin (HBG) reduces the clinical severity of β-hemoglobinopathies. Benserazide has a relatively benign safety profile having been approved for 50 years in Europe and Canada for Parkinson's disease treatment. Benserazide was shown to activate HBG gene transcription in a high throughput screen, and subsequent studies confirmed fetal hemoglobin (HbF) induction in erythroid progenitors from hemoglobinopathy patients, transgenic mice containing the entire human β-globin gene (β-YAC) and anemic baboons. The goal of this study is to evaluate efficacies and plasma exposure profiles of benserazide racemate and its enantiomers to select the chemical form for clinical development. Intermittent treatment with all forms of benserazide in β-YAC mice significantly increased proportions of red blood cells expressing HbF and HbF protein per cell with similar pharmacokinetic profiles and with no cytopenia. These data contribute to the regulatory justification for development of the benserazide racemate. Additionally, dose ranges and frequencies required for HbF induction using racemic benserazide were explored. Orally administered escalating doses of benserazide in an anemic baboon induced γ-globin mRNA up to 13-fold and establish an intermittent dose regimen for clinical studies as a therapeutic candidate for potential treatment of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Susan Perrine
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Levi Makala
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Roman F Wolf
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy Wang
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junfeng Huang
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asaf Alimardanov
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory J Tawa
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jose Sangerman
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aidan Faller
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wei Zheng
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - London Toney
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharie J Haugabook
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Wessels MW, Cnossen MH, van Dijk TB, Gillemans N, Schmidt KLJ, van Lom K, Vinjamur DS, Coyne S, Kurita R, Nakamura Y, de Man SA, Pfundt R, Azmani Z, Brouwer RWW, Bauer DE, van den Hout MCGN, van IJcken WFJ, Philipsen S. Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency. Blood Adv 2021; 5:2339-2349. [PMID: 33938942 PMCID: PMC8114548 DOI: 10.1182/bloodadvances.2020003753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
The BCL11A gene encodes a transcriptional repressor with essential functions in multiple tissues during human development. Haploinsufficiency for BCL11A causes Dias-Logan syndrome (OMIM 617101), an intellectual developmental disorder with hereditary persistence of fetal hemoglobin (HPFH). Due to the severe phenotype, disease-causing variants in BCL11A occur de novo. We describe a patient with a de novo heterozygous variant, c.1453G>T, in the BCL11A gene, resulting in truncation of the BCL11A-XL protein (p.Glu485X). The truncated protein lacks the 3 C-terminal DNA-binding zinc fingers and the nuclear localization signal, rendering it inactive. The patient displayed high fetal hemoglobin (HbF) levels (12.1-18.7% of total hemoglobin), in contrast to the parents who had HbF levels of 0.3%. We used cultures of patient-derived erythroid progenitors to determine changes in gene expression and chromatin accessibility. In addition, we investigated DNA methylation of the promoters of the γ-globin genes HBG1 and HBG2. HUDEP1 and HUDEP2 cells were used as models for fetal and adult human erythropoiesis, respectively. Similar to HUDEP1 cells, the patient's cells displayed Assay for Transposase-Accessible Chromatin (ATAC) peaks at the HBG1/2 promoters and significant expression of HBG1/2 genes. In contrast, HBG1/2 promoter methylation and genome-wide gene expression profiling were consistent with normal adult erythropoiesis. We conclude that HPFH is the major erythroid phenotype of constitutive BCL11A haploinsufficiency. Given the essential functions of BCL11A in other hematopoietic lineages and the neuronal system, erythroid-specific targeting of the BCL11A gene has been proposed for reactivation of γ-globin expression in β-hemoglobinopathy patients. Our data strongly support this approach.
Collapse
Affiliation(s)
| | - Marjon H Cnossen
- Department of Pediatric Hematology
- Academic Center for Hemoglobinopathies and Rare Anemias
| | - Thamar B van Dijk
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| | - Nynke Gillemans
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| | - K L Juliëtte Schmidt
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| | - Kirsten van Lom
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Department of Pediatric Oncology, Boston Children's Hospital, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Broad Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Steven Coyne
- Division of Hematology/Oncology, Department of Pediatric Oncology, Boston Children's Hospital, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Broad Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN, BioResource Center, Tsukuba, Japan
| | - Stella A de Man
- Department of Pediatrics, Amphia Hospital, Breda, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Zakia Azmani
- Department of Cell Biology, and
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - Rutger W W Brouwer
- Department of Cell Biology, and
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - Daniel E Bauer
- Division of Hematology/Oncology, Department of Pediatric Oncology, Boston Children's Hospital, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Broad Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | | | - Wilfred F J van IJcken
- Department of Cell Biology, and
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - Sjaak Philipsen
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| |
Collapse
|
17
|
Trienone analogs of curcuminoids induce fetal hemoglobin synthesis via demethylation at Gγ-globin gene promoter. Sci Rep 2021; 11:8552. [PMID: 33879818 PMCID: PMC8058333 DOI: 10.1038/s41598-021-87738-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
The reactivation of γ-globin chain synthesis to combine with excess free α-globin chains and form fetal hemoglobin (HbF) is an important alternative treatment for β-thalassemia. We had reported HbF induction property of natural curcuminoids, curcumin (Cur), demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC), in erythroid progenitors. Herein, the HbF induction property of trienone analogs of the three curcuminoids in erythroleukemic K562 cell lines and primary human erythroid progenitor cells from β-thalassemia/HbE patients was examined. All three trienone analogs could induce HbF synthesis. The most potent HbF inducer in K562 cells was trienone analog of BDMC (T-BDMC) with 2.4 ± 0.2 fold increase. In addition, DNA methylation at CpG − 53, − 50 and + 6 of Gγ-globin gene promoter in K562 cells treated with the compounds including T-BDMC (9.3 ± 1.7%, 7.3 ± 1.7% and 5.3 ± 0.5%, respectively) was significantly lower than those obtained from the control cells (30.7 ± 3.8%, 25.0 ± 2.9% and 7.7 ± 0.9%, respectively P < 0.05). The trienone compounds also significantly induced HbF synthesis in β-thalassemia/HbE erythroid progenitor cells with significantly reduction in DNA methylation at CpG + 6 of Gγ-globin gene promoter. These results suggested that the curcuminoids and their three trienone analogs induced HbF synthesis by decreased DNA methylation at Gγ-globin promoter region, without effect on Aγ-globin promoter region.
Collapse
|
18
|
Adekile A. The Genetic and Clinical Significance of Fetal Hemoglobin Expression in Sickle Cell Disease. Med Princ Pract 2021; 30:201-211. [PMID: 32892201 PMCID: PMC8280415 DOI: 10.1159/000511342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) is phenotypically heterogeneous. One major genetic modifying factor is the patient's fetal hemoglobin (HbF) level. The latter is determined by the patient's β-globin gene cluster haplotype and cis- and trans-acting single nucleotide polymorphisms (SNPs) at other distant quantitative trait loci (QTL). The Arab/India haplotype is associated with persistently high HbF levels and also a relatively mild phenotype. This haplotype carries the Xmn1 (C/T) SNP, rs7482144, in the HBG2 locus. The major identified trans-acting QTL contain SNPs residing in the BCL11A on chromosome 2 and the HMIP locus on chromosome 6. These collectively account for 15-30% of HbF expression in different world populations and in patients with SCD or β-thalassemia. Patients with SCD in Kuwait and Eastern Saudi Arabia uniformly carry the Arab/India haplotype, but despite this, the HbF and clinical phenotypes show considerable heterogeneity. Pain episodes and avascular necrosis of the femoral head are particularly common, but severe bacterial infections, stroke, priapism, and leg ulcers are uncommon. Moreover, the HbF modifiers appear to be different; the reported BCL11A and HMIP SNPs appear to play insignificant roles. There are probably novel modifiers to be discovered in this population. This review examines the common clinical phenotypes in Kuwaiti patients with elevated HbF and the available information on HbF modifiers. The response of the patients to hydroxyurea is discussed. The presentation of patients with other sickle compound heterozygotes (Sβthal and HbSD), vis-à-vis their HbF levels, is also addressed critically.
Collapse
Affiliation(s)
- Adekunle Adekile
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,
| |
Collapse
|
19
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
20
|
Qadah T, Noorwali A, Alzahrani F, Banjar A, Filimban N, Felimban R. Detection of BCL11A and HBS1L-MYB Genotypes in Sickle Cell Anemia. Indian J Hematol Blood Transfus 2020; 36:705-710. [PMID: 33100714 DOI: 10.1007/s12288-020-01270-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/22/2020] [Indexed: 11/25/2022] Open
Abstract
Sickle Cell Anemia (SCA) is one of the most common monogenic disorders worldwide. Molecular modifiers of clinical symptoms play an essential role in the amelioration of the effects of the disease. Single Nucleotide Polymorphisms (SNPs) of the BCL11A gene and within the HBS1L-MYB intergenic region, which are located outside the β-globin locus on chromosome 11, are considered to be genetic modifiers that are associated with elevated levels of foetal haemoglobin HbF, and thus they reduce the clinical impact of sickle haemoglobin, HbS. The work reported here aimed to detect the most common SNPs of BCL11A and HBS1L-MYB related to HbF in SCA patients and to estimate the frequency of occurrence of these genotypes. A total of 132 SCA patients whose condition was stable were recruited from Jeddah city, Saudi Arabia. SNPs at site locus rs4671393 on BCL11A, and at loci rs28384513 and rs9399137 on HBS1L-MYB were identified using TaqMan genotyping assay. Haematological parameters were analysed based on complete blood count and haemoglobin separation using the capillary electrophoresis technique. Highly significant differences in the diagnostic haematological parameters, including all blood-cell types and HbF, were observed between the study cohort and control groups. We also found that BCL11A rs4671393 genotypes of GG and AG were more likely to show increases in HbF levels than other genotypes. In addition, a strong relationship was found between HBS1L-MYB rs9399137 and rs28384513 genotypes in the cohort, whereas no significant association was observed between BCL11A rs4671393 variant and other variants. Our study highlights the importance of investigating genetic determinants that play roles in the amelioration of the severity of clinical symptoms and complications of SCA.
Collapse
Affiliation(s)
- Talal Qadah
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box: 80324, Jeddah, 21589 Saudi Arabia
| | - Abdulwahab Noorwali
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma Alzahrani
- Department of Pediatrics, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Alaa Banjar
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box: 80324, Jeddah, 21589 Saudi Arabia
| | - Najlaa Filimban
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Felimban
- Regenerative Medicine Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box: 80324, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
21
|
Barbanera Y, Arcioni F, Lancioni H, La Starza R, Cardinali I, Matteucci C, Nofrini V, Roetto A, Piga A, Grammatico P, Caniglia M, Mecucci C, Gorello P. Comprehensive analysis of mitochondrial and nuclear DNA variations in patients affected by hemoglobinopathies: A pilot study. PLoS One 2020; 15:e0240632. [PMID: 33091040 PMCID: PMC7581000 DOI: 10.1371/journal.pone.0240632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
The hemoglobin disorders are the most common single gene disorders in the world. Previous studies have suggested that they are deeply geographically structured and a variety of genetic determinants influences different clinical phenotypes between patients inheriting identical β-globin gene mutations. In order to get new insights into the heterogeneity of hemoglobin disorders, we investigated the molecular variations on nuclear genes (i.e. HBB, HBG2, BCL11A, HBS1L and MYB) and mitochondrial DNA control region. This pilot study was carried out on 53 patients belonging to different continents and molecularly classified in 4 subgroup: β-thalassemia (β+/β+, β0/β0 and β+/β0)(15), sickle cell disease (HbS/HbS)(20), sickle cell/β-thalassemia (HbS/β+ or HBS/β0)(10), and non-thalassemic compound heterozygous (HbS/HbC, HbO-Arab/HbC)(8). This comprehensive phylogenetic analysis provided a clear separation between African and European patients either in nuclear or mitochondrial variations. Notably, informing on the phylogeographic structure of affected individuals, this accurate genetic stratification, could help to optimize the diagnostic algorithm for patients with uncertain or unknown origin.
Collapse
Affiliation(s)
- Ylenia Barbanera
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Francesco Arcioni
- Pediatric Oncohematology, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Caterina Matteucci
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Valeria Nofrini
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Turin, Hospital San Luigi Gonzaga, Turin, Italy
| | - Antonio Piga
- Department of Clinical and Biological Sciences, University of Turin, Hospital San Luigi Gonzaga, Turin, Italy
| | - Paola Grammatico
- Department of Molecular Medicine, Laboratory of Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Maurizio Caniglia
- Pediatric Oncohematology, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Cristina Mecucci
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Department of Medicine, Hematology, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
22
|
El-Ghamrawy M, Yassa ME, Tousson AMS, El-Hady MA, Mikhaeil E, Mohamed NB, Khorshied MM. Association between BCL11A, HSB1L-MYB, and XmnI γG-158 (C/T) gene polymorphism and hemoglobin F level in Egyptian sickle cell disease patients. Ann Hematol 2020; 99:2279-2288. [PMID: 32772141 DOI: 10.1007/s00277-020-04187-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023]
Abstract
Sickle cell disease (SCD) is a monogenic disease characterized by multisystem morbidity and highly variable clinical course. Inter-individual variability in hemoglobin F (HbF) levels is one of the main modifiers that account for the clinical heterogeneity in SCD. HbF levels are affected by, among other factors, single nucleotide polymorphisms (SNPs) at the BCL11A gene and the HBS1L-MYB intergenic region and Xmn1 gene. Our aim was to investigate HbF-enhancer haplotypes at these loci to obtain a first overview of the genetic situation of SCD patients in Egypt and its impact on the severity of the disease. The study included 100 SCD patients and 100 matched controls. Genotyping of BCL11A (rs1886868 C/T), HBS1L-MYB (rs9389268 A/G) and Xmn1 γG158 (rs7842144 C/T) SNPs showed no statistically significant difference between SCD patients and controls except for the hetero-mutant genotypes of BCL11A which was significantly higher in SCD patients compared with controls. Baseline HbF levels were significantly higher in those with co-inheritance of polymorphic genotypes of BCL11A + HSB1L-MYB and BCL11A + Xmn1. Steady-state HbF levels, used as an indicator of disease severity, were significantly higher in SCD-Sβ patients having the polymorphic genotypes of HSB1L-MYB. Fold change of HbF in both patient groups did not differ between those harboring the wild and the polymorphic genotypes of the studied SNPs. In conclusion, BCL11A, HSB1L, and Xmn1 genetic polymorphisms had no positive impact on baseline HbF levels solely but had if coexisted. Discovery of the molecular mechanisms controlling HbF production could provide a more effective strategy for HbF induction.
Collapse
Affiliation(s)
- Mona El-Ghamrawy
- Pediatric Department, Pediatric Hematology & BMT Unit, Kasr Al-Ainy School of Medicine, Cairo University, Kasr Al-Ainy St, Cairo, 11562, Egypt
| | - Marianne E Yassa
- Clinical and Chemical Pathology Department, KasrAl-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Angie M S Tousson
- Pediatric Department, KasrAl-Ainy Faculty of Medicine, Cairo University, Kasr Al-Ainy St, Cairo, 11562, Egypt
| | - Marwa Abd El-Hady
- Pediatric Department, KasrAl-Ainy Faculty of Medicine, Cairo University, Kasr Al-Ainy St, Cairo, 11562, Egypt
| | - Erini Mikhaeil
- Pediatric and Neonatology, Ministry of Health, Cairo, Egypt
| | - Nada B Mohamed
- Misr University for Science and Technology, 6th of October City, Egypt
| | - Mervat Mamdooh Khorshied
- Clinical and Chemical Pathology Department, KasrAl-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
Abstract
OBJECTIVES The 5' upstream region of the HBG1 gene plays a very important role in the expression of fetal hemoglobin (HbF). In contrast, increased HbF levels can inhibit the deoxygenation-induced polymerization of sickle hemoglobin (α2βS2), which leads to moderation at the clinical level among sickle cell disease (SCD) patients. Thus, we focused on this article on the study of the 5' upstream region of HBG1 among SCD pediatric patients with high levels of HbF. MATERIALS AND METHODS Fifteen SCD pediatric patients were chosen during the first time of diagnosis, and the HbF values were determined before hydoxyurea treatment. The ages at entry ranged from 1 to 8 years. The mutational screening of the 5' upstream region of the HBG1, which extends to -587 bp, was performed by polymerase chain reaction/sequencing. RESULTS HbF values range from 6.9% to 26%. Sequencing results showed the presence of 6 known polymorphisms, which are as follows: RS35993903, RS34844625, RS3020750, RS2860456, RS2860470, and RS12290216. Interestingly, we also found a new deletion of GCAG in the HBG1 promoter at position -273. CONCLUSIONS We described a new mutation, which is a deletion of GCAG in the HBG1 promoter at position -273. This deletion could affect a binding site of a transcription factor unknown so far and thus modulate the expression of the HBG1 gene.
Collapse
|
24
|
Khongthai K, Ruengdit C, Panyasai S, Pornprasert S. Analysis of Deletional Hb H Diseases in Samples with Hb A2-Hb H and Hb A2-Hb Bart’s on Capillary Electrophoresis. Hemoglobin 2019; 43:245-248. [DOI: 10.1080/03630269.2019.1683573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kunyakan Khongthai
- Laboratory Department, Chiang Mai Health Promoting Hospital, Chiang Mai, Thailand
| | - Chedtapak Ruengdit
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Sakorn Pornprasert
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Taghavi SA, Hosseini KM, Tamaddon G, Kasraian L. Inhibition of γ/β Globin Gene Switching in CD 34 + Derived Erythroid Cells by BCL11A RNA Silencing. Indian J Hematol Blood Transfus 2019; 35:758-764. [PMID: 31741633 PMCID: PMC6825069 DOI: 10.1007/s12288-019-01131-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/29/2019] [Indexed: 10/26/2022] Open
Abstract
The induction of fetal haemoglobin (Hb F), due to the sustained clinical effects, is one of the most promising methods for the treatment of β hemoglobinopathies, such as thalassemia major and sickle cell disease (SCD). Inhibition of γ-globin gene silencing, possibly is a suitable strategy to induce HbF expression in these patients. In this study, the possibility of increasing HbF in the CD34+ derived erythroid cells was investigated by BCL11A inhibition using specific small-interfering RNAs (siRNAs). Human peripheral blood-derived hematopoietic stem cells were isolated and differentiated to erythroid cells. Erythroid maturation was investigated using cell morphology parameters and flow cytometry analysis of CD235a expression On day 20, siRNA complementary to BCL11A was transfected to differentiating cells via electroporation. BCL11A expression was evaluated through real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme linked immunosorbant assay (ELISA). β actin was used as the reference gene to confirm the relative expression level of BCL11A gene mRNA. 48 hours after transfection, BCL11A siRNA significantly reduced BCL11A mRNA levels and consequently led to 2.0 fold decrease in corresponding protein. On the 28th day, haemoglobin electrophoresis results showed that Hb F levels in transfected erythroid cells increased 3.3-fold when compared with non transfected cells. In this study we showed that BCL11A inhibition in erythroid cells could increase fetal hemoglobin, and this strategy can be the basis for designing a γ globin expressing cellular system to increase Hb F in patients with thalassemia and SCD.
Collapse
Affiliation(s)
- Seyyed Asadallah Taghavi
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Kamran Mousavi Hosseini
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| | - Gholamhossein Tamaddon
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Kasraian
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Tehran, Iran
| |
Collapse
|
26
|
Abstract
Fetal haemoglobin (HbF) levels have a clinically beneficial effect on sickle cell disease (SCD). Patients with SCD demonstrate extreme variability in HbF levels (1-30%), a large part of which is likely genetically determined. The main genetic modifier loci for HbF persistence, HBS1L-MYB, BCL11A and the β-globin gene cluster in adults also act in SCD patients. Their effects are, however, modified significantly by a disease pathology that includes a drastically shortened erythrocyte lifespan with an enhanced survival of those red blood cells that carry HbF (F cells). We propose a model of how HbF modifier genes and disease pathology interact to shape HbF levels measured in patients. We review current knowledge on the action of these loci in SCD, their genetic architecture, and their putative functional components. At each locus, one strong candidate for a causative, functional DNA change has been proposed: Xmn1-HBG2 at the β-globin cluster, rs1427407 at BCL11A and the 3 bp deletion rs66650371 at HBS1L-MYB. These, however, explain only part of the impact of these loci and additional variants are yet to be identified. Further progress in understanding the genetic control of HbF levels requires that confounding factors inherent in SCD, such as ethnic complexity, the role of F cells and the influence of drugs, are suitably addressed. This will depend on international collaboration and on large, well-characterised patient cohorts with genome-wide single-nucleotide polymorphism or sequence data.
Collapse
Affiliation(s)
- Stephan Menzel
- School of Cancer and Pharmaceutical Sciences, King's College London, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK.
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung and Blood Institute, The National Institutes of Health, Building 10, Room 5-5142, 10 Center Drive, Bethesda, MD, 20814, USA.
| |
Collapse
|
27
|
Barrera-Reyes PK, Tejero ME. Genetic variation influencing hemoglobin levels and risk for anemia across populations. Ann N Y Acad Sci 2019; 1450:32-46. [PMID: 31385320 DOI: 10.1111/nyas.14200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Hemoglobin (Hb) concentration is the outcome of the interaction between genetic variation and environmental factors, including nutritional status, sex, age, and altitude. Genetic diversity influencing this protein is complex and varies widely across populations. Variants related to abnormal Hb or altered characteristics of the erythrocytes increase the risk for anemia. The most prevalent are related to the inherited globin abnormalities affecting Hb production and structure. Malaria-endemic regions harbor the highest frequencies of variants associated with the most frequent monogenic diseases and the risk for nonnutritional anemia and are considered as public health problems. Variation in genes encoding for enzymes and membrane proteins in red blood cells also influence erythrocyte life span and risk for anemia. Most of these variants are rare. Interindividual variability of hematological parameters is also influenced by common genetic variation across the whole genome. Some of the identified variants are associated with Hb production, erythropoiesis, and iron metabolism. Specialized databases have been developed to organize and update the large body of available information on genetic variation related to Hb variation, their frequency, geographical distribution, and clinical significance. Our present review analyzed the underlying genetic factors that affect Hb concentrations, their clinical relevance, and geographical distribution across populations.
Collapse
Affiliation(s)
- Paloma K Barrera-Reyes
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Ciudad de, México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de, México, Mexico
| | - M Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Ciudad de, México, Mexico
| |
Collapse
|
28
|
Molecular Analysis of Non-Transfusion Dependent Thalassemia Associated with Hemoglobin E-β-Thalassemia Disease without α-Thalassemia. Mediterr J Hematol Infect Dis 2019; 11:e2019038. [PMID: 31308914 PMCID: PMC6613625 DOI: 10.4084/mjhid.2019.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
Background The finding of many Thai Hb E-β0-thalassemia patients with non-transfusion dependent thalassemia (NTDT) phenotype without co-inheritance of α-thalassemia has prompted us to investigate the existence of other genetic modifying factors. Methods Study was done on 122 adult Thai patients with NTDT Hb E-β-thalassemia patients without co-inheritance of α-thalassemia. Multiple single-nucleotide polymorphisms (SNPs) associated with γ-globin gene expression including the Gγ-XmnI of HBG2 gene, rs2297339, rs4895441, and rs9399137 of the HBS1L-MYB gene, rs4671393 in the BCL11A gene, and G176AfsX179, T334R, R238H and −154 (C-T) in the KLF1 gene were investigated using PCR and related techniques. Results Heterozygous and homozygous for Gγ-XmnI of HBG2 gene were detected at 70.5% and 7.4%, respectively. Further DNA analysis identified the rs2297339 (C-T), rs4895441 (A-G), and rs9399137 (T-C) of HBS1L-MYB gene in 86.9%, 25.4%, and 23.0%, respectively. The rs4671393 (G-A) of the BCL11A gene was found at 31.2%. For the KLF1 gene, only T334R was detected at 9.0%. Conclusions It was found that these SNPs, when analyzed in combination, could explain the mild phenotypic expression of all cases. These results underline the importance of these informative SNPs on phenotypic expression of Hb E-β-thalassemia patients.
Collapse
|
29
|
Abdulazeez S. Molecular simulation studies on B-cell lymphoma/leukaemia 11A (BCL11A). Am J Transl Res 2019; 11:3689-3697. [PMID: 31312380 PMCID: PMC6614651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
B-cell lymphoma/leukaemia 11A (BCL11A) is a modulator of foetal-to-adult globin switching and is involved in brain development and normal lymphopoiesis. The three-dimensional structure of BCL11A and its structural domains had not yet been completely determined; hence, this study aimed to elucidate the structural domains of BCL11A. Molecular modelling and dynamics simulation studies were conducted using in silico tools with the templates selected based on Basic Local Alignment Search Tool (BLAST) searches of the Protein Data Bank (PDB). Ten protein models were generated using the MODELLER software, and the best model was selected according to the Discrete Optimised Protein Energy (DOPE) score and validated using the RAMPAGE server by evaluation of the Ramachandran plot. More than 93% of the amino acid residues of the best model of BCL11A were found to be in the favoured and allowed regions. The best model was validated using a 100-ns time span molecular dynamics simulation. The root-mean-square deviation, root-mean-square fluctuation, and radius of gyration values were found to explain the stability of the best BCL11A protein molecular model generated in the study. The validated best model of the BCL11A protein may be useful for effective modulator studies on foetal-to-adult globin switching and related research.
Collapse
Affiliation(s)
- Sayed Abdulazeez
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University Dammam, Saudi Arabia
| |
Collapse
|
30
|
The rs61742690 (S783N) single nucleotide polymorphism is a suitable target for disrupting BCL11A-mediated foetal-to-adult globin switching. PLoS One 2019; 14:e0212492. [PMID: 30768627 PMCID: PMC6377191 DOI: 10.1371/journal.pone.0212492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/04/2019] [Indexed: 11/29/2022] Open
Abstract
Background B-cell lymphoma/leukaemia 11A (BCL11A) is a C2H2-type zinc-finger transcription factor protein that is a critical modulator of haemoglobin switching and suppresses the production of foetal haemoglobin. Variation in the BCL11A gene ameliorates the severity of sickle cell disease (SCD) and β-thalassemia (β-thal). The BCL11A gene is located on chromosome 2p16.1 and encodes an 835-amino acid protein. Method Using state-of-the-art in silico tools, this study examined the most pathogenic non-synonymous single nucleotide polymorphisms (nsSNPs) that disrupt the BCL11A protein and mediate foetal-to-adult globin switching. A total of 11,463 SNPs were retrieved from the Single Nucleotide Polymorphism database (dbSNP). These included 799 in the 5′ untranslated region (UTR), 486 in the 3′ UTR, and 266 non-synonymous, 189 coding synonymous, six nonsense, and six stop-gained SNPs. Results and discussion In silico tools (SIFT, SNAP, PolyPhen-2, PANTHER, I-Mutant, PROVEAN, SNPs&GO, mCSM, and PhD-SNP) predicted the five most-deleterious nsSNPs: rs61742690, rs62142605, rs17028351, rs115666026, and rs74987258. Molecular dynamic simulation and homology modelling of the mutated proteins (S783N, D643N, G451S, K670R, and M313L) of the most deleterious nsSNPs revealed their functional and structural impact. nsSNP rs61742690 was predicted to be the most deleterious, as supported by eight of the nine in silico tools. Conclusions Complete failure in the protein–protein interactions with functional partners (KLF1 and others) and significant changes (±100% variation) in the interface energy revealed that rs61742690 (S783N) in the zinc-finger domain is a suitable target for disrupting BCL11A-mediated foetal-to-adult globin switching.
Collapse
|
31
|
Adeyemo TA, Ojewunmi OO, Oyetunji IA, Rooks H, Rees DC, Akinsulie AO, Akanmu AS, Thein SL, Menzel S. A survey of genetic fetal-haemoglobin modifiers in Nigerian patients with sickle cell anaemia. PLoS One 2018; 13:e0197927. [PMID: 29879141 PMCID: PMC5991720 DOI: 10.1371/journal.pone.0197927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Genetic variants at three quantitative trait loci (QTL) for fetal haemoglobin (HbF), BCL11A, HBS1L-MYB and the β-globin gene cluster, have attracted interest as potential targets of therapeutic strategies for HbF reactivation in sickle cell anaemia (SCA). We carried out the first systematic evaluation of critical single nucleotide polymorphisms at these disease modifier loci in Nigerian patients with SCA. Common variants for BCL11A and HBS1L-MYB were strongly associated with HbF levels. At both loci, secondary association signals were detected, illustrating the mapping resolution attainable in this population. For BCL11A, the two independent sites of association were represented by rs1427407 (primary site, p = 7.0 x 10(-10)) and rs6545816 (secondary site, conditioned on rs1427407: p = 0.02) and for HBS1L-MYB by rs9402686 (HMIP-2B, p = 1.23 x 10(-4)) and rs66650371 (HMIP-2A, p = 0.002). Haplotype analysis revealed similarities in the genetic architecture of BCL11A and HBS1L-MYB in Nigerian patients. Variants at both loci also alleviated anaemia. The variant allele for the γ globin gene promoter polymorphism XmnI-HBG2 was too infrequent in our patients to be evaluated in this relatively small study. Studying the large and diverse SCA patient populations in African countries such as Nigeria will be key for a clearer understanding of how these loci work and for the discovery of new disease modifier genes.
Collapse
Affiliation(s)
- Titilope A. Adeyemo
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Idi-araba, Lagos, Nigeria
- * E-mail: (TAA); (SM)
| | | | | | - Helen Rooks
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - David C. Rees
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- King's College Hospital, Paediatric Haematology, London, United Kingdom
| | - Adebola O. Akinsulie
- Department of Paediatrics, College of Medicine, University of Lagos, Idi-araba, Lagos, Nigeria
| | - Alani S. Akanmu
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Idi-araba, Lagos, Nigeria
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, MD, United States of America
| | - Stephan Menzel
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- * E-mail: (TAA); (SM)
| |
Collapse
|
32
|
A Mild Phenotype of Severe β+ Thalassemia in a 16-Month-Old Boy. J Pediatr Hematol Oncol 2018; 40:e145-e147. [PMID: 29309373 DOI: 10.1097/mph.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
β thalassemia is characterized by a deficient production of functional β-globin chains and a relative excess of α-globin chains. An extremely diverse clinical spectrum-asymptomatic to transfusion-dependent-is primarily due to homozygosity or compound heterozygosity for the very large number of β-thalassemia-causing mutations, along with interacting mutations that affect the α-globin and γ-globin genes and their expression. We report a case of a 16-month-old boy who was initially diagnosed with iron deficiency anemia until he was later found to be homozygous for a severe β-thalassemia genotype with a mild hematologic phenotype. This was likely as a result of his ability to produce high levels of fetal hemoglobin.
Collapse
|
33
|
Kesornsit A, Jeenduang N, Horpet D, Plyduang T, Nuinoon M. Quantitative Trait Loci Influencing Hb F Levels in Southern Thai Hb E (HBB: c.79G>A) Heterozygotes. Hemoglobin 2018; 42:23-29. [DOI: 10.1080/03630269.2018.1429281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aumpika Kesornsit
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nutjaree Jeenduang
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Dararat Horpet
- The Centre for Scientific and Technological Equipments, Walailak University, Nakhon Si Thammarat, Thailand
| | - Thunyaluk Plyduang
- The Centre for Scientific and Technological Equipments, Walailak University, Nakhon Si Thammarat, Thailand
| | - Manit Nuinoon
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
34
|
The effect of histone deacetylase inhibitors on AHSP expression. PLoS One 2018; 13:e0189267. [PMID: 29389946 PMCID: PMC5794076 DOI: 10.1371/journal.pone.0189267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 11/03/2017] [Indexed: 11/25/2022] Open
Abstract
Alpha-hemoglobin stabilizing protein (AHSP) is a molecular chaperone that can reduce the damage caused by excess free α-globin to erythroid cells in patients with impaired β-globin chain synthesis. We assessed the effect of sodium phenylbutyrate and sodium valproate, two histone deacetylase inhibitors (HDIs) that are being studied for the treatment of hemoglobinopathies, on the expression of AHSP, BCL11A (all isoforms), γ-globin genes (HBG1/2), and some related transcription factors including GATA1, NFE2, EKLF, KLF4, and STAT3. For this purpose, the K562 cell line was cultured for 2, 4, and 6 days in the presence and absence of sodium phenylbutyrate and sodium valproate. Relative real-time qRT-PCR analysis of mRNA levels was performed to determine the effects of the two compounds on gene expression. Expression of all target mRNAs increased significantly (p < 0.05), except for the expression of BCL11A, which was down-regulated (p < 0.05) in the cells treated with both compounds relative to the levels measured for untreated cells. The findings indicated that sodium valproate had a more considerable effect than sodium phenylbutyrate (p < 0.0005) on BCL11A repression and the up-regulation of other studied genes. γ-Globin and AHSP gene expression continuously increased during the culture period in the treated cells, with the highest gene expression observed for 1 mM sodium valproate after 6 days. Both compounds repressed the expression of BCL11A (-XL, -L, -S) and up-regulated GATA1, NFE2, EKLF, KLF4, STAT3, AHSP, and γ-globin genes expression. Moreover, sodium valproate showed a stronger effect on repressing BCL11A and escalating the expression of other target genes. The findings of this in vitro experiment could be considered in selecting drugs for clinical use in patients with β-hemoglobinopathies.
Collapse
|
35
|
Chapin J, Giardina PJ. Thalassemia Syndromes. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
36
|
Antoniani C, Romano O, Miccio A. Concise Review: Epigenetic Regulation of Hematopoiesis: Biological Insights and Therapeutic Applications. Stem Cells Transl Med 2017; 6:2106-2114. [PMID: 29080249 PMCID: PMC5702521 DOI: 10.1002/sctm.17-0192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
Hematopoiesis is the process of blood cell formation starting from hematopoietic stem/progenitor cells (HSPCs). The understanding of regulatory networks involved in hematopoiesis and their impact on gene expression is crucial to decipher the molecular mechanisms that control hematopoietic development in physiological and pathological conditions, and to develop novel therapeutic strategies. An increasing number of epigenetic studies aim at defining, on a genome‐wide scale, the cis‐regulatory sequences (e.g., promoters and enhancers) used by human HSPCs and their lineage‐restricted progeny at different stages of development. In parallel, human genetic studies allowed the discovery of genetic variants mapping to cis‐regulatory elements and associated with hematological phenotypes and diseases. Here, we summarize recent epigenetic and genetic studies in hematopoietic cells that give insights into human hematopoiesis and provide a knowledge basis for the development of novel therapeutic approaches. As an example, we discuss the therapeutic approaches targeting cis‐regulatory regions to reactivate fetal hemoglobin for the treatment of β‐hemoglobinopathies. Epigenetic studies allowed the definition of cis‐regulatory sequences used by human hematopoietic cells. Promoters and enhancers are targeted by transcription factors and are characterized by specific histone modifications. Genetic variants mapping to cis‐regulatory elements are often associated with hematological phenotypes and diseases. In some cases, these variants can alter the binding of transcription factors, thus changing the expression of the target genes. Targeting cis‐regulatory sequences represents a promising therapeutic approach for many hematological diseases. Stem Cells Translational Medicine2017;6:2106–2114
Collapse
Affiliation(s)
- Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Oriana Romano
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
37
|
Kuo KH. Multiple Testing in the Context of Gene Discovery in Sickle Cell Disease Using Genome-Wide Association Studies. GENOMICS INSIGHTS 2017; 10:1178631017721178. [PMID: 28811740 PMCID: PMC5542087 DOI: 10.1177/1178631017721178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/26/2017] [Indexed: 12/25/2022]
Abstract
The issue of multiple testing, also termed multiplicity, is ubiquitous in studies where multiple hypotheses are tested simultaneously. Genome-wide association study (GWAS), a type of genetic association study that has gained popularity in the past decade, is most susceptible to the issue of multiple testing. Different methodologies have been employed to address the issue of multiple testing in GWAS. The purpose of the review is to examine the methodologies employed in dealing with multiple testing in the context of gene discovery using GWAS in sickle cell disease complications.
Collapse
Affiliation(s)
- Kevin H.M. Kuo
- Departments of Medical Oncology and Hematology and Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Vasseur C, Domingues-Hamdi E, Ledudal K, Le Corvoisier P, Barau C, Ghaleh B, Rialland A, Pissard S, Galactéros F, Baudin-Creuza V. Red blood cells free α-haemoglobin pool: a biomarker to monitor the β-thalassemia intermedia variability. The ALPHAPOOL study. Br J Haematol 2017. [DOI: 10.1111/bjh.14800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Corinne Vasseur
- Institut National de la Santé et de la Recherche Médicale (Inserm)-U955; équipe 2 : Transfusion et Maladies du Globule Rouge; Institut Mondor de Recherche Biomédicale (IMRB); Université de Paris Est Créteil (UPEC); Créteil France
- Laboratory of Excellence GR-Ex; Paris France
| | - Elisa Domingues-Hamdi
- Institut National de la Santé et de la Recherche Médicale (Inserm)-U955; équipe 2 : Transfusion et Maladies du Globule Rouge; Institut Mondor de Recherche Biomédicale (IMRB); Université de Paris Est Créteil (UPEC); Créteil France
- Laboratory of Excellence GR-Ex; Paris France
| | - Katia Ledudal
- Inserm; Centre d'Investigation Clinique 1430; Hôpital Universitaire Henri Mondor Assistance Publique Hôpitaux de Paris (AP-HP); Créteil France
| | - Philippe Le Corvoisier
- Inserm; Centre d'Investigation Clinique 1430; Hôpital Universitaire Henri Mondor Assistance Publique Hôpitaux de Paris (AP-HP); Créteil France
| | - Caroline Barau
- Plateforme de Ressources Biologiques; Hôpital Universitaire Henri Mondor (AP-HP); Créteil France
| | - Bijan Ghaleh
- Plateforme de Ressources Biologiques; Hôpital Universitaire Henri Mondor (AP-HP); Créteil France
| | - Amandine Rialland
- Unité de Recherche Clinique; Hôpital Universitaire Henri Mondor (AP-HP); Créteil France
| | - Serge Pissard
- Institut National de la Santé et de la Recherche Médicale (Inserm)-U955; équipe 2 : Transfusion et Maladies du Globule Rouge; Institut Mondor de Recherche Biomédicale (IMRB); Université de Paris Est Créteil (UPEC); Créteil France
- Laboratory of Excellence GR-Ex; Paris France
- Laboratoire de Génétique; Hôpital Universitaire Henri Mondor (AP-HP); Créteil France
| | - Frédéric Galactéros
- Institut National de la Santé et de la Recherche Médicale (Inserm)-U955; équipe 2 : Transfusion et Maladies du Globule Rouge; Institut Mondor de Recherche Biomédicale (IMRB); Université de Paris Est Créteil (UPEC); Créteil France
- Laboratory of Excellence GR-Ex; Paris France
- Unité des Maladies Génétiques du Globule Rouge; Hôpital Universitaire Henri Mondor (AP-HP); Créteil France
| | - Véronique Baudin-Creuza
- Institut National de la Santé et de la Recherche Médicale (Inserm)-U955; équipe 2 : Transfusion et Maladies du Globule Rouge; Institut Mondor de Recherche Biomédicale (IMRB); Université de Paris Est Créteil (UPEC); Créteil France
- Laboratory of Excellence GR-Ex; Paris France
| |
Collapse
|
39
|
Serjeant GR, Vichinsky E. Variability of homozygous sickle cell disease: The role of alpha and beta globin chain variation and other factors. Blood Cells Mol Dis 2017; 70:66-77. [PMID: 28689691 DOI: 10.1016/j.bcmd.2017.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Abstract
The single base molecular substitution characterizing sickle cell haemoglobin, β6glu→val, might be expected to result in predictable haematological and clinical features. However, the disease manifests remarkable diversity believed to reflect the interaction with other genetic and environmental factors. Some of the genetic modifiers include the beta globin haplotypes, alpha thalassaemia, factors influencing the persistence of fetal haemoglobin and the effects of the environment are addressed in this review. It is concluded that much of the genetic data present conflicting results. Environmental factors such as climate and infections, and psychological, educational and social support mechanisms also influence expression of the disease. These interactions illustrate how the expression of a 'single gene' disorder may be influenced by a variety of other genetic and environmental factors.
Collapse
Affiliation(s)
- Graham R Serjeant
- Sickle Cell Trust (Jamaica), 14 Milverton Crescent, Kingston 6, Jamaica.
| | - Elliott Vichinsky
- Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, University of California San Francisco, 747 52nd Street, Oakland, CA 94609, United States.
| |
Collapse
|
40
|
Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis 2017; 70:54-65. [PMID: 28651846 DOI: 10.1016/j.bcmd.2017.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The remarkable phenotypic diversity of β thalassemia that range from severe anemia and transfusion-dependency, to a clinically asymptomatic state exemplifies how a spectrum of disease severity can be generated in single gene disorders. While the genetic basis for β thalassemia, and how severity of the anemia could be modified at different levels of its pathophysiology have been well documented, therapy remains largely supportive with bone marrow transplant being the only cure. Identification of the genetic variants modifying fetal hemoglobin (HbF) production in combination with α globin genotype provide some prediction of disease severity for β thalassemia but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered. Nonetheless, genetic studies have been successful in characterizing the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation. BCL11A has been established as a quantitative repressor, and progress has been made in manipulating its expression using genomic and gene-editing approaches for therapeutic benefits. Recent discoveries and understanding in the mechanisms associated with ineffective and abnormal erythropoiesis have also provided additional therapeutic targets, a couple of which are currently being tested in clinical trials.
Collapse
|
41
|
Kolliopoulou A, Stratopoulos A, Siamoglou S, Sgourou A, Ali BR, Papachatzopoulou A, Katsila T, Patrinos GP. Key Pharmacogenomic Considerations for Sickle Cell Disease Patients. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:314-322. [PMID: 28486096 DOI: 10.1089/omi.2017.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sickle cell disease (SCD), although a monogenic disease, exhibits a complex clinical phenotype that hampers optimum patient stratification and disease management, especially on hydroxyurea treatment. Moreover, theranostics, the combination of diagnostics to individualize and optimize therapeutic interventions, has not been firmly on the forefront of SCD research and clinical management to date. We suggest that if tailor-made theranostics in SCD is envisaged, pharmacogenomics is anticipated to be the way forward. Herein, we present the current key pharmacogenomic opportunities and challenges in SCD, considering population variation, ethics, and socioeconomic aspects. We focus on pharmacogenomics and pain management, genethics, and cost-effectiveness in SCD. We searched for and synthesized data from PubMed and Google Scholar, and the references from relevant articles, using the keywords "pharmacogenomics," "sickle cell disease," "hydroxyurea," "ethics," "pain management," "morphine metabolism," "opioids," "pharmacogenomics and chronic pain," "cost-effectiveness," and "economic evaluation." Only articles published in English were included. So far, when pharmacogenomics in SCD has been considered, interindividual variability in hydroxyurea response/toxicity has been of primary interest. We underscore the need to extend pharmacogenomic considerations on other therapeutic interventions currently present using a holistic patient-centric approach, and taking disease complications into account as well. Furthermore, we raise awareness toward socioeconomic, ethical, and population differences in the way sickle cell pharmacogenomics might unfold in the future. If pharmacogenomics in SCD is to be used in the clinic in an evidence-based manner, cost-effectiveness and population-specific empirical ethics data are urgently needed.
Collapse
Affiliation(s)
- Alexandra Kolliopoulou
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Apostolos Stratopoulos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Stavroula Siamoglou
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | | | - Bassam R Ali
- 3 Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | | | - Theodora Katsila
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - George P Patrinos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
- 3 Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| |
Collapse
|
42
|
Karimi M, Zarei T, Haghpanah S, Moghadam M, Ebrahimi A, Rezaei N, Heidari G, Vazin A, Khavari M, Miri HR. Relationship Between Some Single-nucleotide Polymorphism and Response to Hydroxyurea Therapy in Iranian Patients With β-Thalassemia Intermedia. J Pediatr Hematol Oncol 2017; 39:e171-e176. [PMID: 28121747 DOI: 10.1097/mph.0000000000000779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the possible relationship between hydroxyurea (HU) response and some single-nucleotide polymorphism (SNP) in patients affected by β-thalassemia intermedia. MATERIALS AND METHODS In this cross-sectional study, 100 β-thalassemia intermedia patients who were taking HU with a dose of 8 to 15 mg/kg body weight per day for a period of at least 6 months were randomly selected between February 2013 and October 2014 in southern Iran. HU response was defined based on decrease or cessation of the blood transfusion need and evaluation of Hb level. RESULTS In univariate analysis, from all evaluated SNPs, only rs10837814 SNP of olfactory receptors (ORs) OR51B2 showed a significant association with HU response (P=0.038) and from laboratory characteristics, only nucleated red blood cells showed significant associations (116%±183%) in good responders versus (264%±286%) in poor responders (P=0.045). In multiple logistic regression, neither laboratory variables nor different SNPs, showed significant association with HU response. Three novel nucleotide variations (-665 [A→C], -1301 [T→G],-1199 delA) in OR51B2 gene were found in good responders. CONCLUSIONS None of the evaluated SNPs in our study showed significant association with HU response. Further larger studies and evaluation of other genes are suggested.
Collapse
Affiliation(s)
- Mehran Karimi
- *Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran †Shahid Beheshti University of Medical Sciences, Tehran ‡Clinical Pharmacy Department, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz §Clinical Biochemistry Department of Biology Faculty of Sciences, University of Zabol, Zabol, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lai Y, Chen Y, Chen B, Zheng H, Yi S, Li G, Wei H, He S, Zheng C. Genetic Variants at BCL11A and HBS1L-MYB loci Influence Hb F Levels in Chinese Zhuang β-Thalassemia Intermedia Patients. Hemoglobin 2017; 40:405-410. [PMID: 28361591 DOI: 10.1080/03630269.2016.1253586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Increased Hb F levels can ameliorate the symptoms of β-thalassemia (β-thal). Due to the genetic heterogenicity of β-thal, the relationship between genetic variants in modifier genes and Hb F level has been studied in different populations. The Chinese Zhuang has the second largest population in China and has 6.78% prevalence of β-thal. However, the effects of these single nucleotide polymorphism (SNP) variants on the Hb F levels of β-thal intermedia (β-TI) patients in this population have not been reported. To explore the association between modifier loci (β-globin gene cluster, HBS1L-MYB intergenic region and BCL11A) and Hb F levels in Chinese Zhuang β-TI patients, 96 unrelated β-TI patients (50 males and 46 females) with different Hb F levels were recruited and genotyped by mass spectrometry. A total of 13 SNPs were confirmed to be in a significant relationship with Hb F levels in this population. Of these, high-risk genotypes of six Hb F-associated SNPs, rs9376090, rs7776054, rs9399137, rs9389268, rs9402685 in the HBS1L-MYB intergenic region and rs189984760 in the BCL11A locus, showed association with high Hb F levels, especially for SNPs in linkage disequilibrium. One novel Hb F-associated SNP, rs189984760, was identified in our study. Our findings will be of valuable reference for correlation between modifier genes and Hb F in Chinese Zhuang populations and may lead to better understand the modifying mechanisms for β-thal.
Collapse
Affiliation(s)
- Yunli Lai
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| | - Yun Chen
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| | - Biyan Chen
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| | - Haiyang Zheng
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| | - Sheng Yi
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| | - Guojian Li
- b Guangxi Health and Family Planning Commission , Nanning , Guangxi Province , People's Republic of China
| | - Hongwei Wei
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| | - Sheng He
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| | - Chenguang Zheng
- a Genetic and Metabolic Central Laboratory , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Province , People's Republic of China
| |
Collapse
|
44
|
Miri-Moghaddam E, Bahrami S, Naderi M, Bazi A, Karimipoor M. Xmn1-158 γGVariant in B-Thalassemia Intermediate Patients in South-East of Iran. Int J Hematol Oncol Stem Cell Res 2017; 11:165-171. [PMID: 28875012 PMCID: PMC5575729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Xmn-1 polymorphism of 𝜸Gglobin gene (HBG2) is a prominent quantitative trait loci (QTL) in β-thalassemia intermediate (β-TI). In current study, we evaluated the frequency of Xmn-1 polymorphism and its association with β-globin gene (HBB) alleles and Hb F level in β-TI patients in Sistan and Balouchestan province, south-east of Iran. Subjects and Methods: 45 β-TI patients were enrolled. HBB gene mutations and Xmn-1 polymorphism were determined by amplification-refractory mutation system (ARMS) PCR method. Hemoglobin profile was determined using capillary electrophoresis. Results: The study participants consisted of 26 (58%) males and 19 (42%) females. Mean age of the patients was 10.7±3.1 years old. Overall, Xmn-1 polymorphism was observed in 28 (62%) patients. Homozygous (TT) and heterozygous (CT) genotypes of the polymorphism represented with frequencies of 12 (26%) and 16 (35%), respectively. Main recognized HBB gene mutation was IVSI-5(G>C) with homozygous frequency of 44%. Non-zero (β+) alleles of HBB gene constituted 11.1 % (4 patients with heterozygous β+ and one with homozygous β+ genotype). Hb F level was significantly higher in patients with at least one Xmn-1allele (67.9±[Formula: see text]17.9%) than those without the polymorphism (19.5±20.3%, P<0.0001). Also, patients with homozygous genotype demonstrated significantly higher Hb F compared to heterozygous (CT) cases (respective percentages of 85±[Formula: see text]6.8 and 54.7±[Formula: see text]10.5, p<0.0001). Conclusion: Our results highlighted the role of Xmn-1 polymorphism as the main phenotypic modifier in β-TI patients in Sistan and Balouchestan province.
Collapse
Affiliation(s)
- Ebrahim Miri-Moghaddam
- Associate Professor, Genetics of Non-Communicable Disease Research Center, zahedan University of Medical Sciences, zahedan, Iran,CardioVascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Bahrami
- Msc in Biology, Department of Biology, Payame Noor University, Zahedan, Iran
| | - Majid Naderi
- Assistant Professor, Genetics of Non-Communicable Diseases Research Center, Department of Pediatric Hematology & Oncology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Bazi
- Msc in Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Morteza Karimipoor
- Ph.D, Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
Lai Y, Zhou L, Yi S, Chen Y, Tang Y, Yi S, Yang Z, Wei H, Zheng C, He S. The association between four SNPs (rs7482144, rs4671393, rs28384513 and rs4895441) and fetal hemoglobin levels in Chinese Zhuang β-thalassemia intermedia patients. Blood Cells Mol Dis 2017; 63:52-57. [DOI: 10.1016/j.bcmd.2017.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 11/25/2022]
|
46
|
Existence of HbF Enhancer Haplotypes at HBS1L-MYB Intergenic Region in Transfusion-Dependent Saudi β-Thalassemia Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1972429. [PMID: 28280727 PMCID: PMC5322420 DOI: 10.1155/2017/1972429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/14/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022]
Abstract
Background and Objectives. β-Thalassemia and sickle cell disease are genetic disorders characterized by reduced and abnormal β-globin chain production, respectively. The elevation of fetal hemoglobin (HbF) can ameliorate the severity of these disorders. In sickle cell disease patients, the HbF level elevation is associated with three quantitative trait loci (QTLs), BCL11A, HBG2 promoter, and HBS1L-MYB intergenic region. This study elucidates the existence of the variants in these three QTLs to determine their association with HbF levels of transfusion-dependent Saudi β-thalassemia patients. Materials and Methods. A total of 174 transfusion-dependent β-thalassemia patients and 164 healthy controls from Eastern Province of Saudi Arabia were genotyped for fourteen single nucleotide polymorphisms (SNPs) from the three QTL regions using TaqMan assay on real-time PCR. Results. Genotype analysis revealed that six alleles of HBS1L-MYB QTL (rs9376090C p = 0.0009, rs9399137C p = 0.008, rs4895441G p = 0.004, rs9389269C p = 0.008, rs9402686A p = 0.008, and rs9494142C p = 0.002) were predominantly associated with β-thalassemia. In addition, haplotype analysis revealed that haplotypes of HBS1L-MYB (GCCGCAC p = 0.022) and HBG2 (GTT p = 0.009) were also predominantly associated with β-thalassemia. Furthermore, the HBS1L-MYB region also exhibited association with the high HbF cohort. Conclusion. The stimulation of HbF gene expression may provide alternative therapies for the amelioration of the disease severity of β-thalassemia.
Collapse
|
47
|
Shang X, Xu X. Update in the genetics of thalassemia: What clinicians need to know. Best Pract Res Clin Obstet Gynaecol 2017; 39:3-15. [DOI: 10.1016/j.bpobgyn.2016.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/18/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022]
|
48
|
Thein SL. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:27-57. [PMID: 29127676 DOI: 10.1007/978-1-4939-7299-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α2γ2).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.
Collapse
Affiliation(s)
- Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room 6S241 MSC 1589, 10 Center Dr., Bethesda, MD, 20892-1589, USA.
| |
Collapse
|
49
|
Sripichai O, Fucharoen S. Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches. Expert Rev Hematol 2016; 9:1129-1137. [PMID: 27801605 DOI: 10.1080/17474086.2016.1255142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Stress erythropoiesis induces fetal hemoglobin (HbF) expression in β-thalassemias, however the level of expression is highly variable. The last decade has seen dramatic advances in our understanding of the molecular regulators of HbF production and the genetic factors associated with HbF levels, leading to the promise of new methods of the clinical induction of HbF. Areas covered: This article will review the heterogeneity and genetic modifiers of HbF and HbF induction therapy in β-thalassemia. Expert commentary: One promising curative β-thalassemia therapy is to induce HbF synthesis in β-thalassemic erythrocytes to therapeutic levels before clinical symptom occurs. Further understanding of HbF level variation and regulation is needed in order to predict the response from HbF-inducing approaches.
Collapse
Affiliation(s)
- Orapan Sripichai
- a Thalassemia Research Center, Institute of Molecular Biosciences , Mahidol University , Nakhonpathom , Thailand
| | - Suthat Fucharoen
- a Thalassemia Research Center, Institute of Molecular Biosciences , Mahidol University , Nakhonpathom , Thailand
| |
Collapse
|
50
|
Chan NC, Lau KM, Cheng KCK, Chan NP, Ng MH. A Multi-locus Approach to Characterization of Major Quantitative Trait Loci Influencing Hb F Regulation in Chinese β-thalassemia Carriers. Hemoglobin 2016; 40:400-404. [DOI: 10.1080/03630269.2016.1245198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|