1
|
Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells. Dev Cell 2024; 59:1110-1131.e22. [PMID: 38569552 PMCID: PMC11072092 DOI: 10.1016/j.devcel.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Collapse
Affiliation(s)
- Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Alana Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison M Banuelos
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kouta Niizuma
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kensuke Kayamori
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte Mason
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Leyla Yilmaz
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Melig G, Nobuhisa I, Saito K, Tsukahara R, Itabashi A, Kanai Y, Kanai-Azuma M, Osawa M, Oshima M, Iwama A, Taga T. A Sox17 downstream gene Rasip1 is involved in the hematopoietic activity of intra-aortic hematopoietic clusters in the midgestation mouse embryo. Inflamm Regen 2023; 43:41. [PMID: 37553580 PMCID: PMC10408172 DOI: 10.1186/s41232-023-00292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND During mouse embryonic development, definitive hematopoiesis is first detected around embryonic day (E) 10.5 in the aorta-gonad-mesonephros (AGM) region. Hematopoietic stem cells (HSCs) arise in the dorsal aorta's intra-aortic hematopoietic cell clusters (IAHCs). We have previously reported that a transcription factor Sox17 is expressed in IAHCs, and that, among them, CD45lowc-Kithigh cells have high hematopoietic activity. Furthermore, forced expression of Sox17 in this population of cells can maintain the formation of hematopoietic cell clusters. However, how Sox17 does so, particularly downstream signaling involved, remains poorly understood. The purpose of this study is to search for new Sox17 targets which contribute to cluster formation with hematopoietic activity. METHODS RNA-sequencing (RNA-seq) analysis was done to identify genes that are upregulated in Sox17-expressing IAHCs as compared with Sox17-negative ones. Among the top 7 highly expressed genes, Rasip1 which had been reported to be a vascular-specific regulator was focused on in this study, and firstly, the whole-mount immunostaining was done. We conducted luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay to examine whether Sox17 regulates Rasip1 gene expression via binding to its enhancer element. We also analyzed the cluster formation and the multilineage colony-forming ability of Rasip1-transduced cells and Rasip1-knockdown Sox17-transduced cells. RESULTS The increase of the Rasip1 expression level was observed in Sox17-positive CD45lowc-Kithigh cells as compared with the Sox17-nonexpressing control. Also, the expression level of the Rasip1 gene was increased by the Sox17-nuclear translocation. Rasip1 was expressed on the membrane of IAHCs, overlapping with the endothelial cell marker, CD31, and hematopoietic stem/progenitor marker (HSPC), c-Kit. Rasip1 expression was observed in most part of c-Kit+Sox17+ cells in IAHCs. Luciferase reporter assay and ChIP assay indicated that one of the five putative Sox17-binding sites in the Rasip1 enhancer region was important for Rasip1 expression via Sox17 binding. Rasip1 knockdown in Sox17-transduced cells decreased the cluster formation and diminished the colony-forming ability, while overexpression of Rasip1 in CD45lowc-Kithigh cells led to a significant but transient increase in hematopoietic activity. CONCLUSIONS Rasip1 knockdown in Sox17-transduced CD45lowc-Kithigh cells displayed a significant decrease in the multilineage colony-forming ability and the cluster size. Rasip1 overexpression in Sox17-untransduced CD45lowc-Kithigh cells led to a significant but transient increase in the multilineage colony-forming ability, suggesting the presence of a cooperating factor for sustained hematopoietic activity.
Collapse
Grants
- 26440118 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18K06249 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22130008 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 15H04292 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18H02678 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- H26-A39 Nanken-Kyoten, TMDU
- H27-A35 Nanken-Kyoten, TMDU
- H28-A11 Nanken-Kyoten, TMDU
Collapse
Affiliation(s)
- Gerel Melig
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1, Befu, Jonan-Ku, Fukuoka, 814-0198, Japan.
| | - Kiyoka Saito
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ryota Tsukahara
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ayumi Itabashi
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, Graduate School of Agricultural and Life Science, University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8567, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8039, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8039, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
Barone C, Orsenigo R, Cazzola A, D'Errico E, Patelli A, Quattrini G, Vergani B, Bombelli S, De Marco S, D'Orlando C, Bianchi C, Leone BE, Meneveri R, Biondi A, Cazzaniga G, Rabbitts TH, Brunelli S, Azzoni E. Hematopoietic Stem Cell (HSC)-Independent Progenitors Are Susceptible to Mll-Af9-Induced Leukemic Transformation. Cancers (Basel) 2023; 15:3624. [PMID: 37509285 PMCID: PMC10377085 DOI: 10.3390/cancers15143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Infant acute myeloid leukemia (AML) is a heterogeneous disease, genetically distinct from its adult counterpart. Chromosomal translocations involving the KMT2A gene (MLL) are especially common in affected infants of less than 1 year of age, and are associated with a dismal prognosis. While these rearrangements are likely to arise in utero, the cell of origin has not been conclusively identified. This knowledge could lead to a better understanding of the biology of the disease and support the identification of new therapeutic vulnerabilities. Over the last few years, important progress in understanding the dynamics of fetal hematopoiesis has been made. Several reports have highlighted how hematopoietic stem cells (HSC) provide little contribution to fetal hematopoiesis, which is instead largely sustained by HSC-independent progenitors. Here, we used conditional Cre-Lox transgenic mouse models to engineer the Mll-Af9 translocation in defined subsets of embryonic hematopoietic progenitors. We show that embryonic hematopoiesis is generally permissive for Mll-Af9-induced leukemic transformation. Surprisingly, the selective introduction of Mll-Af9 in HSC-independent progenitors generated a transplantable myeloid leukemia, whereas it did not when introduced in embryonic HSC-derived cells. Ex vivo engineering of the Mll-Af9 rearrangement in HSC-independent progenitors using a CRISPR/Cas9-based approach resulted in the activation of an aberrant myeloid-biased self-renewal program. Overall, our results demonstrate that HSC-independent hematopoietic progenitors represent a permissive environment for Mll-Af9-induced leukemic transformation, and can likely act as cells of origin of infant AML.
Collapse
Affiliation(s)
- Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Orsenigo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Anna Cazzola
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elisabetta D'Errico
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Quattrini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina D'Orlando
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Centro Tettamanti, IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Terence Howard Rabbitts
- Division of Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
4
|
Shi L, Song H, Zhou B, Morrow BE. Crk/Crkl regulates early angiogenesis in mouse embryos by accelerating endothelial cell maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548782. [PMID: 37503032 PMCID: PMC10369973 DOI: 10.1101/2023.07.12.548782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Rationale Ubiquitously expressed cytoplasmic adaptors CRK and CRKL mediate multiple signaling pathways in mammalian embryogenesis. They are also associated with cardiovascular defects occurring in Miller-Dieker syndrome and 22q11.2 deletion syndrome, respectively. The embryonic mesoderm contributes to the formation of the cardiovascular system, yet the roles that Crk and Crkl play there are not understood on a single cell level. Objectives To determine functions of Crk and Crkl in the embryonic mesoderm during early mouse vascular development. Secondly, we will examine the molecular mechanisms responsible for early embryonic endothelial cell (EC) defects by performing single cell RNA-sequencing (scRNA-seq) and in vivo validation experiments. Methods and Results Inactivation of both Crk and Crkl together using Mesp1 Cre resulted embryonic lethality with severe vascular defects. Although vasculogenesis appeared normal, angiogenesis was disrupted both in the yolk sac and embryo proper, leading to disorganized vascular networks. We performed scRNA-seq of the Mesp1 Cre mesodermal lineage and found that there was upregulation of a great number of angiogenesis and cell migration related genes in ECs in the mutants, including NOTCH signaling genes such as Dll4 and Hey1 . Further bioinformatic analysis of EC subpopulations identified a relative increase in the number of more differentiated angiogenic ECs and decrease in EC progenitors. Consistent with this, we identified an expansion of Dll4 expressing cells within abnormal arteries, in vivo . Also, our bioinformatic data indicates that there is dysregulated expression of lineage genes that promote EC differentiation causing accelerated cell fate progression during EC differentiation. Conclusions Our results show that Crk and Crkl are crucial for regulating early embryonic angiogenesis. Combined inactivation of Crk/Crkl caused precocious EC maturation with an increase of atypical differentiated angiogenic ECs and failed vascular remodeling. This is in part due to increased NOTCH signaling and altered expression of cell migration genes.
Collapse
|
5
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
6
|
Barone C, Orsenigo R, Meneveri R, Brunelli S, Azzoni E. One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells 2022; 11:1061. [PMID: 35326511 PMCID: PMC8947200 DOI: 10.3390/cells11061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.B.); (R.O.); (R.M.); (S.B.)
| |
Collapse
|
7
|
Ma L, Tang Q, Gao X, Lee J, Lei R, Suzuki M, Zheng D, Ito K, Frenette PS, Dawlaty MM. Tet-mediated DNA demethylation regulates specification of hematopoietic stem and progenitor cells during mammalian embryogenesis. SCIENCE ADVANCES 2022; 8:eabm3470. [PMID: 35235365 PMCID: PMC8890710 DOI: 10.1126/sciadv.abm3470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/06/2022] [Indexed: 05/10/2023]
Abstract
Ten-eleven translocation (Tet) enzymes promote DNA demethylation by oxidizing 5-methylcytosine. They are expressed during development and are essential for mouse gastrulation. However, their postgastrulation functions are not well established. We find that global or endothelial-specific loss of all three Tet enzymes immediately after gastrulation leads to reduced number of hematopoietic stem and progenitor cells (HSPCs) and lethality in mid-gestation mouse embryos. This is due to defects in specification of HSPCs from endothelial cells (ECs) that compromise primitive and definitive hematopoiesis. Mechanistically, loss of Tet enzymes in ECs led to hypermethylation and down-regulation of NFκB1 and master hematopoietic transcription factors (Gata1/2, Runx1, and Gfi1b). Restoring Tet catalytic activity or overexpression of these factors in Tet-deficient ECs rescued hematopoiesis defects. This establishes Tet enzymes as activators of hematopoiesis programs in ECs for specification of HSPCs during embryogenesis, which is distinct from their roles in adult hematopoiesis, with implications in deriving HSPCs from pluripotent cells.
Collapse
Affiliation(s)
- Liyang Ma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Run Lei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
8
|
Wang F, Tan P, Zhang P, Ren Y, Zhou J, Li Y, Hou S, Li S, Zhang L, Ma Y, Wang C, Tang W, Wang X, Huo Y, Hu Y, Cui T, Niu C, Wang D, Liu B, Lan Y, Yu J. Single-cell architecture and functional requirement of alternative splicing during hematopoietic stem cell formation. SCIENCE ADVANCES 2022; 8:eabg5369. [PMID: 34995116 PMCID: PMC8741192 DOI: 10.1126/sciadv.abg5369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Single-cell transcriptional profiling has rapidly advanced our understanding of the embryonic hematopoiesis; however, whether and what role RNA alternative splicing (AS) plays remains an enigma. This is important for understanding the mechanisms underlying splicing-associated hematopoietic diseases and for the derivation of therapeutic stem cells. Here, we used single-cell full-length transcriptome data to construct an isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell (HSC) transition, which enables the identification of hemogenic signature isoforms and stage-specific AS events. We showed that the inclusion of these hemogenic-specific AS events was essential for hemogenic function in vitro. Expression data and knockout mouse studies highlighted the critical role of Srsf2: Early Srsf2 deficiency from endothelial cells affected the splicing pattern of several master hematopoietic regulators and significantly impaired HSC generation. These results redefine our understanding of the dynamic HSC developmental transcriptome and demonstrate that elaborately controlled RNA splicing governs cell fate in HSC formation.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yunqiao Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Shuaili Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Linlin Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanbo Tang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| |
Collapse
|
9
|
Cossu G, Tonlorenzi R, Brunelli S, Sampaolesi M, Messina G, Azzoni E, Benedetti S, Biressi S, Bonfanti C, Bragg L, Camps J, Cappellari O, Cassano M, Ciceri F, Coletta M, Covarello D, Crippa S, Cusella-De Angelis MG, De Angelis L, Dellavalle A, Diaz-Manera J, Galli D, Galli F, Gargioli C, Gerli MFM, Giacomazzi G, Galvez BG, Hoshiya H, Guttinger M, Innocenzi A, Minasi MG, Perani L, Previtali SC, Quattrocelli M, Ragazzi M, Roostalu U, Rossi G, Scardigli R, Sirabella D, Tedesco FS, Torrente Y, Ugarte G. Mesoangioblasts at 20: From the embryonic aorta to the patient bed. Front Genet 2022; 13:1056114. [PMID: 36685855 PMCID: PMC9845585 DOI: 10.3389/fgene.2022.1056114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2023] Open
Abstract
In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.
Collapse
Affiliation(s)
- Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Muscle Research Unit, Charité Medical Faculty and Max Delbrück Center, Berlin, Germany
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Rossana Tonlorenzi
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Graziella Messina
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Sara Benedetti
- UCL Great Ormond Street Institute of Child Health and NIHR GOSH Biomedical Research Centre, London, United Kingdom
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO) and Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laricia Bragg
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
| | - Jordi Camps
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Ornella Cappellari
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Fabio Ciceri
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marcello Coletta
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | | | - Stefania Crippa
- San Raffaele-Telethon Institute of Gene Theray, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Luciana De Angelis
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | | | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University, United Kingdom
| | - Daniela Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
| | - Cesare Gargioli
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Mattia F. M. Gerli
- UCL Department of Surgical Biotechnology and Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Beatriz G. Galvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Anna Innocenzi
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - M. Giulia Minasi
- Lavitaminasi, Clinical Nutrition and Reproductive Medicine, Rome, Italy
| | - Laura Perani
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, University of Cincinnati, Cincinnati, OH, United States
| | | | - Urmas Roostalu
- Roche Institute for Translational Bioengineering (ITB), pRED Basel, Basel, Switzerland
| | - Giuliana Rossi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Raffaella Scardigli
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, United States
| | - Dario Sirabella
- University College London, Great Ormond Street Hospital for Children and the Francis Crick Institute, London, United Kingdom
| | - Francesco Saverio Tedesco
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yvan Torrente
- UCL Great Ormond Street Institute of Child Health and NIHR GOSH Biomedical Research Centre, London, United Kingdom
| | - Gonzalo Ugarte
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
10
|
Sugden WW, North TE. Making Blood from the Vessel: Extrinsic and Environmental Cues Guiding the Endothelial-to-Hematopoietic Transition. Life (Basel) 2021; 11:life11101027. [PMID: 34685398 PMCID: PMC8539454 DOI: 10.3390/life11101027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
It is increasingly recognized that specialized subsets of endothelial cells carry out unique functions in specific organs and regions of the vascular tree. Perhaps the most striking example of this specialization is the ability to contribute to the generation of the blood system, in which a distinct population of “hemogenic” endothelial cells in the embryo transforms irreversibly into hematopoietic stem and progenitor cells that produce circulating erythroid, myeloid and lymphoid cells for the lifetime of an animal. This review will focus on recent advances made in the zebrafish model organism uncovering the extrinsic and environmental factors that facilitate hemogenic commitment and the process of endothelial-to-hematopoietic transition that produces blood stem cells. We highlight in particular biomechanical influences of hemodynamic forces and the extracellular matrix, metabolic and sterile inflammatory cues present during this developmental stage, and outline new avenues opened by transcriptomic-based approaches to decipher cell–cell communication mechanisms as examples of key signals in the embryonic niche that regulate hematopoiesis.
Collapse
Affiliation(s)
- Wade W. Sugden
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
11
|
Mnatsakanyan H, Salmeron-Sanchez M, Rico P. Lithium Directs Embryonic Stem Cell Differentiation Into Hemangioblast-Like Cells. Adv Biol (Weinh) 2021; 5:e2000569. [PMID: 33969645 DOI: 10.1002/adbi.202000569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Definitive hematopoietic stem cells (HSCs) derive from specialized regions of the endothelium known as the hemogenic endothelium (HE) during embryonic developmental processes. This knowledge opens up new possibilities for designing new strategies to obtain HSCs in vitro from pluripotent stem cells (PSCs). Previous advances in this field show that the Wnt/β-catenin signaling pathway plays a crucial role in PSC-derived HSC formation. In this work, lithium, a GSK3 inhibitor, is identified as an element capable of stabilizing β-catenin and inducing embryonic stem cells (ESCs) differentiation in hemangioblast-like cells, highly consistent with the role of Wnt agonists on ESC differentiation. ESCs treated with 10 mm lithium express CD31+, SCA-1+, Nkx2-5+, CD34+, and FLK1+ cells characteristic of the hemangioblast cells that precede HE development. However, 10 mm Li treated cells remain arrested in a hemangioblast-like phase, which switched into the expression of HE markers after stimulation with maturation medium. The ability of lithium-treated ESCs to further derive into HE is confirmed after defined maturation, resulting in a rapid increase in cells positive for the HE markers RUNX1 and SOX17. The results represent a novel strategy for generating HSC precursors in vitro as a multipotent source of stem cells for blood disease therapies.
Collapse
Affiliation(s)
- Hayk Mnatsakanyan
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Manuel Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5 Pabellón 11, Madrid, 28029, Spain.,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Patricia Rico
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5 Pabellón 11, Madrid, 28029, Spain
| |
Collapse
|
12
|
Neuropilin 1 Regulation of Vascular Permeability Signaling. Biomolecules 2021; 11:biom11050666. [PMID: 33947161 PMCID: PMC8146136 DOI: 10.3390/biom11050666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium acts as a selective barrier to regulate macromolecule exchange between the blood and tissues. However, the integrity of the endothelium barrier is compromised in an array of pathological settings, including ischemic disease and cancer, which are the leading causes of death worldwide. The resulting vascular hyperpermeability to plasma molecules as well as leukocytes then leads to tissue damaging edema formation and inflammation. The vascular endothelial growth factor A (VEGFA) is a potent permeability factor, and therefore a desirable target for impeding vascular hyperpermeability. However, VEGFA also promotes angiogenesis, the growth of new blood vessels, which is required for reperfusion of ischemic tissues. Moreover, edema increases interstitial pressure in poorly perfused tumors, thereby affecting the delivery of therapeutics, which could be counteracted by stimulating the growth of new functional blood vessels. Thus, targets must be identified to accurately modulate the barrier function of blood vessels without affecting angiogenesis, as well as to develop more effective pro- or anti-angiogenic therapies. Recent studies have shown that the VEGFA co-receptor neuropilin 1 (NRP1) could be playing a fundamental role in steering VEGFA-induced responses of vascular endothelial cells towards angiogenesis or vascular permeability. Moreover, NRP1 is involved in mediating permeability signals induced by ligands other than VEGFA. This review therefore focuses on current knowledge on the role of NRP1 in the regulation of vascular permeability signaling in the endothelium to provide an up-to-date landscape of the current knowledge in this field.
Collapse
|
13
|
Favara DM, Liebscher I, Jazayeri A, Nambiar M, Sheldon H, Banham AH, Harris AL. Elevated expression of the adhesion GPCR ADGRL4/ELTD1 promotes endothelial sprouting angiogenesis without activating canonical GPCR signalling. Sci Rep 2021; 11:8870. [PMID: 33893326 PMCID: PMC8065136 DOI: 10.1038/s41598-021-85408-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
ADGRL4/ELTD1 is an orphan adhesion GPCR (aGPCR) expressed in endothelial cells that regulates tumour angiogenesis. The majority of aGPCRs are orphan receptors. The Stachel Hypothesis proposes a mechanism for aGPCR activation, in which aGPCRs contain a tethered agonist (termed Stachel) C-terminal to the GPCR-proteolytic site (GPS) cleavage point which, when exposed, initiates canonical GPCR signalling. This has been shown in a growing number of aGPCRs. We tested this hypothesis on ADGRL4/ELTD1 by designing full length (FL) and C-terminal fragment (CTF) ADGRL4/ELTD1 constructs, and a range of potential Stachel peptides. Constructs were transfected into HEK293T cells and HTRF FRET, luciferase-reporter and Alphascreen GPCR signalling assays were performed. A stable ADGRL4/ELTD1 overexpressing HUVEC line was additionally generated and angiogenesis assays, signalling assays and transcriptional profiling were performed. ADGRL4/ELTD1 has the lowest GC content in the aGPCR family and codon optimisation significantly increased its expression. FL and CTF ADGRL4/ELTD1 constructs, as well as Stachel peptides, did not activate canonical GPCR signalling. Furthermore, stable overexpression of ADGRL4/ELTD1 in HUVECs induced sprouting angiogenesis, lowered in vitro anastomoses, and decreased proliferation, without activating canonical GPCR signalling or MAPK/ERK, PI3K/AKT, JNK, JAK/HIF-1α, beta catenin or STAT3 pathways. Overexpression upregulated ANTXR1, SLC39A6, HBB, CHRNA, ELMOD1, JAG1 and downregulated DLL4, KIT, CCL15, CYP26B1. ADGRL4/ELTD1 specifically regulates the endothelial tip-cell phenotype through yet undefined signalling pathways.
Collapse
Affiliation(s)
- David M Favara
- Balliol College, University of Oxford, Oxford, OX1 3BJ, UK.
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Cambridge University Hospitals NHS Foundation Trust and Department of Oncology, Cambridge University, Cambridge, CB2 0XZ, UK.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Department of Molecular Biochemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Ali Jazayeri
- Heptares Therapeutics Ltd, Welwyn Garden City, AL7 3AX, UK
- OMass Therapeutics, Oxford, OX4 4GE, UK
| | - Madhulika Nambiar
- Heptares Therapeutics Ltd, Welwyn Garden City, AL7 3AX, UK
- Sosei Heptares, Cambridge, CB21 6DG, UK
| | - Helen Sheldon
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Adrian L Harris
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
14
|
Horton PD, Dumbali SP, Bhanu KR, Diaz MF, Wenzel PL. Biomechanical Regulation of Hematopoietic Stem Cells in the Developing Embryo. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:1-15. [PMID: 33937868 PMCID: PMC8087251 DOI: 10.1007/s43152-020-00027-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The contribution of biomechanical forces to hematopoietic stem cell (HSC) development in the embryo is a relatively nascent area of research. Herein, we address the biomechanics of the endothelial-to-hematopoietic transition (EHT), impact of force on organelles, and signaling triggered by extrinsic forces within the aorta-gonad-mesonephros (AGM), the primary site of HSC emergence. RECENT FINDINGS Hemogenic endothelial cells undergo carefully orchestrated morphological adaptations during EHT. Moreover, expansion of the stem cell pool during embryogenesis requires HSC extravasation into the circulatory system and transit to the fetal liver, which is regulated by forces generated by blood flow. Findings from other cell types also suggest that forces external to the cell are sensed by the nucleus and mitochondria. Interactions between these organelles and the actin cytoskeleton dictate processes such as cell polarization, extrusion, division, survival, and differentiation. SUMMARY Despite challenges of measuring and modeling biophysical cues in the embryonic HSC niche, the past decade has revealed critical roles for mechanotransduction in governing HSC fate decisions. Lessons learned from the study of the embryonic hematopoietic niche promise to provide critical insights that could be leveraged for improvement in HSC generation and expansion ex vivo.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sandeep P. Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Krithikaa Rajkumar Bhanu
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Miguel F. Diaz
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
15
|
Cazzola A, Cazzaniga G, Biondi A, Meneveri R, Brunelli S, Azzoni E. Prenatal Origin of Pediatric Leukemia: Lessons From Hematopoietic Development. Front Cell Dev Biol 2021; 8:618164. [PMID: 33511126 PMCID: PMC7835397 DOI: 10.3389/fcell.2020.618164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence suggest that childhood leukemia, the most common cancer in young age, originates during in utero development. However, our knowledge of the cellular origin of this large and heterogeneous group of malignancies is still incomplete. The identification and characterization of their cell of origin is of crucial importance in order to define the processes that initiate and sustain disease progression, to refine faithful animal models and to identify novel therapeutic approaches. During embryogenesis, hematopoiesis takes place at different anatomical sites in sequential waves, and occurs in both a hematopoietic stem cell (HSC)-dependent and a HSC-independent fashion. Despite the recently described relevance and complexity of HSC-independent hematopoiesis, few studies have so far investigated its potential involvement in leukemogenesis. Here, we review the current knowledge on prenatal origin of leukemias in the context of recent insights in developmental hematopoiesis.
Collapse
Affiliation(s)
- Anna Cazzola
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy.,Pediatrics, Fondazione MBBM/Ospedale San Gerardo, University of Milano-Bicocca, Milan, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
16
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
17
|
In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium. Nat Cell Biol 2019; 21:1334-1345. [PMID: 31685991 DOI: 10.1038/s41556-019-0410-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/23/2019] [Indexed: 01/22/2023]
Abstract
It is well established that haematopoietic stem and progenitor cells (HSPCs) are generated from a transient subset of specialized endothelial cells termed haemogenic, present in the yolk sac, placenta and aorta, through an endothelial-to-haematopoietic transition (EHT). HSPC generation via EHT is thought to be restricted to the early stages of development. By using experimental embryology and genetic approaches in birds and mice, respectively, we document here the discovery of a bone marrow haemogenic endothelium in the late fetus/young adult. These cells are capable of de novo producing a cohort of HSPCs in situ that harbour a very specific molecular signature close to that of aortic endothelial cells undergoing EHT or their immediate progenies, i.e., recently emerged HSPCs. Taken together, our results reveal that HSPCs can be generated de novo past embryonic stages. Understanding the molecular events controlling this production will be critical for devising innovative therapies.
Collapse
|
18
|
Bonkhofer F, Rispoli R, Pinheiro P, Krecsmarik M, Schneider-Swales J, Tsang IHC, de Bruijn M, Monteiro R, Peterkin T, Patient R. Blood stem cell-forming haemogenic endothelium in zebrafish derives from arterial endothelium. Nat Commun 2019; 10:3577. [PMID: 31395869 PMCID: PMC6687740 DOI: 10.1038/s41467-019-11423-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoietic stem cells are generated from the haemogenic endothelium (HE) located in the floor of the dorsal aorta (DA). Despite being integral to arteries, it is controversial whether HE and arterial endothelium share a common lineage. Here, we present a transgenic zebrafish runx1 reporter line to isolate HE and aortic roof endothelium (ARE)s, excluding non-aortic endothelium. Transcriptomic analysis of these populations identifies Runx1-regulated genes and shows that HE initially expresses arterial markers at similar levels to ARE. Furthermore, runx1 expression depends on prior arterial programming by the Notch ligand dll4. Runx1-/- mutants fail to downregulate arterial genes in the HE, which remains integrated within the DA, suggesting that Runx1 represses the pre-existing arterial programme in HE to allow progression towards the haematopoietic fate. These findings strongly suggest that, in zebrafish, aortic endothelium is a precursor to HE, with potential implications for pluripotent stem cell differentiation protocols for the generation of transplantable HSCs.
Collapse
Affiliation(s)
- Florian Bonkhofer
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Rossella Rispoli
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Division of Genetics and Molecular Medicine, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Philip Pinheiro
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Monika Krecsmarik
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- BHF Centre of Research Excellence, Oxford, UK
| | - Janina Schneider-Swales
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ingrid Ho Ching Tsang
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Marella de Bruijn
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Rui Monteiro
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- BHF Centre of Research Excellence, Oxford, UK.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Tessa Peterkin
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- BHF Centre of Research Excellence, Oxford, UK.
| |
Collapse
|
19
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
20
|
Ottersbach K. Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochem Soc Trans 2019; 47:591-601. [PMID: 30902922 PMCID: PMC6490701 DOI: 10.1042/bst20180320] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/30/2023]
Abstract
The first definitive blood cells during embryogenesis are derived from endothelial cells in a highly conserved process known as endothelial-to-haematopoietic transition (EHT). This conversion involves activation of a haematopoietic transcriptional programme in a subset of endothelial cells in the major vasculature of the embryo, followed by major morphological changes that result in transitioning cells rounding up, breaking the tight junctions to neighbouring endothelial cells and adopting a haematopoietic fate. The whole process is co-ordinated by a complex interplay of key transcription factors and signalling pathways, with additional input from surrounding tissues. Diverse model systems, including mouse, chick and zebrafish embryos as well as differentiation of pluripotent cells in vitro, have contributed to the elucidation of the details of the EHT, which was greatly accelerated in recent years by sophisticated live imaging techniques and advances in transcriptional profiling, such as single-cell RNA-Seq. A detailed knowledge of these developmental events is required in order to be able to apply it to the generation of haematopoietic stem cells from pluripotent stem cells in vitro - an achievement which is of obvious clinical importance. The aim of this review is to summarise the latest findings and describe how these may have contributed towards achieving this goal.
Collapse
Affiliation(s)
- Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, U.K.
| |
Collapse
|
21
|
Sun XL, Wang L, Yuan WP, Wang WL. [The role of PDK1 in the transition of endothelial to hematopoietic cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:709-716. [PMID: 30369179 PMCID: PMC7342253 DOI: 10.3760/cma.j.issn.0253-2727.2018.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
目的 研究磷酸肌醇依赖性激酶1(PDK1)在内皮细胞向造血细胞转化阶段对造血干细胞(HSC)发生的影响。 方法 应用Vec-Cre在内皮细胞中特异性敲除PDK1基因,取对照组PDK1fl/fl、PDK1fl/+小鼠及敲除组Vec-Cre;PDK1fl/fl小鼠胚胎的主动脉-性腺-中肾区(AGM区)细胞进行集落形成实验,检测PDK1基因对造血祖细胞功能的影响;取对照组和敲除组AGM区细胞行移植实验,检测PDK1对HSC功能的影响;取对照组和敲除组AGM区细胞,通过流式细胞术检测PDK1对能够向造血转化的CD31+c-Kithigh细胞群比例、细胞周期及细胞凋亡的影响;分选对照组和敲除组AGM区CD31+c-Kithigh细胞群,通过Real-time PCR检测PDK1对内皮向造血转换相关的转录因子(RUNX1、P2-RUNX1、GATA2)的影响。 结果 PDK1敲除后,造血祖细胞形成的克隆形态变小,数目减少[敲除组CFU-GM为(24±5)个/ee,对照组为(62±1)个/ee,P=0.001];破坏了造血干细胞重建造血及多向分化的能力(敲除组移植5只,0只重建,对照组移植7只,5只重建,P=0.001);AGM区CD31+c-Kithigh比例降低[敲除组CD31+c-Kithigh比例为(0.145±0.017)%,对照组比例为(0.385±0.04)%,P=0.001];并且AGM区由内皮细胞向造血细胞转换的关键转录因子表达下降,但对CD31+c-Kithigh细胞的增殖和凋亡无明显影响。 结论 在内皮细胞中特异敲除PDK1基因,导致具有向造血转化的内皮细胞群比例降低,影响了HSC的发生,破坏了HSC重建造血的能力。
Collapse
Affiliation(s)
- X L Sun
- Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, State Key Laboratory of Experimental Hematology, Tianjin 300020, China
| | | | | | - W L Wang
- Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, State Key Laboratory of Experimental Hematology, Tianjin 300020, China
| |
Collapse
|
22
|
Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro. Nat Commun 2018; 9:5180. [PMID: 30518921 PMCID: PMC6281598 DOI: 10.1038/s41467-018-07630-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
We previously demonstrated that an integrated XIST transgene can broadly repress one chromosome 21 in Down syndrome (DS) pluripotent cells. Here we address whether trisomy-silencing can normalize cell function and development sufficiently to correct cell pathogenesis, tested in an in vitro model of human fetal hematopoiesis, for which DS cellular phenotypes are best known. XIST induction in four transgenic clones reproducibly corrected over-production of megakaryocytes and erythrocytes, key to DS myeloproliferative disorder and leukemia. A contrasting increase in neural stem and iPS cells shows cell-type specificity, supporting this approach successfully rebalances the hematopoietic developmental program. Given this, we next used this system to extend knowledge of hematopoietic pathogenesis on multiple points. Results demonstrate trisomy 21 expression promotes over-production of CD43+ but not earlier CD34+/CD43-progenitors and indicates this is associated with increased IGF signaling. This study demonstrates proof-of-principle for this epigenetic-based strategy to investigate, and potentially mitigate, DS developmental pathologies.
Collapse
|
23
|
Slukvin II, Uenishi GI. Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. Exp Hematol 2018; 71:3-12. [PMID: 30500414 DOI: 10.1016/j.exphem.2018.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the de novo production of blood cells for transfusion, immunotherapies, and transplantation. However, even with advanced hematopoietic differentiation methods, the primitive and myeloid-restricted waves of hematopoiesis dominate in hPSC differentiation cultures, whereas cell surface markers to distinguish these waves of hematopoiesis from lympho-myeloid hematopoiesis remain unknown. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelium (HE) lining arteries, but not veins. This observation led to a long-standing hypothesis that arterial specification is an essential prerequisite to initiate the HSC program. It has also been established that lymphoid potential in the yolk sac and extraembryonic vasculature is mostly confined to arteries, whereas myeloid-restricted hematopoiesis is not specific to arterial vessels. Here, we review how the link between arterialization and the subsequent definitive multilineage hematopoietic program can be exploited to identify HE enriched in lymphoid progenitors and aid in in vitro approaches to enhance the production of lymphoid cells and potentially HSCs from hPSCs. We also discuss alternative models of hematopoietic specification at arterial sites and recent advances in our understanding of hematopoietic development and the production of engraftable hematopoietic cells from hPSCs.
Collapse
Affiliation(s)
- Igor I Slukvin
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Gene I Uenishi
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| |
Collapse
|
24
|
Bickers C, Española SD, Grainger S, Pouget C, Traver D. Zebrafish snai2 mutants fail to phenocopy morphant phenotypes. PLoS One 2018; 13:e0202747. [PMID: 30208064 PMCID: PMC6135377 DOI: 10.1371/journal.pone.0202747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/07/2018] [Indexed: 11/24/2022] Open
Abstract
Snail2 is a zinc-finger transcription factor best known to repress expression of genes encoding cell adherence proteins to facilitate induction of the epithelial-to-mesenchymal transition. While this role has been best documented in the developmental migration of the neural crest and mesoderm, here we expand on previously reported preliminary findings that morpholino knock-down of snai2 impairs the generation of hematopoietic stem cells (HSCs) during zebrafish development. We demonstrate that snai2 morphants fail to initiate HSC specification and show defects in the somitic niche of migrating HSC precursors. These defects include a reduction in sclerotome markers as well as in the Notch ligands dlc and dld, which are known to be essential components of HSC specification. Accordingly, enforced expression of the Notch1-intracellular domain was capable of rescuing HSC specification in snai2 morphants. To parallel our approach, we obtained two mutant alleles of snai2. In contrast to the morphants, homozygous mutant embryos displayed no defects in HSC specification or in sclerotome development, and mutant fish survive into adulthood. However, when these homozygous mutants were injected with snai2 morpholino, HSCs were improperly specified. In summary, our morpholino data support a role for Snai2 in HSC development, whereas our mutant data suggest that Snai2 is dispensable for this process. Together, these findings further support the need for careful consideration of both morpholino and mutant phenotypes in studies of gene function.
Collapse
Affiliation(s)
- Cara Bickers
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Sophia D. Española
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephanie Grainger
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Claire Pouget
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - David Traver
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
25
|
Ghanem LR, Kromer A, Silverman IM, Ji X, Gazzara M, Nguyen N, Aguilar G, Martinelli M, Barash Y, Liebhaber SA. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol 2018; 38:e00175-18. [PMID: 29866654 PMCID: PMC6066754 DOI: 10.1128/mcb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/10/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022] Open
Abstract
Formation of the mammalian hematopoietic system is under a complex set of developmental controls. Here, we report that mouse embryos lacking the KH domain poly(C) binding protein, Pcbp2, are selectively deficient in the definitive erythroid lineage. Compared to wild-type controls, transcript splicing analysis of the Pcbp2-/- embryonic liver reveals accentuated exclusion of an exon (exon 6) that encodes a highly conserved transcriptional control segment of the hematopoietic master regulator, Runx1. Embryos rendered homozygous for a Runx1 locus lacking this cassette exon (Runx1ΔE6) effectively phenocopy the loss of the definitive erythroid lineage in Pcbp2-/- embryos. These data support a model in which enhancement of Runx1 cassette exon 6 inclusion by Pcbp2 serves a critical role in development of hematopoietic progenitors and constitutes a critical step in the developmental pathway of the definitive erythropoietic lineage.
Collapse
Affiliation(s)
- Louis R Ghanem
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Kromer
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Gazzara
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nhu Nguyen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabrielle Aguilar
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Massimo Martinelli
- Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol 2018; 330:5-15. [DOI: 10.1016/j.cellimm.2018.01.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
|
27
|
Kang H, Mesquitta WT, Jung HS, Moskvin OV, Thomson JA, Slukvin II. GATA2 Is Dispensable for Specification of Hemogenic Endothelium but Promotes Endothelial-to-Hematopoietic Transition. Stem Cell Reports 2018; 11:197-211. [PMID: 29861167 PMCID: PMC6066910 DOI: 10.1016/j.stemcr.2018.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/05/2023] Open
Abstract
The transcriptional factor GATA2 is required for blood and hematopoietic stem cell formation during the hemogenic endothelium (HE) stage of development in the embryo. However, it is unclear if GATA2 controls HE lineage specification or if it solely regulates endothelial-to-hematopoietic transition (EHT). To address this problem, we innovated a unique system, which involved generating GATA2 knockout human embryonic stem cell (hESC) lines with conditional GATA2 expression (iG2-/- hESCs). We demonstrated that GATA2 activity is not required for VE-cadherin+CD43-CD73+ non-HE or VE-cadherin+CD43-CD73- HE generation and subsequent HE diversification into DLL4+ arterial and DLL4- non-arterial lineages. However, GATA2 is primarily needed for HE to undergo EHT. Forced expression of GATA2 in non-HE failed to induce blood formation. The lack of GATA2 requirement for generation of HE and non-HE indicates the critical role of GATA2-independent pathways in specification of these two distinct endothelial lineages.
Collapse
Affiliation(s)
- HyunJun Kang
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Walatta-Tseyon Mesquitta
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Oleg V Moskvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
28
|
Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage. Proc Natl Acad Sci U S A 2018; 114:5814-5821. [PMID: 28584091 DOI: 10.1073/pnas.1610615114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) that sustain lifelong blood production are created during embryogenesis. They emerge from a specialized endothelial population, termed hemogenic endothelium (HE), located in the ventral wall of the dorsal aorta (DA). In Xenopus, we have been studying the gene regulatory networks (GRNs) required for the formation of HSCs, and critically found that the hemogenic potential is defined at an earlier time point when precursors to the DA express hematopoietic as well as endothelial genes, in the definitive hemangioblasts (DHs). The GRN for DH programming has been constructed and, here, we show that bone morphogenetic protein (BMP) signaling is essential for the initiation of this GRN. BMP2, -4, and -7 are the principal ligands expressed in the lineage forming the HE. To investigate the requirement and timing of all BMP signaling in HSC ontogeny, we have used a transgenic line, which inducibly expresses an inhibitor of BMP signaling, Noggin, as well as a chemical inhibitor of BMP receptors, DMH1, and described the inputs from BMP signaling into the DH GRN and the HE, as well as into primitive hematopoiesis. BMP signaling is required in at least three points in DH programming: first to initiate the DH GRN through gata2 expression, then for kdr expression to enable the DH to respond to vascular endothelial growth factor A (VEGFA) ligand from the somites, and finally for gata2 expression in the DA, but is dispensable for HE specification after hemangioblasts have been formed.
Collapse
|
29
|
Identification of Novel Hemangioblast Genes in the Early Chick Embryo. Cells 2018; 7:cells7020009. [PMID: 29385069 PMCID: PMC5850097 DOI: 10.3390/cells7020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 12/20/2022] Open
Abstract
During early vertebrate embryogenesis, both hematopoietic and endothelial lineages derive from a common progenitor known as the hemangioblast. Hemangioblasts derive from mesodermal cells that migrate from the posterior primitive streak into the extraembryonic yolk sac. In addition to primitive hematopoietic cells, recent evidence revealed that yolk sac hemangioblasts also give rise to tissue-resident macrophages and to definitive hematopoietic stem/progenitor cells. In our previous work, we used a novel hemangioblast-specific reporter to isolate the population of chick yolk sac hemangioblasts and characterize its gene expression profile using microarrays. Here we report the microarray profile analysis and the identification of upregulated genes not yet described in hemangioblasts. These include the solute carrier transporters SLC15A1 and SCL32A1, the cytoskeletal protein RhoGap6, the serine protease CTSG, the transmembrane receptor MRC1, the transcription factors LHX8, CITED4 and PITX1, and the previously uncharacterized gene DIA1R. Expression analysis by in situ hybridization showed that chick DIA1R is expressed not only in yolk sac hemangioblasts but also in particular intraembryonic populations of hemogenic endothelial cells, suggesting a potential role in the hemangioblast-derived hemogenic lineage. Future research into the function of these newly identified genes may reveal novel important regulators of hemangioblast development.
Collapse
|
30
|
Zhang Q, Gerlach JC, Schmelzer E, Nettleship I. Effect of Calcium-Infiltrated Hydroxyapatite Scaffolds on the Hematopoietic Fate of Human Umbilical Vein Endothelial Cells. J Vasc Res 2017; 54:376-385. [PMID: 29166642 DOI: 10.1159/000481778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/23/2017] [Indexed: 02/01/2023] Open
Abstract
Foamed hydroxyapatite offers a three-dimensional scaffold for the development of bone constructs, mimicking perfectly the in vivo bone structure. In vivo, calcium release at the surface is assumed to provide a locally increased gradient supporting the maintenance of the hematopoietic stem cells niche. We fabricated hydroxyapatite scaffolds with high surface calcium concentration by infiltration, and used human umbilical vein endothelial cells (HUVECs) as a model to study the effects on hematopoietic lineage direction. HUVECs are umbilical vein-derived and thus possess progenitor characteristics, with a prospective potential to give rise to hematopoietic lineages. HUVECs were cultured for long term on three-dimensional porous hydroxyapatite scaffolds, which were either infiltrated biphasic foams or untreated. Controls were cultured in two-dimensional dishes. The release of calcium into culture medium was determined, and cells were analyzed for typical hematopoietic and endothelial gene expressions, surface markers by flow cytometry, and hematopoietic potential using colony-forming unit assays. Our results indicate that the biphasic foams promoted a hematopoietic lineage direction of HUVECs, suggesting an improved in vivo-like scaffold for hematopoietic bone tissue engineering.
Collapse
Affiliation(s)
- Qinghao Zhang
- Department of Mechanical Engineering and Materials Science, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
31
|
Thrombopoietin contributes to the formation and the maintenance of hematopoietic progenitor-containing cell clusters in the aorta-gonad-mesonephros region. Cytokine 2017; 95:35-42. [DOI: 10.1016/j.cyto.2017.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/24/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
|
32
|
SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 2017; 129:2051-2060. [DOI: 10.1182/blood-2016-12-754051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Abstract
SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL’s activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL’s regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.
Collapse
|
33
|
Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 2017; 129:2061-2069. [PMID: 28179276 DOI: 10.1182/blood-2016-12-689109] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.
Collapse
|
34
|
Yzaguirre AD, de Bruijn MFTR, Speck NA. The Role of Runx1 in Embryonic Blood Cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:47-64. [DOI: 10.1007/978-981-10-3233-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Dou DR, Calvanese V, Sierra MI, Nguyen AT, Minasian A, Saarikoski P, Sasidharan R, Ramirez CM, Zack JA, Crooks GM, Galic Z, Mikkola HKA. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol 2016; 18:595-606. [PMID: 27183470 PMCID: PMC4981340 DOI: 10.1038/ncb3354] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/08/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSC) may provide a potential source of haematopoietic stem/progenitor cells (HSPCs) for transplantation; however, unknown molecular barriers prevent the self-renewal of PSC-HSPCs. Using two-step differentiation, human embryonic stem cells (hESCs) differentiated in vitro into multipotent haematopoietic cells that had CD34+CD38−/loCD90+CD45+GPI-80+ foetal liver (FL) HSC immunophenotype, but displayed poor expansion potential and engraftment ability. Transcriptome analysis of immunophenotypic hESC-HSPCs revealed that, despite their molecular resemblance to FL-HSPCs, medial HOXA genes remained suppressed. Knockdown of HOXA7 disrupted FL-HSPC function and caused transcriptome dysregulation that resembled hESC-derived progenitors. Overexpression of medial HOXA genes prolonged FL-HSPC maintenance but was insufficient to confer self-renewal to hESC-HSPCs. Stimulation of retinoic acid signalling during endothelial-to-haematopoietic transition induced the HOXA cluster and other HSC/definitive haemogenic endothelium genes, and prolonged HSPC maintenance in culture. Thus, retinoic acid signalling-induced medial HOXA gene expression marks the establishment of the definitive HSC fate and controls HSC identity and function.
Collapse
Affiliation(s)
- Diana R Dou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Maria I Sierra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Andrew T Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Arazin Minasian
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Pamela Saarikoski
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Jerome A Zack
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Gay M Crooks
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Zoran Galic
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
36
|
Kobayashi I, Katakura F, Moritomo T. Isolation and characterization of hematopoietic stem cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:86-94. [PMID: 26801099 DOI: 10.1016/j.dci.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Despite 400 million years of evolutionary divergence, hematopoiesis is highly conserved between mammals and teleost fish. All types of mature blood cells including the erythroid, myeloid, and lymphoid lineages show a high degree of similarity to their mammalian counterparts at the morphological and molecular level. Hematopoietic stem cells (HSCs) are cells that are capable of self-renewal and differentiating into all hematopoietic lineages over the lifetime of an organism. The study of HSCs has been facilitated through bone marrow transplantation experiments developed in the mouse model. In the last decade, the zebrafish and clonal ginbuna carp (Carassius auratus langsdorfii) have emerged as new models for the study of HSCs. This review highlights the recent progress and future prospects of studying HSCs in teleost fish. Transplantation assays using these teleost models have demonstrated the presence of HSCs in the kidney, which is the major hematopoietic organ in teleost fish. Moreover, it is possible to purify HSCs from the kidney utilizing fluorescent dyes or transgenic animals. These teleost models will provide novel insights into the universal mechanisms of HSC maintenance, homeostasis, and differentiation among vertebrates.
Collapse
Affiliation(s)
- Isao Kobayashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
37
|
Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci 2016; 73:1547-67. [PMID: 26849156 PMCID: PMC4805691 DOI: 10.1007/s00018-016-2134-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Hemogenic endothelium is a specialized subset of developing vascular endothelium that acquires hematopoietic potential and can give rise to multilineage hematopoietic stem and progenitor cells during a narrow developmental window in tissues such as the extraembryonic yolk sac and embryonic aorta-gonad-mesonephros. Herein, we review current knowledge about the historical and developmental origins of hemogenic endothelium, the molecular events that govern hemogenic specification of vascular endothelial cells, the generation of multilineage hematopoietic stem and progenitor cells from hemogenic endothelium, and the potential for translational applications of knowledge gained from further study of these processes.
Collapse
Affiliation(s)
- Emily Gritz
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Karen K Hirschi
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA.
| |
Collapse
|
38
|
Analysis of Jak2 signaling reveals resistance of mouse embryonic hematopoietic stem cells to myeloproliferative disease mutation. Blood 2016; 127:2298-309. [PMID: 26864339 DOI: 10.1182/blood-2015-08-664631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/06/2016] [Indexed: 01/28/2023] Open
Abstract
The regulation of hematopoietic stem cell (HSC) emergence during development provides important information about the basic mechanisms of blood stem cell generation, expansion, and migration. We set out to investigate the role that cytokine signaling pathways play in these early processes and show here that the 2 cytokines interleukin 3 and thrombopoietin have the ability to expand hematopoietic stem and progenitor numbers by regulating their survival and proliferation. For this, they differentially use the Janus kinase (Jak2) and phosphatidylinositol 3-kinase (Pi3k) signaling pathways, with Jak2 mainly relaying the proproliferation signaling, whereas Pi3k mediates the survival signal. Furthermore, using Jak2-deficient embryos, we demonstrate that Jak2 is crucially required for the function of the first HSCs, whereas progenitors are less dependent on Jak2. The JAK2V617F mutation, which renders JAK2 constitutively active and has been linked to myeloproliferative neoplasms, was recently shown to compromise adult HSC function, negatively affecting their repopulation and self-renewal ability, partly through the accumulation of JAK2V617F-induced DNA damage. We report here that nascent HSCs are resistant to the JAK2V617F mutation and show no decrease in repopulation or self-renewal and no increase in DNA damage, even in the presence of 2 mutant copies. More importantly, this unique property of embryonic HSCs is stably maintained through ≥1 round of successive transplantations. In summary, our dissection of cytokine signaling in embryonic HSCs has uncovered unique properties of these cells that are of clinical importance.
Collapse
|
39
|
Elcheva I, Brok-Volchanskaya V, Slukvin I. Direct Induction of Hemogenic Endothelium and Blood by Overexpression of Transcription Factors in Human Pluripotent Stem Cells. J Vis Exp 2015:e52910. [PMID: 26710184 DOI: 10.3791/52910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During development, hematopoietic cells arise from a specialized subset of endothelial cells, hemogenic endothelium (HE). Modeling HE development in vitro is essential for mechanistic studies of the endothelial-hematopoietic transition and hematopoietic specification. Here, we describe a method for the efficient induction of HE from human pluripotent stem cells (hPSCs) by way of overexpression of different sets of transcription factors. The combination of ETV2 and GATA1 or GATA2 TFs is used to induce HE with pan-myeloid potential, while a combination of GATA2 and TAL1 transcription factors allows for the production of HE with erythroid and megakaryocytic potential. The addition of LMO2 to GATA2 and TAL1 combination substantially accelerates differentiation and increases erythroid and megakaryocytic cells production. This method provides an efficient and rapid means of HE induction from hPSCs and allows for the observation of the endothelial-hematopoietic transition in a culture dish. The protocol includes hPSCs transduction procedures and post-transduction analysis of HE and blood progenitors.
Collapse
Affiliation(s)
- Irina Elcheva
- Primate Research Center, University of Wisconsin-Madison
| | | | - Igor Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health;
| |
Collapse
|
40
|
Hoeffel G, Ginhoux F. Ontogeny of Tissue-Resident Macrophages. Front Immunol 2015; 6:486. [PMID: 26441990 PMCID: PMC4585135 DOI: 10.3389/fimmu.2015.00486] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/07/2015] [Indexed: 01/01/2023] Open
Abstract
The origin of tissue-resident macrophages, crucial for homeostasis and immunity, has remained controversial until recently. Originally described as part of the mononuclear phagocyte system, macrophages were long thought to derive solely from adult blood circulating monocytes. However, accumulating evidence now shows that certain macrophage populations are in fact independent from monocyte and even from adult bone marrow hematopoiesis. These tissue-resident macrophages derive from sequential seeding of tissues by two precursors during embryonic development. Primitive macrophages generated in the yolk sac (YS) from early erythro-myeloid progenitors (EMPs), independently of the transcription factor c-Myb and bypassing monocytic intermediates, first give rise to microglia. Later, fetal monocytes, generated from c-Myb+ EMPs that initially seed the fetal liver (FL), then give rise to the majority of other adult macrophages. Thus, hematopoietic stem cell-independent embryonic precursors transiently present in the YS and the FL give rise to long-lasting self-renewing macrophage populations.
Collapse
Affiliation(s)
- Guillaume Hoeffel
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| |
Collapse
|
41
|
Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood 2015; 126:2811-20. [PMID: 26385351 DOI: 10.1182/blood-2015-07-659276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs.
Collapse
|
42
|
McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC, Kingsley PD, Koniski AD, Palis J. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo. Cell Rep 2015; 11:1892-904. [PMID: 26095363 DOI: 10.1016/j.celrep.2015.05.036] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/29/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs). At embryonic day 9.5 (E9.5), we show the first murine definitive erythro-myeloid progenitors (EMPs) have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC)-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.
Collapse
Affiliation(s)
- Kathleen E McGrath
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jenna M Frame
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine H Fegan
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James R Bowen
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Simon J Conway
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Seana C Catherman
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anne D Koniski
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
43
|
Hadland BK, Varnum-Finney B, Poulos MG, Moon RT, Butler JM, Rafii S, Bernstein ID. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells. J Clin Invest 2015; 125:2032-45. [PMID: 25866967 DOI: 10.1172/jci80137] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/05/2015] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications.
Collapse
|
44
|
Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A 2015; 112:E1734-43. [PMID: 25831528 DOI: 10.1073/pnas.1424850112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lineage specification during development involves reprogramming of transcriptional states, but little is known about how this is regulated in vivo. The chromatin remodeler chomodomain helicase DNA-binding protein 1 (Chd1) promotes an elevated transcriptional output in mouse embryonic stem cells. Here we report that endothelial-specific deletion of Chd1 leads to loss of definitive hematopoietic progenitors, anemia, and lethality by embryonic day (E)15.5. Mutant embryos contain normal numbers of E10.5 intraaortic hematopoietic clusters that express Runx1 and Kit, but these clusters undergo apoptosis and fail to mature into blood lineages in vivo and in vitro. Hematopoietic progenitors emerging from the aorta have an elevated transcriptional output relative to structural endothelium, and this elevation is Chd1-dependent. In contrast, hematopoietic-specific deletion of Chd1 using Vav-Cre has no apparent phenotype. Our results reveal a new paradigm of regulation of a developmental transition by elevation of global transcriptional output that is critical for hemogenesis and may play roles in other contexts.
Collapse
|
45
|
Ayllón V, Bueno C, Ramos-Mejía V, Navarro-Montero O, Prieto C, Real PJ, Romero T, García-León MJ, Toribio ML, Bigas A, Menendez P. The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia 2015; 29:1741-53. [PMID: 25778099 DOI: 10.1038/leu.2015.74] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022]
Abstract
Notch signaling is essential for definitive hematopoiesis, but its role in human embryonic hematopoiesis is largely unknown. We show that in hESCs the expression of the Notch ligand DLL4 is induced during hematopoietic differentiation. We found that DLL4 is only expressed in a sub-population of bipotent hematoendothelial progenitors (HEPs) and segregates their hematopoietic versus endothelial potential. We demonstrate at the clonal level and through transcriptome analyses that DLL4(high) HEPs are enriched in endothelial potential, whereas DLL4(low/-) HEPs are committed to the hematopoietic lineage, albeit both populations still contain bipotent cells. Moreover, DLL4 stimulation enhances hematopoietic differentiation of HEPs and increases the amount of clonogenic hematopoietic progenitors. Confocal microscopy analysis of whole differentiating embryoid bodies revealed that DLL4(high) HEPs are located close to DLL4(low/-) HEPs, and at the base of clusters of CD45+ cells, resembling intra-aortic hematopoietic clusters found in mouse embryos. We propose a model for human embryonic hematopoiesis in which DLL4(low/-) cells within hemogenic endothelium receive Notch-activating signals from DLL4(high) cells, resulting in an endothelial-to-hematopoietic transition and their differentiation into CD45+ hematopoietic cells.
Collapse
Affiliation(s)
- V Ayllón
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - V Ramos-Mejía
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - O Navarro-Montero
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - C Prieto
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - P J Real
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - T Romero
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - M J García-León
- Centro de Biologia Molecular Severo Ochoa (CBM-SO), CSIC-UAM, Campus de la Universidad Autonoma de Madrid, Madrid, Spain
| | - M L Toribio
- Centro de Biologia Molecular Severo Ochoa (CBM-SO), CSIC-UAM, Campus de la Universidad Autonoma de Madrid, Madrid, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - P Menendez
- 1] Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
46
|
Butko E, Distel M, Pouget C, Weijts B, Kobayashi I, Ng K, Mosimann C, Poulain FE, McPherson A, Ni CW, Stachura DL, Del Cid N, Espín-Palazón R, Lawson ND, Dorsky R, Clements WK, Traver D. Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development 2015; 142:1050-61. [PMID: 25758220 PMCID: PMC4360177 DOI: 10.1242/dev.119180] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/29/2015] [Indexed: 12/13/2022]
Abstract
The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system.
Collapse
Affiliation(s)
- Emerald Butko
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Martin Distel
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Claire Pouget
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Bart Weijts
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Isao Kobayashi
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kevin Ng
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Fabienne E Poulain
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Adam McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Chih-Wen Ni
- University of Massachusetts at Worcester, Worcester, MA 01605, USA
| | - David L Stachura
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Natasha Del Cid
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Raquel Espín-Palazón
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nathan D Lawson
- University of Massachusetts at Worcester, Worcester, MA 01605, USA
| | - Richard Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Wilson K Clements
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
47
|
Cell interactions and cell signaling during hematopoietic development. Exp Cell Res 2014; 329:200-6. [DOI: 10.1016/j.yexcr.2014.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/30/2022]
|
48
|
FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway. Nat Commun 2014; 5:5588. [PMID: 25429520 DOI: 10.1038/ncomms6588] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022] Open
Abstract
Haematopoietic stem cells (HSCs) are produced during embryogenesis from the floor of the dorsal aorta. The localization of HSCs is dependent on the presence of instructive signals on the ventral side of the vessel. The nature of the extrinsic molecular signals that control the aortic haematopoietic niche is currently poorly understood. Here we demonstrate a novel requirement for FGF signalling in the specification of aortic haemogenic endothelium. Our results demonstrate that FGF signalling normally acts to repress BMP activity in the subaortic mesenchyme through transcriptional inhibition of bmp4, as well as through activation of two BMP antagonists, noggin2 and gremlin1a. Taken together, these findings demonstrate a key role for FGF signalling in establishment of the developmental HSC niche via its regulation of BMP activity in the subaortic mesenchyme. These results should help inform strategies to recapitulate the development of HSCs in vitro from pluripotent precursors.
Collapse
|
49
|
Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 2014; 28:2597-612. [PMID: 25395663 PMCID: PMC4248291 DOI: 10.1101/gad.253302.114] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here, Li et al. show that inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell (HSPC) formation. HSCs from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos expressed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ )or IFN-α signaling and zebrafish lacking IFN-γ and IFN-ϕ activity had fewer AGM HSPCs. IRF2-occupied genes identified in human fetal liver CD34+ HSPCs were actively transcribed in human and mouse HSPCs. Identifying signaling pathways that regulate hematopoietic stem and progenitor cell (HSPC) formation in the embryo will guide efforts to produce and expand HSPCs ex vivo. Here we show that sterile tonic inflammatory signaling regulates embryonic HSPC formation. Expression profiling of progenitors with lymphoid potential and hematopoietic stem cells (HSCs) from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos revealed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ) or IFN-α signaling and zebrafish morphants lacking IFN-γ and IFN-ϕ activity had significantly fewer AGM HSPCs. Conversely, knockdown of IFN regulatory factor 2 (IRF2), a negative regulator of IFN signaling, increased expression of IFN target genes and HSPC production in zebrafish. Chromatin immunoprecipitation (ChIP) combined with sequencing (ChIP-seq) and expression analyses demonstrated that IRF2-occupied genes identified in human fetal liver CD34+ HSPCs are actively transcribed in human and mouse HSPCs. Furthermore, we demonstrate that the primitive myeloid population contributes to the local inflammatory response to impact the scale of HSPC production in the AGM region. Thus, sterile inflammatory signaling is an evolutionarily conserved pathway regulating the production of HSPCs during embryonic development.
Collapse
Affiliation(s)
- Yan Li
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Virginie Esain
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Li Teng
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jian Xu
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Wanda Kwan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Isaura M Frost
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amanda D Yzaguirre
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Xiongwei Cai
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marijke W Maijenburg
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Joanna Tober
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Elaine Dzierzak
- The University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Kai Tan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA; Department of Bioengineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Nancy A Speck
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| |
Collapse
|
50
|
Rybtsov S, Batsivari A, Bilotkach K, Paruzina D, Senserrich J, Nerushev O, Medvinsky A. Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43(-) embryonic precursor. Stem Cell Reports 2014; 3:489-501. [PMID: 25241746 PMCID: PMC4266012 DOI: 10.1016/j.stemcr.2014.07.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
Definitive hematopoietic stem cells (HSCs) develop in the aorta gonad mesonephros (AGM) region in a stepwise manner. Type I pre-HSCs express CD41 but lack CD45 expression, which is subsequently upregulated in type II pre-HSCs prior to their maturation into definitive HSCs. Here, using ex vivo modeling of HSC development, we identify precursors of definitive HSCs in the trunk of the embryonic day 9.5 (E9.5) mouse embryo. These precursors, termed here pro-HSCs, are less mature than type I and II pre-HSCs. Although pro-HSCs are CD41(+), they lack the CD43 marker, which is gradually upregulated in the developing HSC lineage. We show that stem cell factor (SCF), but not interleukin-3 (IL-3), is a major effector of HSC maturation during E9-E10. This study extends further the previously established hierarchical organization of the developing HSC lineage and presents it as a differentially regulated four-step process and identifies additional targets that could facilitate the generation of transplantable HSCs from pluripotent cells for clinical needs.
Collapse
Affiliation(s)
- Stanislav Rybtsov
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Antoniana Batsivari
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Kateryna Bilotkach
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Daria Paruzina
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Jordi Senserrich
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Oleg Nerushev
- School of Chemistry, EaStCHEM, The University of Edinburgh, Edinburgh EH9 3JJ, Scotland, UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK.
| |
Collapse
|