1
|
Rahim INA, Omar E, Muid SA, Kasim NAM. Antiatherogenic and plaque stabilizing effects of saffron ethanolic extract in atherosclerotic rabbits. BMC Complement Med Ther 2025; 25:187. [PMID: 40410745 PMCID: PMC12102833 DOI: 10.1186/s12906-025-04927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Saffron, the dried stigma of the flower Crocus sativus L., has been shown to have therapeutic effects on cardiovascular diseases. Several studies have explored the impact of saffron on atherosclerosis. However, the mechanism underlying the plaque-stabilizing and antiatherosclerotic effects of saffron has not been widely studied. Therefore, this study aimed to investigate the mechanism of the antiatherosclerotic and plaque-stabilizing effects of saffron ethanolic extract in experimentally induced atherosclerotic rabbits. METHODS New Zealand White rabbits were fed a 1% high-cholesterol diet (HCD) for 8 weeks to induce established atherosclerosis. The rabbits were then treated with 50 or 100 mg/kg/day saffron ethanolic extract (SAF), simvastatin (2.5 mg/kg/day) or placebo for another 8 weeks. Body weight, lipid profile, percentage of atherosclerotic lesions, immunohistochemical analysis, and quantitative real-time polymerase chain reaction were performed at baseline, after high-cholesterol diet feeding, and after the intervention. RESULTS The results showed that SAF had no significant effect on body weight. However, treatment with both doses of SAF markedly attenuated the levels of low-density lipoprotein (LDL) and total cholesterol (TC) in atherosclerotic rabbits. Higher doses of SAF markedly reduced atherosclerotic lesions in rabbit aortas. Additionally, SAF suppressed the tissue and gene expression of adhesion molecules and pro-inflammatory biomarkers in the aorta. SAF also reduced MMP-9 tissue expression in the aortas of atherosclerotic rabbits, thereby increasing plaque stability. CONCLUSIONS Our findings suggest that saffron ethanolic extract exhibits therapeutic potential in rabbits with HCD-induced atherosclerosis. This effect may be associated with the modulation of inflammatory pathways, leading to reduced expression of pro-inflammatory cytokines, endothelial activation markers, and matrix metalloproteinases. The observed reduction in vascular inflammation and endothelial activation may contribute to improved lipid profiles, decreased atherosclerotic lesion severity, and enhanced plaque stability. While these findings highlight the potential of saffron ethanolic extract as an adjunctive treatment for atherosclerosis, further studies are warranted to clarify its direct effects on lipid metabolism and underlying molecular mechanisms. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Iman Nabilah Abd Rahim
- Cardiovascular Advancement and Research Excellence Institute (CARE Institute), Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Effat Omar
- Cardiovascular Advancement and Research Excellence Institute (CARE Institute), Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Suhaila Abd Muid
- Cardiovascular Advancement and Research Excellence Institute (CARE Institute), Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
- Department of Biochemistry & Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Noor Alicezah Mohd Kasim
- Cardiovascular Advancement and Research Excellence Institute (CARE Institute), Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia.
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia.
| |
Collapse
|
2
|
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1467. [PMID: 38891276 PMCID: PMC11174376 DOI: 10.3390/plants13111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal 191201, India;
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
3
|
Zhang Y, Qi Y, Jia Z, Li Y, Wu L, Zhou Q, Xu F. Effects and mechanisms of Zhizi Chuanxiong herb pair against atherosclerosis: an integration of network pharmacology, molecular docking, and experimental validation. Chin Med 2024; 19:8. [PMID: 38212797 PMCID: PMC10782628 DOI: 10.1186/s13020-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The Zhizi Chuanxiong herb pair (ZCHP) can delay pathological progression of atherosclerosis (AS); however, its pharmacological mechanism remains unclear because of its complex components. The purpose of current study is to systematically investigate the anti-AS mechanism of ZCHP. METHODS The databases of TCMSP, STITCH, SwissTargetPrediction, BATMAN-TCM, and ETCM were searched to predict the potential targets of ZCHP components. Disease targets associated with AS was retrieved from the GEO database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were executed using DAVID 6.8. Molecular docking method was employed to evaluate the core target binding to blood components, and animal experiments were performed to test action mechanism. RESULTS A ZCHP-components-targets-AS network was constructed by using Cytoscape, included 11 main components and 52 candidate targets. Crucial genes were shown in the protein-protein interaction network, including TNF, IL-1β, IGF1, MMP9, COL1A1, CCR5, HMOX1, PTGS1, SELE, and SYK. KEGG enrichment illustrated that the NF-κB, Fc epsilon RI, and TNF signaling pathways were important for AS treatment. These results were validated by molecular docking. In ApoE-/- mice, ZCHP significantly reduced intima-media thickness, pulse wave velocity, plaque area, and serum lipid levels while increasing the difference between the end-diastolic and end-systolic diameters. Furthermore, ZCHP significantly decreased the mRNA and protein levels of TNF-α and IL-1β, suppressed NF-κB activation, and inhibited the M1 macrophage polarization marker CD86 in ApoE-/- mice. CONCLUSION This study combining network pharmacology, molecular biology, and animal experiments showed that ZCHP can alleviate AS by suppressing the TNF/NF-κB axis and M1 macrophage polarization.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Qi
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zijun Jia
- Comprehensive Care of China-Japan Friendship Hospital, Beijing, China
| | - Yiming Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University, Beijing, China
| | - Liqi Wu
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Fengqin Xu
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1879-1909. [PMID: 37067583 DOI: 10.1007/s00210-023-02487-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The primary by-product of saffron (Crocus sativus) processing is saffron petals, which are produced in large quantities but are discarded. The saffron petals contain a variety of substances, including alkaloids, anthocyanins, flavonoids, glycosides, kaempferol, and minerals. Pharmacological investigations revealed the antibacterial, antidepressant, antidiabetic, antihypertensive, antinociceptive, antispasmodic, antitussive, hepatoprotective, immunomodulatory, and renoprotective properties of saffron petals, which are based on their antioxidant, anti-inflammatory, and antiapoptotic effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway protects against oxidative stress, carcinogenesis, and inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) is a protein complex involved in approximately all animal cells and participates in different biological procedures such as apoptosis, cell growth, development, deoxyribonucleic acid (DNA) transcription, immune response, and inflammation. The pharmacological properties of saffron and its compounds are discussed in this review, along with their associated modes of action, particularly the Nrf2 and NF-ĸB signaling pathways. Without considering a time constraint, our team conducted this review using search engines or electronic databases like PubMed, Scopus, and Web of Science. Saffron petals and their main constituents may have protective effects in numerous organs such as the brain, colon, heart, joints, liver, lung, and pancreas through several mechanisms, including the Nrf2/heme oxygenase-1 (HO-1)/Kelch-like ECH-associated protein 1 (Keap1) signaling cascade, which would then result in its antioxidant, anti-inflammatory, antiapoptotic, and therapeutic effects.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Aissa R, Ibourki M, Ait Bouzid H, Bijla L, Oubannin S, Sakar EH, Jadouali S, Hermansyah A, Goh KW, Ming LC, Bouyahya A, Gharby S. Phytochemistry, quality control and medicinal uses of Saffron ( Crocus sativus L.): an updated review. J Med Life 2023; 16:822-836. [PMID: 37675158 PMCID: PMC10478662 DOI: 10.25122/jml-2022-0353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 09/08/2023] Open
Abstract
Saffron, botanically known as Crocus sativus L., is renowned as the world's most expensive spice and has been utilized in various fields since ancient times. Extensive scientific research has been conducted on Crocus sativus (C. sativus), focusing on its phytochemical composition, diverse applications, and biological activities. C. sativus phytochemicals consist mainly of three compounds, namely crocin, picrocrocin, and safranal, which are responsible for most of its properties. Saffron is rich in bioactive compounds, more than 150 of which have been isolated. Owing to its unique composition and properties, saffron is used in various fields, such as the food industry, perfumery, cosmetics, pharmaceutics, and medicine. However, the high economic value of saffron makes it susceptible to adulteration and various fraudulent practices. To deal with this issue, a number of methods and techniques have been developed to authenticate and determine adulterants in saffron. This paper presents a bibliometric study of saffron based on the Web of Science database, analyzing 3,735 studies published between 2000 and 2021. The study also examined author participation and collaboration networks among countries. Production, transformation, chemical composition, methods of adulteration detection, uses, and health properties of saffron are also discussed.
Collapse
Affiliation(s)
- Rabha Aissa
- Department of Bio-Industrial Engineering & Environment, Bioprocesses and Environment Team, Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ibourki
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Hasna Ait Bouzid
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Laila Bijla
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Samira Oubannin
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology, and Health, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Simohamed Jadouali
- Laboratory of Biotechnology, Bioanalysis and Bioinformatics, Superior School of Technology, Sultan Moulay Slimane University, Khenifra, Morocco
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Abdelhakim Bouyahya
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| |
Collapse
|
6
|
Guo H, Ruan C, Zhan X, Pan H, Luo Y, Gao K. Crocetin Protected Human Hepatocyte LO2 Cell From TGF-β-Induced Oxygen Stress and Apoptosis but Promoted Proliferation and Autophagy via AMPK/m-TOR Pathway. Front Public Health 2022; 10:909125. [PMID: 35836988 PMCID: PMC9273739 DOI: 10.3389/fpubh.2022.909125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the protective effects of crocetin against transforming growth factor-β (TGF-β)—induced injury in LO2 cells. Methods Human hepatocyte LO2 cells were pre-treated with crocetin (10 μM) for 6, 12, and 24 h, and then induced by TGF-β. Proliferation, oxidative stress, apoptosis, autophagy, and related proteins were assessed. Results Crocetin pre-treating promoted proliferation but suppressed apoptosis in TGF-β-induced LO2 cells. Crocetin protected LO2 cells from TGF-β-induced inflammation and oxygen stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) but enhancing superoxide dismutase (SOD) and glutathione (GSH). Autophagy was suppressed in TGF-β but crocetin promoted autophagy in LO2 cells by mediating Adenosine 5'-monophosphate—activated protein kinase (AMPK)/mammalian target of rapamycin (m-TOR) signaling pathway via upregulating p-AMPK and p-Beclin-1 but downregulating p-mTOR. Conclusions Crocetin protected LO2 cells from TGF-β-induced damage by promoting proliferation and autophagy, and suppressing apoptosis and anti-inflammation via regulation of AMPK/m-TOR signaling pathway.
Collapse
Affiliation(s)
- Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chenyu Ruan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhong Zhan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hao Pan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yumei Luo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ke Gao
- Department of Pathology, Foshan Fosun Chancheng Hospital, Foshan, China
- *Correspondence: Ke Gao
| |
Collapse
|
7
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Crocetin exerts hypocholesterolemic effect by inducing LDLR and inhibiting PCSK9 and Sortilin in HepG2 cells. Nutr Res 2022; 98:41-49. [DOI: 10.1016/j.nutres.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
|
9
|
El Midaoui A, Ghzaiel I, Vervandier-Fasseur D, Ksila M, Zarrouk A, Nury T, Khallouki F, El Hessni A, Ibrahimi SO, Latruffe N, Couture R, Kharoubi O, Brahmi F, Hammami S, Masmoudi-Kouki O, Hammami M, Ghrairi T, Vejux A, Lizard G. Saffron (Crocus sativus L.): A Source of Nutrients for Health and for the Treatment of Neuropsychiatric and Age-Related Diseases. Nutrients 2022; 14:nu14030597. [PMID: 35276955 PMCID: PMC8839854 DOI: 10.3390/nu14030597] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| | - Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comte, 21000 Dijon, France;
| | - Mohamed Ksila
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Salama Ouazzani Ibrahimi
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran 31000, Algeria;
| | - Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Sonia Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Olfa Masmoudi-Kouki
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Taoufik Ghrairi
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| |
Collapse
|
10
|
Roshanravan N, Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytother Res 2021; 36:98-111. [PMID: 34532906 DOI: 10.1002/ptr.7286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
Crocus sativus Linn. (Saffron) is valued worldwide for its potential use in the management of various degenerative disorders, including cardiovascular diseases (CVDs), diabetes, cancer, metabolic syndrome (MetS), neurodegenerative diseases, immune disorders, and sexual dysfunction. Previous reports, based on clinical trials, suggest that crocetin, crocin, picrocrocin, and safranal are the main bioactive components of saffron with antioxidant, anti-inflammatory, and anti-apoptotic effects. In this comprehensive narrative review, we studied the recent clinical trials, investigating the medicinal applications of saffron and/or its components. The present results can provide important insights into the potential of saffron in preventing and treating different disorders, with a special focus on the underlying cellular and molecular mechanisms. However, further high-quality studies are needed to firmly establish the clinical efficacy of saffron in treating some degenerative diseases.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Zhao Z, Zheng B, Li J, Wei Z, Chu S, Han X, Chu L, Wang H, Chu X. Influence of Crocetin, a Natural Carotenoid Dicarboxylic Acid in Saffron, on L-Type Ca 2+ Current, Intracellular Ca 2+ Handling and Contraction of Isolated Rat Cardiomyocytes. Biol Pharm Bull 2021; 43:1367-1374. [PMID: 32879211 DOI: 10.1248/bpb.b20-00298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crocetin is a major bioactive ingredient in saffron (Crocus sativus L.) and has favorable cardiovascular effects. Here, the effects of crocetin on L-type Ca2+ current (ICa-L), contractility, and the Ca2+ transients of rat cardiomyocytes, were investigated via patch-clamp technique and the Ion Optix system. A 600 µg/mL dose of crocetin decreased ICa-L 31.50 ± 2.53% in normal myocytes and 35.56 ± 2.42% in ischemic myocytes, respectively. The current voltage nexus of the calcium current, the reversal of the calcium current, and the activation/deactivation of the calcium current was not changed. At 600 µg/mL, crocetin abated cell shortening by 28.6 ± 2.31%, with a decrease in the time to 50% of the peak and a decrease in the time to 50% of the baseline. At 600 µg/mL, crocetin abated the crest value of the ephemeral Ca2+ by 31.87 ± 2.57%. The time to half maximal of Ca2+ peak and the time constant of decay of Ca2+ transient were both reduced. Our results suggest that crocetin inhibits L-type Ca2+ channels, causing decreased intracellular Ca2+ concentration and contractility in adult rat ventricular myocytes. These findings reveal crocetin's potential use as a calcium channel antagonist for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zhifeng Zhao
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Jinghan Li
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Ziheng Wei
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Sijie Chu
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University
| |
Collapse
|
12
|
Su X, Yuan C, Wang L, Chen R, Li X, Zhang Y, Liu C, Liu X, Liang W, Xing Y. The Beneficial Effects of Saffron Extract on Potential Oxidative Stress in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6699821. [PMID: 33542784 PMCID: PMC7840270 DOI: 10.1155/2021/6699821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Saffron is commonly used in traditional medicines and precious perfumes. It contains pharmacologically active compounds with notably potent antioxidant activity. Saffron has a variety of active components, including crocin, crocetin, and safranal. Oxidative stress plays an important role in many cardiovascular diseases, and its uncontrolled chain reaction is related to myocardial injury. Numerous studies have confirmed that saffron exact exhibits protective effects on the myocardium and might be beneficial in the treatment of cardiovascular disease. In view of the role of oxidative stress in cardiovascular disease, people have shown considerable interest in the potential role of saffron extract as a treatment for a range of cardiovascular diseases. This review analyzed the use of saffron in the treatment of cardiovascular diseases through antioxidant stress from four aspects: antiatherosclerosis, antimyocardial ischemia, anti-ischemia reperfusion injury, and improvement in drug-induced cardiotoxicity, particularly anthracycline-induced. Although data is limited in humans with only two clinically relevant studies, the results of preclinical studies regarding the antioxidant stress effects of saffron are promising and warrant further research in clinical trials. This review summarized the protective effect of saffron in cardiovascular diseases and drug-induced cardiotoxicity. It will facilitate pharmacological research and development and promote utilization of saffron.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Li Wang
- Xingtai People's Hospital, Xingtai 054001, China
| | - Runqi Chen
- Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Xiangying Li
- Xingtai People's Hospital, Xingtai 054001, China
| | - Yijun Zhang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xu Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanping Liang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
13
|
Pu X, He C, Yang Y, Wang W, Hu K, Xu Z, Song J. In Vivo Production of Five Crocins in the Engineered Escherichia coli. ACS Synth Biol 2020; 9:1160-1168. [PMID: 32216376 DOI: 10.1021/acssynbio.0c00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crocins are highly valuable medicinal compounds for treating human disorders, and they also serve as spices and coloring agents. However, the supply of crocins from plant extractions is insufficient for current demands, and using synthetic biology to produce crocins remains a big challenge. Here, we report the in vivo production of five types of crocins in E. coli with GjUGT94E13 and GjUGT74F8, which are responsible for the glycosylation of crocetin, from the crocin-producing plant Gardenia jasminoides. Subsequently, native UDP-glucose biosynthesis in E. coli is strengthened by the overexpression of pgm and galU. The optimization of catalytic reactions has demonstrated that 50 mM NaH2PO4-Na2HPO4 buffer (pH 8.0) plus 5% glucose is the best medium to use for the efficient glycosylation of crocetin. In engineered E. coli, the conversion rate of crocin III and crocin V from crocetin (50 mg/L) by the catalysis of GjUGT74F8 was increased to 66.1%, and the conversion rate of five types of crocins from crocetin (50 mg/L) via GjUGT94E13 and GjUGT74F8 was 59.6%, much higher than the catalytic activity of the reported microbial UGTs. This study not only sheds light on the in vivo biosynthesis of crocins in E. coli, but also provides important genetic tools for the de novo synthesis of crocins.
Collapse
Affiliation(s)
- Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kaizhi Hu
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, 666100, China
| |
Collapse
|
14
|
Abedimanesh S, Bathaie SZ, Ostadrahimi A, Asghari Jafarabadi M, Taban Sadeghi M. The effect of crocetin supplementation on markers of atherogenic risk in patients with coronary artery disease: a pilot, randomized, double-blind, placebo-controlled clinical trial. Food Funct 2019; 10:7461-7475. [PMID: 31667483 DOI: 10.1039/c9fo01166h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Molecular mechanisms of atherogenesis are considered to be emerging therapeutic targets for atherosclerosis prevention. Cell and animal studies have shown that crocetin can decelerate atherogenesis. However, the anti-atherogenic properties of crocetin in humans are still ambiguous. METHODS AND RESULTS Fifty clinically diagnosed CAD patients were randomly divided into two parallel groups, crocetin and placebo, who received one capsule of crocetin (10 mg) and placebo per day, respectively, for two months. Serum circulating homocysteine (Hcy) [-1.09 (-1.64 to -0.54) μM, P = 0.001], heart-type fatty acid binding protein (h-FABP) [-2.07 (-2.72 to -1.43) ng mL-1, P = 0.001], intercellular adhesion molecule 1 [-14.92 (-21.92 to -7.92) ng mL-1, P = 0.001], vascular cell adhesion molecule 1 [-18.61 (-29.73 to -7.49) ng mL-1, P = 0.002], and monocyte chemoattractant protein 1 [-4.67 (-6.50 to -2.83) pg mL-1, P = 0.001] decreased significantly after the trial in the crocetin group, while high-density lipoprotein (HDL) significantly increased [+4.21 (0.68 to 7.73) mg mL-1, P = 0.021]. Also, systolic [-0.21 (-0.32 to -0.10) mmHg, P = 0.001] and diastolic [-0.20 (-0.34 to -0.07) mmHg, P = 0.004] blood pressures decreased significantly in the crocetin group. Nevertheless, clinically significant percentage changes were only observed in Hcy (-15.25 ± 3.15, μM), HDL (-10.70 ± 5.06, mg dL-1), and h-FABP (-21.10 ± 3.09, ng mL-1) in the crocetin group. Furthermore, the relative increase in the gene expressions of sirtuin1 and AMP-activated protein kinase and a decrease in the lectin-type oxidized LDL receptor 1 and nuclear factor-kappa B expression in isolated peripheral blood mononuclear cells in the crocetin group were significant at the end of the trial in comparison with the placebo. CONCLUSION As the first human study, we showed the ability of crocetin to alter the expression of atherogenic genes and endothelial cell adhesion molecules in CAD patients. It appears that crocetin could be considered as a promising anti-atherogenic candidate for future studies.
Collapse
Affiliation(s)
- Saeed Abedimanesh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Alireza Ostadrahimi
- Nutritional Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMNR, Alonso GL. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019; 24:molecules24152827. [PMID: 31382514 PMCID: PMC6696252 DOI: 10.3390/molecules24152827] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
Crocus sativus L. has been cultivated throughout history to obtain its flowers, whose dried stigmas give rise to the spice known as saffron. Crocetin esters, picrocrocin, and safranal are the main metabolites of this spice, which possess a great bioactivity, although the mechanisms of action and its bioavailability are still to be solved. The rest of the flower is composed by style, tepals, and stamens that have other compounds, such as kaempferol and delphinidin, which have an important antioxidant capacity, and these can be applied in foods, phytopharmaceuticals, and cosmetics. The aim of this work was to provide an updated and critical review of the research on the main compounds of Crocus sativus L. flower, including the adequate analytical methods for their identification and quantification, with a focus on their bioactivity and bioavailability.
Collapse
Affiliation(s)
- Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - María José Bagur
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - Cándida Lorenzo
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | | | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
16
|
Wang W, He P, Zhao D, Ye L, Dai L, Zhang X, Sun Y, Zheng J, Bi C. Construction of Escherichia coli cell factories for crocin biosynthesis. Microb Cell Fact 2019; 18:120. [PMID: 31277660 PMCID: PMC6610952 DOI: 10.1186/s12934-019-1166-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022] Open
Abstract
Background Crocin is a carotenoid-derived natural product found in the stigma of Crocus spp., which has great potential in medicine, food and cosmetics. In recent years, microbial production of crocin has drawn increasing attention, but there were no reports of successful implementation. Escherichia coli has been engineered to produce various carotenoids, including lycopene, β-carotene and astaxanthin. Therefore, we intended to construct E. coli cell factories for crocin biosynthesis. Results In this study, a heterologous crocetin and crocin synthesis pathway was first constructed in E. coli. Firstly, the three different zeaxanthin-cleaving dioxygenases CsZCD, CsCCD2 from Crocus sativus, and CaCCD2 from Crocus ancyrensis, as well as the glycosyltransferases UGT94E5 and UGT75L6 from Gardenia jasminoides, were introduced into zeaxanthin-producing E. coli cells. The results showed that CsCCD2 catalyzed the synthesis of crocetin dialdehyde. Next, the aldehyde dehydrogenases ALD3, ALD6 and ALD9 from Crocus sativus and ALD8 from Neurospora crassa were tested for crocetin dialdehyde oxidation, and we were able to produce 4.42 mg/L crocetin using strain YL4(pCsCCD2-UGT94E5-UGT75L6,pTrc-ALD8). Glycosyltransferases from diverse sources were screened by in vitro enzyme activity assays. The results showed that crocin and its various derivatives could be obtained using the glycosyltransferases YjiC, YdhE and YojK from Bacillus subtilis, and the corresponding genes were introduced into the previously constructed crocetin-producing strain. Finally, crocin-5 was detected among the fermentation products of strain YL4(pCsCCD2-UGT94E5-UGT75L6,pTrc-ALD8,pET28a-YjiC-YdhE-YojK) using HPLC and LC–ESI–MS. Conclusions A heterologous crocin synthesis pathway was constructed in vitro, using glycosyltransferases from the Bacillus subtilis instead of the original plant glycosyltransferases, and a crocetin and crocin-5 producing E. coli cell factory was obtained. This research provides a foundation for the large-scale production of crocetin and crocin in E. coli cell factories. Electronic supplementary material The online version of this article (10.1186/s12934-019-1166-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ping He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Longhai Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yuanxia Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
17
|
Hashemi M, Hosseinzadeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019; 130:44-60. [PMID: 31100302 DOI: 10.1016/j.fct.2019.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Natural products with high pharmacological potential and low toxicity have been considered as the novel therapeutic agents. Crocetin is an active constituent of saffron (Crocus sativus L.) stigma, which in its free-acid form is insoluble in water and most organic solvents. Crocetin exhibits various health-promoting properties including anti-tumor, neuroprotective effects, anti-diabetics, anti-inflammatory, anti-hyperlipidemia, etc. These therapeutic effects can be achieved with different mechanisms such as improvement of oxygenation in hypoxic tissues, antioxidant effects, inhibition of pro-inflammatory mediators, anti-proliferative activity and stimulation of apoptosis in cancer cells. It is also worth considering that crocetin could be tolerated without major toxicity at therapeutic dosage in experimental models. In the present review, we discuss the biosynthesis, pharmacokinetic properties of crocetin and provide a comprehensive study on the biological activities and toxicity along with the mechanism of actions and clinical trials data of crocetin.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Xi L, Qian Z. Pharmacological Properties of Crocetin and Crocin (Digentiobiosyl Ester of Crocetin) from Saffron. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Functional plant foods and medicinal herbs provide a wide variety of natural products for new drug research and development. Crocetin and crocin (digentiobiosyl ester of crocetin) are the major bioactive ingredients of saffron which is used as a costly spice, food colorant and traditional herbal medicine. These particular carotenoids have gained much research attention for their extensive pharmacological activities. Following oral administration, crocetin is rapidly absorbed into the blood circulation and widely distributed into the extra-vascular tissues of the body, whereas the water-soluble compound crocin is hardly absorbed through the gastrointestinal tract. Crocetin and crocin have been shown to be effective in the prevention and/or treatment of several diseases such as atherosclerosis, myocardial ischemia, hemorrhagic shock, cancer and cerebral injury. The compounds exert their biological and pharmacological effects largely through their strong antioxidant activity. However, there seems to be substantial variation in the effectiveness of both phytochemicals when used in different diseases. The aim of this review is to discuss the pharmacokinetic and medicinal properties of crocetin and crocin based on related literature and our research results.
Collapse
Affiliation(s)
- Liang Xi
- Department of Pharmacology, China Pharmaceutical University, P.O. Box 46, 24 Tongjia Xiang, Nanjing 210009, PR China
| | - Zhiyu Qian
- Department of Pharmacology, China Pharmaceutical University, P.O. Box 46, 24 Tongjia Xiang, Nanjing 210009, PR China
| |
Collapse
|
19
|
Pourmasoumi M, Hadi A, Najafgholizadeh A, Kafeshani M, Sahebkar A. Clinical evidence on the effects of saffron (Crocus sativus L.) on cardiovascular risk factors: A systematic review meta-analysis. Pharmacol Res 2019; 139:348-359. [DOI: 10.1016/j.phrs.2018.11.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
|
20
|
Hatziagapiou K, Lambrou GI. The Protective Role of Crocus Sativus L. (Saffron) Against Ischemia- Reperfusion Injury, Hyperlipidemia and Atherosclerosis: Nature Opposing Cardiovascular Diseases. Curr Cardiol Rev 2018; 14:272-289. [PMID: 29952263 PMCID: PMC6300793 DOI: 10.2174/1573403x14666180628095918] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background: Reactive oxygen species and reactive nitrogen species, which are collective-ly called reactive oxygen-nitrogen species, are inevitable by-products of cellular metabolic redox reac-tions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reac-tions of biotransformation of exogenous and endogenous substrate in endoplasmic reticulum, eico-sanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medici-nal plants, there is growing interest in Crocus Sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Tur-key, Iran, India, China, Egypt and Mexico. Objective: The present study aims to address the anti-toxicant role of Crocus Sativus L. in the case of cardiovascular disease and its role towards the cardioprotective role of Crocus Sativus L. Materials and Methods: An electronic literature search was conducted by the two authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to deter-mine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: Our review has indicated that scientific literature confirms the role of Crocus Sativus L. as a cardiovascular-protective agent. The literature review showed that Saffron is a potent cardiovascular-protective agent with a plethora of applications ranging from ischemia-reperfusion injury, diabetes and hypertension to hyperlipidemia. Conclusion: Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as a cardiovascular-protective agent and in particular, Crocus Sativus L. manifests beneficial results against ischemia-reperfusion injury, hypertension, hy-perlipidemia and diabetes
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| |
Collapse
|
21
|
Synthesis, characterization and inhibitory effects of crocetin derivative compounds in cancer and inflammation. Biomed Pharmacother 2018; 98:157-164. [DOI: 10.1016/j.biopha.2017.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
|
22
|
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98:733-745. [PMID: 29306211 DOI: 10.1016/j.biopha.2017.12.090] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Crocus sativus is an herbaceous plant that belongs to family Iridaceae. It is commonly known as saffron and has been used for medicinal purposes since many centuries in India and other parts of the world. Saffron of commercial importance comprises of dried stigmas of the plant and is rich in flavonoids, vitamins, and carotenoids. Carotenoids represent the main components of saffron and their cleavage results in the formation of apocarotenoids such as crocin, picrocrocin, and safranal. Studies conducted during the past two decades have revealed the immense therapeutic potential of saffron. Most of the therapeutic properties are due to the presence of unique apocarotenoids having strong free radical scavenging activity. The mode of action of these apocarotenoids could be: modulatory effects on detoxifying enzymes involved in combating oxidative stress, decreasing telomerase activity, increased the proapoptotic effect, inhibition of DNA, RNA and protein synthesis, and by a strong binding capacity of crocetin with tRNA. The present review focuses on the therapeutic role of saffron and its bio oxidative cleavage products and also highlights the possible molecular mechanism of action. The findings reported in this review describes the wide range of applications of saffron and attributes its free radical scavenging nature the main property which makes this spice a potent chemotherapeutic agent for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Mahreen Manzoor
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - M K Dhar
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| |
Collapse
|
23
|
José Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, Chaouqi S, Llorens S, Martínez-Tomé M, Alonso GL. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017; 23:E30. [PMID: 29295497 PMCID: PMC5943931 DOI: 10.3390/molecules23010030] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron's already known bioactivity, which is attributed to the main components-crocetin and its glycosidic esters, called crocins, and safranal-and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical.
Collapse
Affiliation(s)
- María José Bagur
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | | | - Antonia M. Jiménez-Monreal
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Soukaina Chaouqi
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Laboratory of Materials, Environment and Electrochemistry, Faculty of Science, Ibn Tofaïl University, P.O. Box 242, 14000 Kénitra, Morocco
| | - Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - Magdalena Martínez-Tomé
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
| |
Collapse
|
24
|
Xiang M, Yang R, Zhang Y, Wu P, Wang L, Gao Z, Wang J. Effect of crocetin on vascular smooth muscle cells migration induced by advanced glycosylation end products. Microvasc Res 2017; 112:30-36. [PMID: 28209519 DOI: 10.1016/j.mvr.2017.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/11/2017] [Accepted: 02/11/2017] [Indexed: 12/14/2022]
Abstract
Crocetin is a major active constituent of Gardenia jasminoides J. Ellis, and can aid in the prevention of cardiovascular disease. The effect and possible mechanism of crocetin on the migration of vascular smooth muscle cells (VSMCs) induced by advanced glycosylation end products (AGEs) were investigated. VSMCs were pre-incubated with or without crocetin and exposed to AGEs subsequently. The invasion of the cells was investigated using a 24-well Cell Invasion Chamber. The anti-proliferative activity of crocetin was evaluated by MTT assay and VSMCs cell-cycle distribution was examined by flow cytometry. Cytokine TNF-α and IL-6 secreted by VSMCs and the amount of matrix metalloproteinase MMP-2 and MMP-9 in the culture supernatant were detected by ELISA. The expression level of RAGE (AGEs receptor), in cells was analyzed by western blot. The results demonstrated that AGEs increased about two-fold migration of VSMCs compared with control (OD=0.778±0.191 vs OD=0.413±0.214, P<0.01), and the proliferation increased by about 20% (OD=0.335±0.043 vs OD=0.281±0.037, P<0.01). Pre-treatment with crocetin (1.0μM) or RAGE antibody (10μg/ml) could inhibit the AGEs triggered migration of VSMCs obviously. Furthermore, both crocetin and RAGE antibody inhibited the increase of RAGE protein in VSMCs stimulated by AGEs. The levels of TNF-α and IL-6 decreased in the crocetin (1.0μM) pre-treated group compared to the AGEs (without pre-treated) group (37.60±3.08pg/ml vs 46.59±1.92pg/ml, 32.11±4.69pg/ml vs 49.99±8.84pg/ml, respectively). Crocetin (1.0μM) also reduced the value of MMP-2 and MMP-9 compared with the AGEs group (2.81±0.35ng/ml vs 6.40±0.85ng/ml, 2.69±0.25ng/ml vs 4.32±0.57ng/ml, respectively). In summary, crocetin inhibits the migration of VSMCs induced by AGEs through RAGE-dependent signaling pathway. And it is meaningful to diabetic vascular complications.
Collapse
MESH Headings
- Animals
- Carotenoids/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Dose-Response Relationship, Drug
- Glycation End Products, Advanced/toxicity
- Interleukin-6/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Receptor for Advanced Glycation End Products/drug effects
- Receptor for Advanced Glycation End Products/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Vitamin A/analogs & derivatives
Collapse
Affiliation(s)
- Min Xiang
- Department of Pharmacy, Suzhou Health College, Suzhou, Jiangsu 215009, China.
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Yaqin Zhang
- Key Laboratory of Biotechnology for Analytical Medicine, Suzhou, Jiangsu 215009, China
| | - Pingping Wu
- Key Laboratory of Biotechnology for Analytical Medicine, Suzhou, Jiangsu 215009, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Zhenyu Gao
- Department of Pharmacy, Suzhou Health College, Suzhou, Jiangsu 215009, China
| | - Jianmei Wang
- Department of Pharmacy, Suzhou Health College, Suzhou, Jiangsu 215009, China
| |
Collapse
|
25
|
Bellamkonda R, Karuna R, Sasi Bhusana Rao B, Haritha K, Manjunatha B, Silpa S, Saralakumari D. Beneficiary effect of Commiphora mukul ethanolic extract against high fructose diet induced abnormalities in carbohydrate and lipid metabolism in wistar rats. J Tradit Complement Med 2017; 8:203-211. [PMID: 29322010 PMCID: PMC5755988 DOI: 10.1016/j.jtcme.2017.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 02/02/2023] Open
Abstract
The present study was proposed to elucidate the effect of Commiphora mukul gum resin elthanolic extract treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats were divided into four groups: two of these groups (group C and C+CM) were fed with standard pellet diet and the other two groups (group F and F+CM) were fed with high fructose (66 %) diet. C. mukul suspension in 5% Tween-80 in distilled water (200 mg/kg body weight/day) was administered orally to group C+CM and group F+CM. At the end of 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. mukul treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F decreased significantly with C. mukul treatment in group F+CM. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. mukul treatment in group F+CM. In conclusion, our study demonstrated that C. mukul treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose induced alterations in carbohydrate and lipid metabolisms by the extract which was further supported by histopathological results from liver samples which showed regeneration of the hepatocytes. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.
Collapse
Affiliation(s)
- Ramesh Bellamkonda
- Department of Food Techhnology - Vikramasimhapuri University, Nellore, 524003, Andhra Pradesh, India
| | - Rasineni Karuna
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Bongu Sasi Bhusana Rao
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, Andhra Pradesh, India
| | - Ketham Haritha
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, Andhra Pradesh, India
| | - Bengeppagari Manjunatha
- Department of Life Sciences, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, P. O. Box: 171-5-231B, Ecuador
| | - Somavarapu Silpa
- Department of Food Techhnology - Vikramasimhapuri University, Nellore, 524003, Andhra Pradesh, India
| | - Desireddy Saralakumari
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, Andhra Pradesh, India
| |
Collapse
|
26
|
Chai F, Wang Y, Mei X, Yao M, Chen Y, Liu H, Xiao W, Yuan Y. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:54. [PMID: 28356104 PMCID: PMC5371240 DOI: 10.1186/s12934-017-0665-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to excellent performance in antitumor, antioxidation, antihypertension, antiatherosclerotic and antidepressant activities, crocetin, naturally exists in Crocus sativus L., has great potential applications in medical and food fields. Microbial production of crocetin has received increasing concern in recent years. However, only a patent from EVOVA Inc. and a report from Lou et al. have illustrated the feasibility of microbial biosynthesis of crocetin, but there was no specific titer data reported so far. Saccharomyces cerevisiae is generally regarded as food safety and productive host, and manipulation of key enzymes is critical to balance metabolic flux, consequently improve output. Therefore, to promote crocetin production in S. cerevisiae, all the key enzymes, such as CrtZ, CCD and ALD should be engineered combinatorially. RESULTS By introduction of heterologous CrtZ and CCD in existing β-carotene producing strain, crocetin biosynthesis was achieved successfully in S. cerevisiae. Compared to culturing at 30 °C, the crocetin production was improved to 223 μg/L at 20 °C. Moreover, an optimal CrtZ/CCD combination and a titer of 351 μg/L crocetin were obtained by combinatorial screening of CrtZs from nine species and four CCDs from Crocus. Then through screening of heterologous ALDs from Bixa orellana (Bix_ALD) and Synechocystis sp. PCC6803 (Syn_ALD) as well as endogenous ALD6, the crocetin titer was further enhanced by 1.8-folds after incorporating Syn_ALD. Finally a highest reported titer of 1219 μg/L at shake flask level was achieved by overexpression of CCD2 and Syn_ALD. Eventually, through fed-batch fermentation, the production of crocetin in 5-L bioreactor reached to 6278 μg/L, which is the highest crocetin titer reported in eukaryotic cell. CONCLUSIONS Saccharomyces cerevisiae was engineered to achieve crocetin production in this study. Through combinatorial manipulation of three key enzymes CrtZ, CCD and ALD in terms of screening enzymes sources and regulating protein expression level (reaction temperature and copy number), crocetin titer was stepwise improved by 129.4-fold (from 9.42 to 1219 μg/L) as compared to the starting strain. The highest crocetin titer (6278 μg/L) reported in microbes was achieved in 5-L bioreactors. This study provides a good insight into key enzyme manipulation involved in serial reactions for microbial overproduction of desired compounds with complex structure.
Collapse
Affiliation(s)
- Fenghua Chai
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xueang Mei
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yan Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
27
|
Broadhead GK, Chang A, Grigg J, McCluskey P. Efficacy and Safety of Saffron Supplementation: Current Clinical Findings. Crit Rev Food Sci Nutr 2017; 56:2767-76. [PMID: 25875654 DOI: 10.1080/10408398.2013.879467] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Saffron (Crocus savitus) is a Middle-Eastern herb with strong antioxidant properties. Its major constituents, safranal, crocin, and crocetin, are also antioxidants and bear structural similarities to other well-known natural antixodant substances, such as zeaxanthin. Given the role of oxidative stress in many diseases, considerable interest has been shown into the potential role of saffron supplementation as a treatment for a range of diseases. In vitro and animal studies have provided evidence that saffron and its constituents may be potent therapies for a range of pathologies, including Alzheimer's disease, age-related macular degeneration (AMD) and cardiac ischemia. Whether these findings translate into clinical efficacy, however, has as of yet been incompletely assessed. This makes assessing the role of saffron supplementation in these diseases difficult. Here, we review the current human clinical evidence supporting saffron supplementation as a treatment for a range of pathologies and the underlying science supporting its use.
Collapse
Affiliation(s)
- G K Broadhead
- a Save Sight Institute, The University of Sydney , Sydney , Australia
| | - A Chang
- a Save Sight Institute, The University of Sydney , Sydney , Australia
| | - J Grigg
- a Save Sight Institute, The University of Sydney , Sydney , Australia
| | - P McCluskey
- a Save Sight Institute, The University of Sydney , Sydney , Australia
| |
Collapse
|
28
|
Zullo G, De Canditiis C, Pero ME, Albero G, Salzano A, Neglia G, Campanile G, Gasparrini B. Crocetin improves the quality of in vitro-produced bovine embryos: Implications for blastocyst development, cryotolerance, and apoptosis. Theriogenology 2016; 86:1879-85. [PMID: 27393222 DOI: 10.1016/j.theriogenology.2016.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 11/26/2022]
Abstract
The aim of this work was to assess the effect of supplementation of bovine culture medium with the natural antioxidant crocetin on in vitro blastocyst development and quality. This was evaluated as cryotolerance, apoptosis index, and total cells number and allocation. Abattoir-derived oocytes were matured and fertilized in vitro according to standard procedure. Twenty hours after IVF, presumptive zygotes were cultured in synthetic oviduct fluid medium, supplemented with 0, 1, 2.5, and 5 μM crocetin (experiment 1) at 39 °C under humidified air with 5% CO2, 7% O2, and 88% N2. On Day 7, embryo yields were assessed and the blastocysts were vitrified by Cryotop method in 16.5% ethylene glycol, 16.5% DMSO, and 0.5 M sucrose. Finally, blastocysts produced on Day 8 in the absence (control) and presence of 1 μM crocetin were used for terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and differential staining to evaluate, respectively, the apoptotic rate and the allocation of cells into inner cell mass (ICM) and trophectoderm (TE) lineages (experiment 2). Embryo development was higher in the 1 μM crocetin group compared to the control, both in terms of total embryo output (37.7 ± 4.2%, 52.9 ± 6.3%, 40.9 ± 7.6%, and 42.4 ± 8.7%, respectively, with 0, 1, 2.5, and 5 μM; P < 0.01) and grade 1 and 2 blastocysts (33.6 ± 4.9%, 46.1 ± 7.3%, 37.8 ± 7.9%, and 39.4 ± 7.9%, respectively, with 0, 1, 2.5, and 5 μM; P < 0.05). Moreover, the percentage of fast-developing embryos increased in 1 μM crocetin group compared to the control (23.4 ± 4.7%, 32.7 ± 6.6%, 27.2 ± 6.6%, and 30.1 ± 7.2%, respectively, with 0, 1, 2.5, and 5 μM; P < 0.05). In addition, the enrichment of culture medium with 1 μM crocetin improved embryo cryotolerance compared to the control, as indicated by higher hatching rates recorded after 48 hours postwarming culture (46.5% vs. 60.4%; P < 0.05). Furthermore, 1 μM crocetin decreased both the average number (9.9 ± 0.4 vs. 7.1 ± 0.3) and the percentage of apoptotic cells (7.1 ± 0.4 vs. 4.2 ± 0.2) in blastocysts compared to the control (P < 0.01). However, no differences were recorded in the average number of ICM, TE, and total cells between 1 μM crocetin and control groups. In conclusion, the enrichment of bovine culture medium with 1 μM crocetin increased both blastocyst yield and quality, as indicated by the improved chronology of embryo development, increased resistance to cryopreservation, and reduced incidence of apoptosis.
Collapse
Affiliation(s)
- G Zullo
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - C De Canditiis
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - M E Pero
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - G Albero
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - A Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - G Neglia
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy.
| | - G Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - B Gasparrini
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
29
|
Chen S, Zhao S, Wang X, Zhang L, Jiang E, Gu Y, Shangguan AJ, Zhao H, Lv T, Yu Z. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res 2016; 4:775-83. [PMID: 26798587 DOI: 10.3978/j.issn.2218-6751.2015.11.03] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Crocin is the major constituent of saffron, a naturally derived Chinese medicine obtained from the dried stigma of the Crocus sativus flower. It has a variety of pharmacological effects, including anti-oxidative, immunity enhancement, and anti-tumorigenic properties; however, the molecular mechanisms underlying these effects remain unknown. METHODS To investigate the effects of crocin on proliferation and apoptosis of lung adenocarcinoma cells, lung adenocarcinoma cell lines, A549 and SPC-A1, were treated with crocin at different dosages. Cell morphological changes were observed by light microscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the inhibitory effect of crocin on cell proliferation and sensitivity to chemotherapeutic drugs. Flow cytometry was used to characterize cell apoptosis and cell cycle profiles. Reverse transcription-polymerase chain reaction was used to detect mRNA levels of apoptosis-related genes. RESULTS Crocin inhibited cell proliferation and induced apoptosis in A549 and SPC-A1 cells in a concentration-dependent manner, accompanied with an increase of G0/G1 arrest. Crocin significantly increased the mRNA levels of both p53 and B-cell lymphoma 2-associated X protein (Bax), while decreasing B-cell lymphoma 2 (Bcl-2) mRNA expressions. In addition, crocin combined with either cisplatin or pemetrexed showed additive effects on cell proliferation in two lung cancer cell lines. CONCLUSIONS Crocin significantly suppressed the proliferation of human lung adenocarcinoma cells and enhanced the chemo sensitivity of these cells to both cisplatin and pemetrexed. The actions of molecular mechanism could be through the induction of cell cycle arrest and apoptosis by p53 and Bax up-regulation but Bcl-2 down-regulation.
Collapse
Affiliation(s)
- Shuangshuang Chen
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Shuang Zhao
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Xinxing Wang
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Luo Zhang
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Enze Jiang
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Yuan Gu
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Anna Junjie Shangguan
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Hong Zhao
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Tangfeng Lv
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Zhenghong Yu
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
30
|
Baba SA, Ashraf N. Pharmacological Importance of Crocus sativus Apocarotenoids. APOCAROTENOIDS OF CROCUS SATIVUS L: FROM BIOSYNTHESIS TO PHARMACOLOGY 2016. [DOI: 10.1007/978-981-10-1899-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Llorens S, Mancini A, Serrano-Díaz J, D'Alessandro AM, Nava E, Alonso GL, Carmona M. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension. Molecules 2015; 20:17570-84. [PMID: 26402666 PMCID: PMC6332434 DOI: 10.3390/molecules200917570] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Endothelial dysfunction, characterized by an enhancement in vasoconstriction, is clearly associated with hypertension. Saffron (Crocus sativus L.) bioactive compounds have been recognized to have hypotensive properties. Recently, we have reported that crocetin exhibits potent vasodilator effects on isolated aortic rings from hypertensive rats. In this work, we have aimed to analyze the anticontractile ability of crocetin or crocetin esters pool (crocins) isolated from saffron. Thus, we have studied the effects of saffron carotenoids on endothelium-dependent and -independent regulation of smooth muscle contractility in genetic hypertension. Methods: We have measured the isometric responses of aortic segments with or without endothelium obtained from spontaneously hypertensive rats. The effects of carotenoids were studied by assessing the endothelial modulation of phenylephrine-induced contractions (10−9–10−5 M) in the presence or absence of crocetin or crocins. The role of nitric oxide and prostanoids was analyzed by performing the experiments with L-NAME (NG-nitro-l-arginine methyl ester) or indomethacin (both 10−5 M), respectively. Results: Crocetin, and to a minor extent crocins, diminished the maximum contractility of phenylephrine in intact rings, while crocins, but not crocetin, increased this contractility in de-endothelizated vessels. In the intact vessels, the effect of crocetin on contractility was unaffected by indomethacin but was abolished by L-NAME. However, crocetin but not crocins, lowered the already increased contractility caused by L-NAME. Conclusions: Saffron compounds, but especially crocetin have endothelium-dependent prorelaxing actions. Crocins have procontractile actions that take place via smooth muscle cell mechanisms. These results suggest that crocetin and crocins activate different mechanisms involved in the vasoconstriction pathway in hypertension.
Collapse
Affiliation(s)
- Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete 02006, Spain.
| | - Andrea Mancini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Jessica Serrano-Díaz
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
| | - Anna Maria D'Alessandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Eduardo Nava
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete 02006, Spain.
| | - Gonzalo Luis Alonso
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
| | - Manuel Carmona
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
- Albacete Science and Technology Park, Paseo de la Innovación 1, Albacete 02006, Spain.
| |
Collapse
|
32
|
Hemn HO, Noordin MM, Rahman HS, Hazilawati H, Zuki A, Chartrand MS. Antihypercholesterolemic and antioxidant efficacies of zerumbone on the formation, development, and establishment of atherosclerosis in cholesterol-fed rabbits. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4173-208. [PMID: 26347047 PMCID: PMC4529258 DOI: 10.2147/dddt.s76225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Owing to the high incidence of cholesterol-induced cardiovascular disease, particularly atherosclerosis, the current study was designed to investigate the preventive and therapeutic efficacies of dietary zerumbone (ZER) supplementation on the formation and development of atherosclerosis in rabbits fed with a high cholesterol diet. A total of 72 New Zealand white rabbits were divided randomly on two experimental studies carried out 8 weeks apart. The first experiment was designed to investigate the prophylactic efficacy of ZER in preventing early developed atheromatous lesion. The second experimental trial was aimed at investigating the therapeutic effect of ZER in reducing the atherosclerotic lesion progression and establishment. Sudanophilia, histopathological, and ultrastructural changes showed pronounced reduction in the plaque size in ZER-medicated aortas. On the other hand, dietary supplementation of ZER for almost 10 weeks as a prophylactic measure indicated substantially decreasing lipid profile values, and similarly, plaque size in comparison with high-cholesterol non-supplemented rabbits. Furthermore, the results of oxidative stress and antioxidant biomarker evaluation indicated that ZER is a potent antioxidant in suppressing the generation of free radicals in terms of atherosclerosis prevention and treatment. ZER significantly reduced the value of malondialdehyde and augmented the value of superoxide dismutase. In conclusion, our data indicated that dietary supplementation of ZER at doses of 8, 16, and 20 mg/kg alone as a prophylactic measure, and as a supplementary treatment with simvastatin, significantly reduced early plague formation, development, and establishment via significant reduction in serum lipid profile, together with suppression of oxidative damage, and therefore alleviated atherosclerosis lesions.
Collapse
Affiliation(s)
- Hassan Othman Hemn
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia ; College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan, Republic of Iraq
| | - Muhammad Mustapha Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia ; College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan, Republic of Iraq
| | - Hamza Hazilawati
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abubakr Zuki
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | |
Collapse
|
33
|
Mancini A, Serrano-Díaz J, Nava E, D'Alessandro AM, Alonso GL, Carmona M, Llorens S. Crocetin, a Carotenoid Derived from Saffron ( Crocus sativus L.), Improves Acetylcholine-Induced Vascular Relaxation in Hypertension. J Vasc Res 2014; 51:393-404. [DOI: 10.1159/000368930] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
|
34
|
Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review. Journal of Food Science and Technology 2014; 52:1881-8. [PMID: 25829569 DOI: 10.1007/s13197-013-1238-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/26/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Saffron (Crocus sativus L. stigma), the most valuable medicinal food product, belongs to the Iridaceae family which has been widely used as a coloring and flavoring agent. These properties are basically related to its crocins, picrocrocin and safranal contents which have all demonstrated health promoting properties. The present review article highlights the phytochemical constituents (phenolic and flavonoid compounds, degraded carotenoid compounds crocins and crocetin) that are important in antioxidant activity of saffron extracts. However, the synergistic effect of all the bioactive components presence in saffron gave a significant antioxidant activity similar to vegetables rich in carotenoids. Our study provides an updated overview focused on the antioxidant activity of saffron related to its bioactive compounds to design the different functional products in food, medicine and cosmetic industries.
Collapse
|
35
|
Shemshian M, Mousavi SH, Norouzy A, Kermani T, Moghiman T, Sadeghi A, Ghayour-Mobarhan M, Ferns GA. Saffron in metabolic syndrome: its effects on antibody titers to heat-shock proteins 27, 60, 65 and 70. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2014; 11:43-9. [PMID: 24501162 DOI: 10.1515/jcim-2013-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/10/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND The metabolic syndrome is the most important risk factor for cardiovascular disease. The heat shock proteins (HSPs) are highly conserved families of proteins expressed by a number of cell types following exposure to stressful environmental conditions include several known risk factors for cardiovascular disease. Recent studies have shown the potential of constituents of saffron in the treatment of atherosclerosis. We aimed on investigating the effect of saffron on antibody titers to HSP in patients with metabolic syndrome. METHODS This was a randomized, placebo-controlled clinical trial. One-hundred and five subjects with metabolic syndrome were randomly allocated to one of the three groups: the case group received 100 mg/day saffron, the placebo control group received a capsule of placebo and a non-placebo control group received no capsule, for 12 weeks. RESULTS Antibodies against heat shock proteins 27, 60, 65 and 70 were determined in all patients before (week 0) and after (week 6 and 12) intervention. At 12 weeks, saffron produced a significantly decrease in AntiHSP27, 70 levels. Saffron can decrease AntiHSP27, 70 levels in patients with metabolic syndrome. CONCLUSIONS The results of this study indicate the efficacy of saffron in the improvement of some markers of autoimmunity HSPs in patients with metabolic syndrome.
Collapse
|
36
|
Shahmansouri N, Farokhnia M, Abbasi SH, Kassaian SE, Noorbala Tafti AA, Gougol A, Yekehtaz H, Forghani S, Mahmoodian M, Saroukhani S, Arjmandi-Beglar A, Akhondzadeh S. A randomized, double-blind, clinical trial comparing the efficacy and safety of Crocus sativus L. with fluoxetine for improving mild to moderate depression in post percutaneous coronary intervention patients. J Affect Disord 2014; 155:216-222. [PMID: 24289892 DOI: 10.1016/j.jad.2013.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/26/2023]
Abstract
OBJECTIVE A significant correlation exists between coronary artery diseases and depression. The aim of this trial was to compare the efficacy and safety of saffron versus fluoxetine in improving depressive symptoms of patients who were suffering from depression after performing percutaneous coronary intervention (PCI). METHODS In this randomized double-blind parallel-group study, 40 patients with a diagnosis of mild to moderate depression who had undergone PCI in the last six months were randomized to receive either fluoexetine (40mg/day) or saffron (30mg/day) capsule for six weeks. Participants were evaluated by Hamilton depression rating scale (HDRS) at weeks 3 and 6 and the adverse events were systemically recorded. RESULTS By the study endpoint, no significant difference was detected between two groups in reduction of HDRS scores (P=0.62). Remission and response rates were not significantly different as well (P=1.00 and P=0.67; respectively). There was no significant difference between two groups in the frequency of adverse events during this trial. LIMITATIONS Relatively small sample size and short observational period were the major limitations of this study. CONCLUSION Short-term therapy with saffron capsules showed the same antidepressant efficacy compared with fluoxetine in patients with a prior history of PCI who were suffering from depression.
Collapse
Affiliation(s)
| | - Mehdi Farokhnia
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Hesammeddin Abbasi
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Family Health Research Center, Iranian Petroleum Industry Health Research Institute, Tehran, Iran
| | | | - Ahmad-Ali Noorbala Tafti
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Gougol
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibeh Yekehtaz
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehran Mahmoodian
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Saroukhani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Li CY, Huang WF, Wang QL, Wang F, Cai E, Hu B, Du JC, Wang J, Chen R, Cai XJ, Feng J, Li HH. Crocetin induces cytotoxicity in colon cancer cells via p53-independent mechanisms. Asian Pac J Cancer Prev 2013; 13:3757-61. [PMID: 23098467 DOI: 10.7314/apjcp.2012.13.8.3757] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Crocin has been proposed as a promising candidate for cancer chemoprevention. The purpose of this investigation was to investigate the chemopreventive action and the possible mechanisms of crocin against human colon cancer cells in vitro. METHODS Cell proliferation was examined using MTT assay and the cell cycle distribution fractions were analyzed using flow cytometric analysis after propidium iodide staining. Apoptosis was detected using the TUNEL Apoptosis Detection Kit with laser scanning confocal microscope. DNA damage was assessed using the alkaline single-cell gel electrophoresis assay, while expression levels of p53, cdk2, cyclin A and P21 were examined by Western blot analysis. RESULTS Treatment of SW480 cells with crocetin (0.2, 0.4, 0.8 mmol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner. Crocetin (0.8 mmol/L) significantly induced cell cycle arrest through p53-independent mechanisms accompanied by P21 induction. Crocetin (0.8 mmol/L) caused cytotoxicity in the SW480 cells by enhancing apoptosis and decreasing DNA repair capacity in a time-dependent manner. CONCLUSIONS This report provides evidence that crocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Cai-Yan Li
- Clinical Laboratory Medicine Center, The Second People's Hospital of Jingmen, Jingmen, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu H, Chen YF, Li F, Zhang HY. Fructus Gardenia (Gardenia jasminoides J. Ellis) phytochemistry, pharmacology of cardiovascular, and safety with the perspective of new drugs development. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2012; 15:94-110. [PMID: 23211013 DOI: 10.1080/10286020.2012.723203] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The phytochemistry, cardiovascular pharmacology, toxicology, side effect, and further development prospects of Gardenia jasminoides J. Ellis (GJE) and its main constituents crocins and iridoid glycosides were studied. Numerous studies have confirmed that crocins and iridoid glycosides had effects of antioxidation, anti-inflammatory, anti-atherosclerosis, anti-ischemic brain injuries, anti-platelet aggregation, anti-hyperglycemia, anti-hyperlipidemia, anti-hypertension, and so on. Some of them might be related to several attractive pharmacodynamic actions of GJE such as promoting endothelium growth, protecting neurons, and inducing their differentiation. Both of them make it possible for GJE to prevent and cure thromboembolism and cardiovascular diseases well. From our own basic pharmacological research of GJE extract on several rat models, it has been known that GJE extract markedly prolonged bleeding time and inhibited platelet aggregation and thrombosis. It has significant proliferation effect on both endothelial cells and endothelial progenitor cells as well. As the mechanisms of GJE on those diseases were discussed and summarized, questions about its genetoxicity and hepatotoxicity were also discussed during its safety study to make the foundation for long-term medication and clinical research in the near future.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | | | | | | |
Collapse
|
39
|
Abstract
Multiple organ failure is a common outcome of hemorrhagic shock followed by resuscitation, and the kidney is one of the prime target organs involved. The main objective of the study was to evaluate whether crocetin, a natural product from Gardenia jasminoides Ellis, has beneficial effects on renal dysfunction caused by hemorrhagic shock and resuscitation in rats. Anesthetized rats were bled to reduce mean arterial blood pressure to 35 (SD, 5) mmHg for 60 min and then were resuscitated with their withdrawn shed blood and normal saline. Crocetin was administered via the duodenum at a dose of 50 mg/kg 40 min after hemorrhage. The increase in creatinine and blood urea nitrogen was significantly reduced at 2 h after hemorrhage and resuscitation in crocetin-treated rats. The increases in renal nitric oxide, tumor necrosis factor α, and interleukin 6 were also attenuated by crocetin. Hemorrhagic shock resulted in a significant elevation in malondialdehyde production and was accompanied by a reduction in total superoxide dismutase activity, activation of nuclear factor κB, and overexpression of inducible nitric oxide synthase. These changes were significantly attenuated by crocetin at 2 h after resuscitation. These results suggested that crocetin blocks inflammatory cascades by inhibiting production of reactive oxygen species and restoring superoxide dismutase activity to ameliorate renal dysfunction caused by hemorrhage shock and resuscitation.
Collapse
|
40
|
Koulakiotis NS, Pittenauer E, Halabalaki M, Tsarbopoulos A, Allmaier G. Comparison of different tandem mass spectrometric techniques (ESI-IT, ESI- and IP-MALDI-QRTOF and vMALDI-TOF/RTOF) for the analysis of crocins and picrocrocin from the stigmas of Crocus sativus L. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:670-678. [PMID: 22328221 DOI: 10.1002/rcm.6142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE The expensive spice saffron originating from the stigmas of Crocus sativus L. and also applied in traditional Chinese medicine (TCM) constitutes a complex mixture of glycoconjugates varying not only in the aglycon structure, but also in glycosylation pattern. Therefore, various tandem mass spectrometric techniques were evaluated for their usefulness in structural elucidation. METHODS Three selected constituents of the stigmas of Crocus sativus L., trans- and cis-crocin-4 as well as picrocrocin, were isolated and purified by HPLC and finally analyzed by ESI-MS (ion trap, QqRTOF), IP-MALDI-MS (QqRTOF) and vMALDI-MS (TOF/RTOF) in combination with tandem mass spectrometry in collision energy regimes ranging from a few eV (LE) to 20 keV (HE) collisions for the first time. These data aid in structurally elucidating minor, unknown glycoconjugates originating from this plant-derived spice. RESULTS LE-CID of isomeric crocins on either an ion trap with ESI or a QqRTOF-instrument with ESI or IP-MALDI as desorption/ionization technique only yielded a limited number of structurally diagnostic sodiated product ions related to the carbohydrate moiety as well as to the intact aglycon in contrast to true HE-CID. The low MW constituent picrocrocin did not yield useful LE-CID spectra, but showed a high number of structurally diagnostic product ions by HE-CID utilizing a vMALDI TOF/RTOF-instrument. CONCLUSIONS The highest number of structurally diagnostic product ions allowing also determination of the carbohydrate linkage of the gentiobiose-moiety of isomeric crocins ((0,4)A(2), (3,5)A(2) product ions indicating a 1→6 carbohydrate linkage) was only achievable by HE-CID. Fragmentation of the aglycon was not observed by any collision energy regime applied.
Collapse
|
41
|
Inflammatory responses induced by fluoride and arsenic at toxic concentration in rabbit aorta. Arch Toxicol 2012; 86:849-56. [PMID: 22422340 DOI: 10.1007/s00204-012-0803-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
Abstract
Epidemiological and experimental studies have demonstrated the atherogenic effects of environmental toxicant arsenic and fluoride. Inflammatory mechanism plays an important role in the pathogenesis of atherosclerosis. The aim of the present study is to determine the effect of chronic exposure to arsenic and fluoride alone or combined on inflammatory response in rabbit aorta. We analyzed the expression of genes involved in leukocyte adhesion [P-selectin (P-sel) and vascular cell adhesion molecule-1(VCAM-1)], recruitment and transendothelial migration of leukocyte [interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1)] and those involved in pro-inflammatory cytokines [interleukin-6 (IL-6)]. We found that fluoride and arsenic alone or combined increased the expression of VCAM-1, P-sel, MCP-1, IL-8, and IL-6 at the RNA and protein levels. The gene expressions of inflammatory-related molecules were attenuated when co-exposure to the two toxicants compared with just one of them. We also examined the lipid profile of rabbits exposed to fluoride and (or) arsenic. The results showed that fluoride slightly increased the serum lipids but arsenic decreased serum triglyceride. We showed that inflammatory responses but not lipid metabolic disorder may play a crucial role in the mechanism of the cardiovascular toxicity of arsenic and fluoride.
Collapse
|
42
|
Zhong YJ, Shi F, Zheng XL, Wang Q, Yang L, Sun H, He F, Zhang L, Lin Y, Qin Y, Liao LC, Wang X. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms. Acta Pharmacol Sin 2011; 32:1529-36. [PMID: 21986580 DOI: 10.1038/aps.2011.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM To investigate the anticancer effect of crocetin, a major ingredient in saffron, and its underlying mechanisms. METHODS Cervical cancer cell line HeLa, non-small cell lung cancer cell line A549 and ovarian cancer cell line SKOV3 were treated with crocetin alone or in combination with vincristine. Cell proliferation was examined using MTT assay. Cell cycle distribution and sub-G(1) fraction were analyzed using flow cytometric analysis after propidium iodide staining. Apoptosis was detected using the Annexin V-FITC Apoptosis Detection Kit with flow cytometry. Cell death was measured based on the release of lactate dehydrogenase (LDH). The expression levels of p53 and p21(WAF1/Cip1) as well as caspase activation were examined using Western blot analysis. RESULTS Treatment of the 3 types of cancer cells with crocetin (60-240 μmol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner. Crocetin (240 μmol/L) significantly induced cell cycle arrest through p53-dependent and -independent mechanisms accompanied with p21(WAF1/Cip1) induction. Crocetin (120-240 μmol/L) caused cytotoxicity in the 3 types of cancer cells by enhancing apoptosis in a time-dependent manner. In the 3 types of cancer cells, crocetin (60 μmol/L) significantly enhanced the cytotoxicity induced by vincristine (1 μmol/L). Furthermore, this synergistic effect was also detected in the vincristine-resistant breast cancer cell line MCF-7/VCR. CONCLUSION Ccrocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug or as a chemosensitizer for vincristine.
Collapse
|
43
|
Jadeja RN, Thounaojam MC, Jain M, Devkar RV, Ramachandran AV. Clerodendron glandulosum.Coleb leaf extract attenuates in vitro macrophage differentiation and expression of VCAM-1 and P-selectin in thoracic aorta of atherogenic diet fed rats. Immunopharmacol Immunotoxicol 2011; 34:443-53. [PMID: 21961520 DOI: 10.3109/08923973.2011.618136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Present inventory evaluates the anti-atherogenic potential of C. glandulosum.Coleb leaf extract (CG) using in vivo and in vitro experimental models. Serum markers of low density lipoprotein (LDL-C) oxidation, cholesterol, triglycerides, lipoproteins, auto-antibody titer, ex vivo LDL-C oxidation, LDL-C aggregation, aortic lipids, histopathological evaluations and immunolocalization of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and P-selectin were performed in CON [rats treated with single dose of saline (i.p.) and fed with laboratory chow], ATH [rats treated with single dose of vitamin D3 (600,000 IU, i.p) and fed with atherogenic diet] and ATH+CG [rats treated with single dose of vitamin D3 (600,000 IU, i.p.) and fed with atherogenic diet and simultaneously treated with 200 mg/kg CG extract, p.o.] for 8 weeks. CG extract supplementation to atherogenic diet fed rats significantly prevented increment in serum cholesterol, triglycerides, and lipoproteins, markers of LDL-C oxidation, auto-antibody titer and aortic lipids. Also, LDL-C isolated from ATH+CG rats recorded mimimal aggregation and susceptibility to undergo ex vivo LDL-C oxidation. Microscopic evaluation of thoracic aorta of ATH+CG rats reveled prevention of atheromatous plaque formation, accumulation of lipid laden macrophages, calcium deposition, distortion/defragmentation of elastin, accumulation of macrophages and, down regulation of cell adhesion molecules (VCAM-1 and P-selectin) expression. Further, in vitro monocyte to macrophage differentiation was significantly attenuated in presence of CG extract (200 µg/mL). It can be concluded from the present study that, CG extract is capable of controlling induction of experimental atherosclerosis and warrants further scrutiny at the clinical level as a possible therapeutic agent.
Collapse
Affiliation(s)
- Ravirajsinh N Jadeja
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, India
| | | | | | | | | |
Collapse
|
44
|
Ulbricht C, Conquer J, Costa D, Hollands W, Iannuzzi C, Isaac R, Jordan JK, Ledesma N, Ostroff C, Serrano JMG, Shaffer MD, Varghese M. An Evidence-Based Systematic Review of Saffron (Crocus sativus) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:58-114. [DOI: 10.3109/19390211.2011.547666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
|
46
|
Bathaie SZ, Mousavi SZ. New Applications and Mechanisms of Action of Saffron and its Important Ingredients. Crit Rev Food Sci Nutr 2010; 50:761-86. [DOI: 10.1080/10408390902773003] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Kuratsune H, Umigai N, Takeno R, Kajimoto Y, Nakano T. Effect of crocetin from Gardenia jasminoides Ellis on sleep: a pilot study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:840-843. [PMID: 20537515 DOI: 10.1016/j.phymed.2010.03.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/08/2010] [Accepted: 03/30/2010] [Indexed: 05/29/2023]
Abstract
Crocetin is a pharmacologically active carotenoid compound of Gardenia jasminoides Ellis used as a traditional herbal medicine and natural colorant. The present pilot study investigated the effect of crocetin on sleep. The clinical trial comprised a double-blind, placebo-controlled, crossover trial of 21 healthy adult men with a mild sleep complaint. It included two intervention periods of 2 weeks each, separated by a 2-week washout period. We measured objective sleep quality using an actigraph, and assessed the subjective symptoms using St Mary's Hospital Sleep Questionnaire. Actigraph data showed that after administration of crocetin, the number of wakening episodes was reduced compared to that of the placebo (p=0.025). Subjective data from St Mary's Hospital Sleep Questionnaire showed that crocetin tended to improve the quality of sleep compared to sleep before its intake. Additionally, no side effects from crocetin intake were observed. The results suggest that crocetin may contribute to improving the quality of sleep.
Collapse
Affiliation(s)
- H Kuratsune
- Department of Health Science, Faculty of Health Science for Welfare, Kansai University of Welfare Sciences, Kashiwara, Osaka, Japan
| | | | | | | | | |
Collapse
|
48
|
Lee YJ, Moon MK, Hwang SM, Yoon JJ, Lee SM, Seo KS, Kim JS, Kang DG, Lee HS. Anti-Inflammatory effect of Buddleja officinalis on vascular inflammation in human umbilical vein endothelial cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 38:585-98. [PMID: 20503474 DOI: 10.1142/s0192415x1000807x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular inflammation process has been suggested to be an important risk factor in the initiation and development of atherosclerosis. In this study, we investigated whether and by what mechanisms an aqueous extract of Buddleja officinalis (ABO) inhibited the expressions of cellular adhesion molecules, which are relevant to inflammation and atherosclerosis. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ABO (1-10 microg/ml) for 18 hours dose-dependently inhibited TNF-alpha-induced adhesion U937 monocytic cells, as well as mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). Pretreatment with ABO also blocked TNF-alpha-induced ROS formation. Nuclear factor-kappa B (NF-kappaB) is required in the transcription of these adhesion molecule genes. Western blot analysis revealed that ABO inhibits the translocation of the p65 subunit of NF-kappaB to the nucleus. ABO inhibited the TNF-alpha-induced degradation of IkappaB-alpha, an inhibitor of NF-kappaB, by inhibiting the phosphorylation of IkappaB-alpha in HUVEC. Taken together, ABO could reduce cytokine-induced endothelial adhesiveness throughout down-regulating intracellular ROS production, NF-kappaB, and adhesion molecule expression in HUVEC, suggesting that the natural herb Buddleja officinalis may have potential implications in atherosclerosis.
Collapse
Affiliation(s)
- Yun Jung Lee
- Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
EFFECT OF CROCETIN ON BLOOD PRESSURE RESTORATION AND SYNTHESIS OF INFLAMMATORY MEDIATORS IN HEART AFTER HEMORRHAGIC SHOCK IN ANESTHETIZED RATS. Shock 2010; 33:83-7. [PMID: 19487985 DOI: 10.1097/shk.0b013e3181a98f55] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Zhou CH, Xiang M, He SY, Qian ZY. Crocetin inhibits cell cycle G1
/S transition through suppressing cyclin D1 and elevating p27kip1
in vascular smooth muscle cells. Phytother Res 2009; 24:975-81. [DOI: 10.1002/ptr.3039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|