1
|
Bardy-Lagarde M, Asbelaoui N, Schumacher M, Ghoumari AM. Estradiol Promotes Myelin Repair in the Spinal Cord of Female Mice in a CXCR4 Chemokine Receptor-Independent Manner. Int J Mol Sci 2025; 26:4752. [PMID: 40429893 DOI: 10.3390/ijms26104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
In the adult central nervous system (CNS), myelin regeneration primarily occurs through the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes. In men, declining testosterone levels accelerate the progression of multiple sclerosis (MS), while in women, menopause worsens MS-related disability. We previously demonstrated that functional testes and testosterone are required for the spontaneous remyelination of a focal lysolecithin (LPC)-induced demyelinating lesion in the spinal cords of male mice. Testosterone-dependent myelin repair was dependent on the induction of the chemokine receptor CXCR4 in astrocytes that repopulated the lesion and on cooperation between androgen-receptor signaling and CXCR4 signaling. In the present study, we investigated whether ovaries and estradiol have a comparable key role in female mice. Ovariectomy prevents, the appearance of astrocytes, while treatment with estradiol enhances astrocyte numbers and promotes remyelination by oligodendrocytes within the LPC-demyelinated lesion. Unlike testosterone, estradiol did not induce CXCR4 expression, and its effects remained unaffected by the CXCR4 inhibitor AMD3100. As was seen with testosterone treatment, the presence of astrocytes and myelinating oligodendrocytes within the LPC lesion of estradiol-treated females prevented the incursion of Schwann cells. These findings highlight estradiol's crucial role in CNS remyelination in females, providing a strong rationale for estrogen-replacement therapy in estrogen-deficient and menopausal women with MS.
Collapse
Affiliation(s)
- Marianne Bardy-Lagarde
- UMR1195, Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Narimene Asbelaoui
- UMR1195, Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Michael Schumacher
- UMR1195, Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Abdel Mouman Ghoumari
- UMR1195, Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Long J, Ye P, Yuan W, Yang Q, Wang Z, Xiao H, Xie Z, Lei X, Yang X, Deng X, Tang G. Research progress of flavonoids targeting estrogen receptor in the treatment of breast cancer. Bioorg Med Chem 2025; 120:118106. [PMID: 39938393 DOI: 10.1016/j.bmc.2025.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Breast cancer (BC) stands as the most prevalent malignancy among women. Targeting the estrogen receptor (ER) or ER pathway is one of the important approaches for ER+ BC treatment. As a class of phytoestrogens, flavonoids possess notable anti-tumor properties and hold immense potential in regulating ER signaling. In this review, we reported the recent advances in both in vitro and in vivo studies of flavonoids and their synthetic derivatives targeting the ER signaling pathway, including the target and mechanism of action of these molecules, as well as their structure-activity relationship. Based on the available literature, the beneficial effects of flavonoids as ER targeting agents are promising but they require further in vitro and in vivo studies to enable its translation from bench to bedside. This review will provide valuable guidance and insights for the future development of drugs targeting the ER pathway.
Collapse
Affiliation(s)
- Jianling Long
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Pengju Ye
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qixian Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | | | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Engstad MK, Seynnes O, Vesterhus I, Hesseberg E, Fjeldberg K, Carlsen MH, Ottestad IO, Hansen M, Nordez A, Lacourpaille L, Pensgaard AM, Paulsen G. Effect of Oral Contraceptive Use on Muscle Hypertrophy Following Strength Training. Scand J Med Sci Sports 2025; 35:e70052. [PMID: 40219704 DOI: 10.1111/sms.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Oral contraceptives (OC) are widely used by women, while their interactions with strength training are yet to be resolved. This study investigated the effects of OC use on muscle hypertrophy and strength adaptation to heavy strength training in young adult women. Fifteen habitual OC users and 17 non-OC users (NOC) with regular menstrual cycles completed ~12 weeks of strength training, which spanned three menstrual cycles for the NOC group. All participants were young, healthy, and strength-untrained. Isometric knee-extensor strength, muscle cross-sectional area of the vastus lateralis (ultrasound imaging), and body composition (DXA) were used to evaluate training adaptations. Blood samples for estradiol and progesterone analyses, dietary registrations, and questionnaires assessing appetite, vitality, motivation, recovery status, and sleep duration were collected during the intervention period. Both groups experienced gains in lean mass and muscle strength. However, the OC group demonstrated a significantly larger increase in arm lean mass (5.5% ± 3.9% [mean ± standard deviation] vs. 2.9% ± 2.8%, p < 0.05) and vastus lateralis cross-sectional area (10.0% ± 4.1% vs. 5.3% ± 4.4%, p < 0.05) compared to the NOC group. Despite these differences, there was no significant group difference in lower body strength gains. Both groups reported similar levels of appetite, dietary intake, vitality, motivation to exercise, and perceived recovery throughout the study, although the OC group slept an average of 42 min longer per day. Our findings suggest that OC use potentiates muscle growth during strength training, although further research is needed to elucidate the underlying mechanisms and long-term effects.
Collapse
Affiliation(s)
- Martin Kvalvik Engstad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ingvild Vesterhus
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Eirik Hesseberg
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ken Fjeldberg
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | | | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Antoine Nordez
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France
- Institut Universitaire de France (IUF), Paris, France
| | - Lilian Lacourpaille
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France
| | - Anne Marte Pensgaard
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
4
|
He Q, Yuan J, Yang H, Du T, Hu S, Ding L, Yan W, Chen P, Li J, Huang Z. Maternal exposure to fullerenols impairs placental development in mice by inhibiting estriol synthesis and reducing ERα. J Nanobiotechnology 2025; 23:30. [PMID: 39833883 PMCID: PMC11749090 DOI: 10.1186/s12951-025-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta. Furthermore, we found that fullerenols exposure reduced the levels of CYP3A4, ERα and estriol (E3), while increasing the levels of estradiol (E2) and oxidative stress both in mouse placenta and placental trophoblast cells, and exogenous supplementation with E3 and ER agonists was effective in restoring these changes in vitro. Moreover, CYP3A4 inhibition was effective in decreasing intracellular E3 levels, whereas overexpression of CYP3A4 resisted the fullerenols-induced decrease in E3 expression Additionally, we synthesized glutathione-modified fullerenols (C60-(OH)n-GSH), which demonstrated improved biocompatibility and reduced embryotoxicity by enhancing intracellular glutathione levels and mitigating oxidative stress. In summary, our results demonstrated that fullerenols exposure decreased E3 synthesis by inhibiting CYP3A4 and exacerbated oxidative stress through downregulation of estrogen receptor activation and decreased glutathione levels. These findings highlight the risks of fullerenols exposure during pregnancy and offer strategies for safer nanomaterial development.
Collapse
Affiliation(s)
- Qing He
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jiali Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huihui Yang
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Du
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Siqing Hu
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ling Ding
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wei Yan
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Panpan Chen
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Hampson E, Abrahamson SN, Breddy TN, Iqbal M, Wolff ER. Current oral contraceptive use affects explicit and implicit measures of depression in women. Front Psychol 2024; 15:1462891. [PMID: 39492815 PMCID: PMC11527683 DOI: 10.3389/fpsyg.2024.1462891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Some data suggest that increased depressive symptoms may occur in women using combined oral contraceptives (OCs). However, this idea is controversial and the existing evidence is conflicting. The present study compared negative affect in 53 healthy women (M age = 19.9 years) during intervals of active daily OC hormone intake and during the washout week of the contraceptive cycle when no exogenous estrogens or progestins are used. A prospective counterbalanced repeated-measures study design was employed. Depressive affect was evaluated using standard psychometric tests of explicit (self-perceived) and implicit negative affect. Implicit measures are considered less subject to bias related to social expectations, self-awareness, or willingness to disclose. Other than their usual OCs, participants were medication-free and had been using OCs for a median of 12 mo. We found that measures of implicit affect (e.g., Affect Misattribution Procedure, Emotional Stroop Test) displayed a more depressive-like pattern of performance during active hormone intake, particularly among a subgroup of OC users who reported experiencing high levels of depressive affect more generally. In contrast, participants' self-perceptions suggested that they perceived their negative symptoms to be greater during the 'off' phase of the OC cycle, when OC steroids are withdrawn and menses occurs. The present findings reinforce the possibility of depressive mood effects associated with OC usage, and highlight the utility of including implicit measures, but also illustrate the complexity of mood assessment in OC users.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Laboratory of Neuroendocrinology, Department of Psychology, University of Western Ontario, London, ON, Canada
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Sara N. Abrahamson
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Taylor N. Breddy
- Laboratory of Neuroendocrinology, Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Maisha Iqbal
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Elena R. Wolff
- Laboratory of Neuroendocrinology, Department of Psychology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
7
|
Slaby S, Duflot A, Zapater C, Gómez A, Couteau J, Maillet G, Knigge T, Pinto PIS, Monsinjon T. The Dicentrarchus labrax estrogen screen test: A relevant tool to screen estrogen-like endocrine disrupting chemicals in the aquatic environment. CHEMOSPHERE 2024; 362:142601. [PMID: 38880263 DOI: 10.1016/j.chemosphere.2024.142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
In response to the need for the diversification of regulatory bioassays to screen estrogen-like endocrine disrupting chemical (EEDC) in the environment, we propose the use of a reporter gene assay involving all nuclear estrogen receptors from Dicentrarchus labrax (i.e., sbEsr1, sbEsr2a, or sbEsr2b). Named DLES test (D. labrax estrogen screen), it aims at complementing existing standardized in vitro tests by implementing more estrogen receptors notably those that do not originate from humans. Positive responses were obtained with all three estrogen receptors, and-consistently with observations from other species-variations in sensitivity to E2 were measured. Sensitivity and EC50 values could be classified as follows: sbEsr2b < sbEsr2a < sbEsr1. The pharmacological characterization with a human estrogen receptor antagonist (fulvestrant) successfully validated the specific involvement of each sbEsr and evidenced the capacity of the DLES test to highlight antagonist interactions. The DLES test was applied to WWTP contaminant extracts. A positive response was detected in the inflow sample in accordance with the YES test, but not in the outflow sample. Notwithstanding, the DLES test (sbEsr2b) exhibited greater sensitivity for the screening of those samples. This study demonstrates the need for more comprehensive testing including representatives of marine species for a better detection of EEDCs. The DLES test appears as a pertinent tool to predict adverse effects and to widen the scope of screening and hazard assessment of EEDCs in the environment.
Collapse
Affiliation(s)
- Sylvain Slaby
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| | - Aurélie Duflot
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| | - Cinta Zapater
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellon, Spain.
| | - Ana Gómez
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellon, Spain.
| | | | | | - Thomas Knigge
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| | - Patrícia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMAR), Faro, Portugal.
| | - Tiphaine Monsinjon
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| |
Collapse
|
8
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
9
|
Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina AI, Kumar R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol Nutr Food Res 2024; 68:e2300688. [PMID: 38342595 DOI: 10.1002/mnfr.202300688] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like β-glucuronidases and β-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.
Collapse
Affiliation(s)
- Nikki Kumari
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, 800020, India
| | - Ankita Dua
- Department of Zoology, Shivaji College, University of Delhi, New Delhi, 110027, India
| | - Mona Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roushan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Poonam Singh
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Susan Duyar-Ayerdi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Akinyemi I Ojesina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
10
|
Brouillard A, Davignon LM, Turcotte AM, Marin MF. Morphologic alterations of the fear circuitry: the role of sex hormones and oral contraceptives. Front Endocrinol (Lausanne) 2023; 14:1228504. [PMID: 38027091 PMCID: PMC10661904 DOI: 10.3389/fendo.2023.1228504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Endogenous sex hormones and oral contraceptives (OCs) have been shown to influence key regions implicated in fear processing. While OC use has been found to impact brain morphology, methodological challenges remain to be addressed, such as avoiding selection bias between OC users and non-users, as well as examining potential lasting effects of OC intake. Objective We investigated the current and lasting effects of OC use, as well as the interplay between the current hormonal milieu and history of hormonal contraception use on structural correlates of the fear circuitry. We also examined the role of endogenous and exogenous sex hormones within this network. Methods We recruited healthy adults aged 23-35 who identified as women currently using (n = 62) or having used (n = 37) solely combined OCs, women who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary endogenous sex hormones and current users' salivary ethinyl estradiol (EE) were assessed using liquid chromatography - tandem mass spectrometry. Using structural magnetic resonance imaging, we extracted surface-based gray matter volumes (GMVs) and cortical thickness (CT) for regions of interest of the fear circuitry. Exploratory whole-brain analyses were conducted with surface-based and voxel-based morphometry methods. Results Compared to men, all three groups of women exhibited a larger GMV of the dorsal anterior cingulate cortex, while only current users showed a thinner ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never users exhibited a thicker right anterior insular cortex than past users. While associations with endogenous sex hormones remain unclear, we showed that EE dosage in current users had a greater influence on brain anatomy compared to salivary EE levels and progestin androgenicity, with lower doses being associated with smaller cortical GMVs. Discussion Our results highlight a sex difference for the dorsal anterior cingulate cortex GMV (a fear-promoting region), as well as a reduced CT of the ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC use. Precisely, this finding was driven by lower EE doses. These findings may represent structural vulnerabilities to anxiety and stress-related disorders. We showed little evidence of durable anatomical effects, suggesting that OC intake can (reversibly) affect fear-related brain morphology.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | | | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
11
|
Watanabe A, Myosho T, Ishibashi A, Yamamoto J, Toda M, Onishi Y, Kobayashi T. Levonorgestrel causes feminization and dose-dependent masculinization in medaka fish (Oryzias latipes): Endocrine-disruption activity and its correlation with sex reversal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162740. [PMID: 36921849 DOI: 10.1016/j.scitotenv.2023.162740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
The effect of a synthetic progestin, levonorgestrel (LNG), on the sex of exposed embryos was examined in medaka fish (Oryzias latipes). The aims of this study are to clarify the dual effect of LNG on sex and the correlation with its androgenic/estrogenic potential in medaka. LNG exposure causes significant dose-dependent masculinization (0.1-100 μg/L), whereas a decrease in the masculinization ratio is observed at 100 μg/L. LNG also causes significant feminization at 1-100 μg/L, but not in a dose-dependent manner. Exposure of estrogen-responsive gene (choriogeninH-EGFP) transgenic embryos to 100 μg/L LNG produced significant fluorescent signals in hatched fry. In vitro transcriptional assays indicated that LNG at 10-7-10-5 M induced significant activity for estrogen receptor (ESR)2a and ESR2b, but not for ESR1. In pre-self-feeding fry at 5 days post hatching (dph), 1-100 μg/L LNG caused a significant increase in the mRNA of choriogeninH, irrespective of genetic sex. Moreover, LNG (10-10-10-5 M) also caused a significant increase in the transcriptional activity of androgen receptor (AR) α and ARβ in vitro, and 0.1 μg/L LNG significantly increased the mRNA levels of a testis-differentiation initiation factor, gonadal soma-derived factor (gsdf), as an androgen-upregulated and estrogen-downregulated gene, in 5 dph XX fry to levels similar to those in the control XY fry. However, 100 and 10 μg/L LNG suppressed or did not induce gsdf mRNA expression in XY and XX fry, respectively. Together, these findings show that LNG exerts estrogenic and androgenic activities in different concentration ranges, which correlate with the ratio of LNG-induced sex reversal. These results suggest for the first time, that medaka exposure to LNG can induce masculinization and feminization, based on the balance between androgenic and estrogenic activities, and the protocol applied in this study represents an alternative to the traditional animal model used to screen for endocrine-disrupting potential.
Collapse
Affiliation(s)
- Akiho Watanabe
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Taijun Myosho
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ayaka Ishibashi
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Misa Toda
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Tohru Kobayashi
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
12
|
Yang X, Niu Y, Yang Y, Zhou H, Li J, Fu X, Shen Z, Wang J, Qiu Z. Pheromone effect of estradiol regulates the conjugative transfer of pCF10 carrying antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131087. [PMID: 36889077 DOI: 10.1016/j.jhazmat.2023.131087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Horizontal gene transfer (HGT) mediated by conjugative plasmids greatly contributes to bacteria evolution and the transmission of antibiotic resistance genes (ARGs). In addition to the selective pressure imposed by extensive antibiotic use, environmental chemical pollutants facilitate the dissemination of antibiotic resistance, consequently posing a serious threat to the ecological environment. Presently, the majority of studies focus on the effects of environmental compounds on R plasmid-mediated conjugation transfer, and pheromone-inducible conjugation has largely been neglected. In this study, we explored the pheromone effect and potential molecular mechanisms of estradiol in promoting the conjugative transfer of pCF10 plasmid in Enterococcus faecalis. Environmentally relevant concentrations of estradiol significantly increased the conjugative transfer of pCF10 with a maximum frequency of 3.2 × 10-2, up to 3.5-fold change compared to that of control. Exposure to estradiol induced the activation of pheromone signaling cascade by increasing the expression of ccfA. Furthermore, estradiol might directly bind to the pheromone receptor PrgZ and promote pCF10 induction and finally enhance the conjugative transfer of pCF10. These findings cast valuable insights on the roles of estradiol and its homolog in increasing antibiotic resistance and the potential ecological risk.
Collapse
Affiliation(s)
- Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuanyuan Niu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Yutong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hongrui Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jing Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
13
|
Chao LFI, Liu D, Siewers V. A highly selective cell-based fluorescent biosensor for genistein detection. ENGINEERING MICROBIOLOGY 2023; 3:100078. [PMID: 39629249 PMCID: PMC11611022 DOI: 10.1016/j.engmic.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 12/07/2024]
Abstract
Genistein, an isoflavone found mainly in legumes, has been shown to have numerous health benefits for humans. Therefore, there is substantial interest in producing it using microbial cell factories. To aid in screening for high genistein producing microbial strains, a cell-based biosensor for genistein was developed by repurposing the Gal4DBD-ERα-VP16 (GEV) transcriptional activator in Saccharomyces cerevisiae. In the presence of genistein, the GEV sensor protein binds to the GAL1 promoter and activates transcription of a downstream GFP reporter. The performance of the biosensor, as measured by fold difference in GFP signal intensity after external genistein induction, was improved by engineering the sensor protein, its promoter and the reporter promoter. Biosensor performance increased when the weak promoter REV1p was used to drive GEV sensor gene expression and the VP16 transactivating domain on GEV was replaced with the tripartite VPR transactivator that had its NLS removed. The biosensor performance further improved when the binding sites for the inhibitor Mig1 were removed from and two additional Gal4p binding sites were added to the reporter promoter. After genistein induction, our improved biosensor output a GFP signal that was 20 times higher compared to the uninduced state. Out of the 8 flavonoids tested, the improved biosensor responded only to genistein and in a somewhat linear manner. The improved biosensor also responded to genistein produced in vivo, with the GFP reporter intensity directly proportional to intracellular genistein concentration. When combined with fluorescence-based cell sorting technology, this biosensor could facilitate high-throughput screening of a genistein-producing yeast cell factory.
Collapse
Affiliation(s)
| | | | - Verena Siewers
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
14
|
Priyadarshini E, Parambil AM, Rajamani P, Ponnusamy VK, Chen YH. Exposure, toxicological mechanism of endocrine disrupting compounds and future direction of identification using nano-architectonics. ENVIRONMENTAL RESEARCH 2023; 225:115577. [PMID: 36871939 DOI: 10.1016/j.envres.2023.115577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Endocrine-disrupting compounds (EDC) are a group of exogenous chemicals that structurally mimic hormones and interfere with the hormonal signaling cascade. EDC interacts with hormone receptors, transcriptional activators, and co-activators, altering the signaling pathway at both genomic and non-genomic levels. Consequently, these compounds are responsible for adverse health ailments such as cancer, reproductive issues, obesity, and cardiovascular and neurological disorders. The persistent nature and increasing incidence of environmental contamination from anthropogenic and industrial effluents have become a global concern, resulting in a movement in both developed and developing countries to identify and estimate the degree of exposure to EDC. The U.S. Environment Protection Agency (EPA) has outlined a series of in vitro and in vivo assays to screen potential endocrine disruptors. However, the multidisciplinary nature and concerns over the widespread application demand alternative and practical techniques for identifying and estimating EDC. The review chronicles the state-of-art 20 years (1990-2023) of scientific literature regarding EDC's exposure and molecular mechanism, highlighting the toxicological effects on the biological system. Alteration in signaling mechanisms by representative endocrine disruptors such as bisphenol A (BPA), diethylstilbestrol (DES), and genistein has been emphasized. We further discuss the currently available assays and techniques for in vitro detection and propose the prominence of designing nano-architectonic-sensor substrates for on-site detection of EDC in the contaminated aqueous environment.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan; PhD Program in Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yi-Hsun Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
15
|
Corbet AK, Bikorimana E, Boyd RI, Shokry D, Kries K, Gupta A, Paton A, Sun Z, Fazal Z, Freemantle SJ, Nelson ER, Spinella MJ, Singh R. G0S2 promotes antiestrogenic and pro-migratory responses in ER+ and ER- breast cancer cells. Transl Oncol 2023; 33:101676. [PMID: 37086619 DOI: 10.1016/j.tranon.2023.101676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation. Transcriptome analysis revealed that G0S2 mediated distinct but overlapping transcriptional responses in ER- and ER+ cells. G0S2 reduced genes associated with an epithelial phenotype, especially in ER- cells, including CDH1, ELF3, STEAP4 and TACSTD2, suggesting promotion of the epithelial-mesenchymal transition (EMT). G0S2 also repressed estrogen signaling and estrogen receptor target gene signatures, especially in ER+ cells, including TFF1 and TFF3. In addition, G0S2 overexpression increased cell migration in ER- cells and increased estrogen deprivation sensitivity in ER+ cells. Interestingly, two genes downstream of ATGL in fat utilization and very important in steroid hormone biosynthesis, HMGCS1 and HMGCS2, were downregulated in G0S2 overexpressing ER+ cells. In addition, HSD17B11, a gene that converts estradiol to its less estrogenic derivative, estrone, was highly upregulated in G0S2 overexpressing ER+ cells, suggesting G0S2 overexpression has a negative effect on estradiol production and maintenance. High expression of G0S2 and HSD17B11 was associated with improved relapse-free survival in breast cancer patients while high expression of HMGSC1 was associated with poor survival. Finally, we deleted G0S2 in breast cancer-prone MMTV-PyMT mice. Our data indicates a complex role for G0S2 in breast cancer, dependent on ER status, that may be partially mediated by suppression of the estrogen signaling pathway.
Collapse
Affiliation(s)
- Andrea K Corbet
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kelly Kries
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayush Gupta
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anneliese Paton
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
17
|
Iyer JM, Khare A, Pandey J, Yadav M. Molecular Docking Study of Isoxazole Indole Derivatives (B2A2 Series) as Promising Selective Estrogen Receptor Modulators & Anticancer Drugs. Drug Res (Stuttg) 2023; 73:75-87. [PMID: 36302538 DOI: 10.1055/a-1958-3823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of 7 compounds with isoxazole - indole - γ-resorcylic acid scaffold, segregated into B2 & A2 series, wherein, B2 comprises Compounds: 13, 14, 15 & 16 and A2 comprises Compounds: 10, 11 & 12, on the basis of the variable substituents at the indole, resorcinol and isoxazole end of the scaffold as in Figure: 1, were designed and docked with human estrogen receptor: 1ERRα. The Binding affinity (BA) and the interacting amino acids compared with reference selective estrogen receptor modulators (SERM's) such as Raloxifene, Estradiol, Bazedoxifene, Bisphenol, Genistein, Daidzein, Ormiloxifene, Tamoxifen, 6-hydroxy-naphthalen-2yl-benzo(D)-isoxazol-6-ol(1) using PyRx software and their ADME properties predicted with SWISS ADME online tool. Significant similarities and minor differences in the binding pattern between the key interacting aminoacids such as Arg 394, Glu 353, Asp 351, Leu 346, Leu 525, Trp 383, Phe 404, Ala 350, Leu 387, Met 421 responsible for ER agonist/antagonist affinity found in the binding cavity of a 1 Errα -Bazedoxifene/1 Errα -raloxifene/1 Errα -estradiol docked complex AND 1 Errα -isoxazole-indole- resorcinol docked complex indicate their promising potential to serve as potent ER agonists in bone or ER antagonists against breast cancer and other cancer diseases. The Compounds with highest BA is of the order: BA (A1series)>B1series>/<BA(A2 series)>/=BA (B2 series) exceptions: compounds: 4, 5 of B1 series & compound:13 of B2 series with identical and least BA values.BA(6)=BA(8)>BA(7)>BA(2)>BA(9)=BA(1)>BA(12)>BA(10)=BA(15)=BA(11)=BA(3)>BA(14)=BA(16)>BA(4)=BA(5)=BA(13).
Collapse
Affiliation(s)
| | - Aradhana Khare
- Associate Professor, Atlas Skill Tech University, Mumbai, Maharashtra, India
| | - Jaya Pandey
- Assistant Professor, Amity University, Lucknow, Uttar Pradesh, India
| | - Manish Yadav
- Assistant Professor, Amity University, Somathne, Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Hampson E. Oral contraceptives in the central nervous system: Basic pharmacology, methodological considerations, and current state of the field. Front Neuroendocrinol 2023; 68:101040. [PMID: 36243109 DOI: 10.1016/j.yfrne.2022.101040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Millions of women around the world use combined oral contraceptives (OCs), yet surprisingly little is known about their central nervous system (CNS) effects. This article provides a short overview of the basic pharmacology of OCs, emphasizing features that may be relevant to understanding their effects in the CNS. Historical and recent findings from studies of cognitive function, mood, and negative affect (depressive changes under OC use) are then reviewed. We also present data from an archival dataset from our own laboratory in which we explore dysphoric changes in women using four generations of contraceptive progestins. Current data in the field are consistent with a modest effect of OC use on CNS variables, but conclusions based on current findings must be made very cautiously because of multiple methodological issues in many published studies to date, and inconsistencies in the findings. Directions for future research over the next 10 years are suggested. (150 words).
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
19
|
Lacasse JM, Boulos V, Fisher C, Hamilton S, Heron M, Mac Cionnaith CE, Peronace V, Tito N, Brake WG. Combined effects of the contraceptive hormones, ethinyl estradiol and levonorgestrel, on the use of place and response memory in gonadally-intact female rats. Psychoneuroendocrinology 2023; 147:105974. [PMID: 36403510 DOI: 10.1016/j.psyneuen.2022.105974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
During maze navigation rats can rely on hippocampus-mediated place memory or striatum-mediated response memory. Ovarian hormones bias whether females use place or response memory to reach a reward. Here, we investigated the impact of the contraceptive hormones, ethinyl estradiol (EE) and levonorgestrel (LNG), on memory bias. A total of 63 gonadally-intact female rats were treated with either 10 μg/kg of EE alone, 20 μg/kg of LNG alone, both 10 μg/kg of EE and 20 μg/kg of LNG together, or a sesame oil injection with 5% ethanol as a vehicle control. Rats in the control condition were tested during the diestrus phase of the estrous cycle in order to control for the low circulating levels of gonadotropin and ovarian hormones that occur with oral contraceptive administration. Rats treated with LNG alone had a bias towards the use of place memory compared to diestrus phase control rats. This bias was not observed if LNG was administered in combination with EE. Rats treated with EE or EE+LNG did not have a statistically significant difference in memory bias compared to rats in the control group. These data show that synthetic hormones contained in oral contraceptives administered to females influence which cognitive strategy is predominantly used during navigation.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Vanessa Boulos
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Caleigh Fisher
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Sarran Hamilton
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Megan Heron
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Conall E Mac Cionnaith
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Vanessa Peronace
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Noémie Tito
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
20
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
21
|
Iyer JM, Khare A, Pandey J. Insilico Docking Study of Isoxazole Indole Linked Resorcinol Derivatives as Promising Selective Estrogen Receptor Modulators & Anticancer Drugs. Drug Res (Stuttg) 2022; 72:509-522. [PMID: 35952681 DOI: 10.1055/a-1888-4684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A series of 9 compounds with isoxazole-indole-γ-resorcylic acid scaffold, segregated into B1 & A1 series, wherein, B1 comprises compounds:1,3,4,5, & 9 and A1comprises compounds: 2,6,7, & 8 , on the basis of variable substituents at the indole , resorcinol and isoxazole end of the scaffold as in Fig. 1, were designed and docked with human estrogen receptor:1ERRα. The binding affinity (BA) and the interacting amino acids compared with reference selective estrogen receptor modulators (SERMs) such as Raloxifene, Estradiol, Bazedoxifene, Bisphenol, Genistein, Daidzein, Ormiloxifene,Tamoxifen,6-hydroxy-naphthalen-2yl-benzo(D)-isoxazol-6-ol(1)(WAY-397) using PyRx software and their ADME properties predicted with SWISS ADME online tool. Significant similarities and minor differences in the binding pattern between the key interacting aminoacids such as Arg 394,Glu 353, Asp 351, Leu 346, Leu 525, Trp 383,Phe 404 ,Ala 350, Leu 387, Met 421 responsible for ER agonist/antagonist activity found in the binding cavity of a 1 Errα -Bazedoxifene/1 Errα -raloxifene/1 Errα -estradiol docked complex AND 1 Errα -isoxazole-indole- resorcinol docked complex indicate their promising potential to serve as potent ER agonists in bone or ER antagonists against breast cancer and other cancer diseases. The Compounds with Highest BA is of the order: BA (A1series)>B1 series & BA(6)=BA(8)>BA(7)>BA(2)>BA(9)=BA(1)>BA(3)>BA(4)=BA(5).
Collapse
Affiliation(s)
| | - Aradhana Khare
- Associate Professor, Atlas Skill Tech University, Mumbai, Maharashtra, India
| | - Jaya Pandey
- Assistant Professor, Amity University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Li XW, Lu YY, Zhang SY, Sai NN, Fan YY, Cheng Y, Liu QS. Mechanism of Neural Regeneration Induced by Natural Product LY01 in the 5×FAD Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:926123. [PMID: 35814256 PMCID: PMC9258960 DOI: 10.3389/fphar.2022.926123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/28/2022] Open
Abstract
Background: A sharp decline in neural regeneration in patients with Alzheimer's disease (AD) exacerbates the decline of cognition and memory. It is of great significance to screen for innovative drugs that promote endogenous neural regeneration. Cytisine N-methylene-(5,7,4'-trihydroxy)-isoflavone (LY01) is a new compound isolated from the Chinese herbal medicine Sophora alopecuroides with both isoflavone and alkaloid characteristic structures. Its pharmacological effects are worth studying. Objective: This study was designed to determine whether LY01 delays the cognitive and memory decline in the early stage of AD and whether this effect of LY01 is related to promoting neural regeneration. Methods: Eight-week-old 5×Familial Alzheimer's Disease (5×FAD) mice were used as disease models of early AD. Three doses of LY01 administered in two courses (2 and 5 weeks) of treatment were tested. Cognition, memory, and anxiety-like behaviors in mice were evaluated by the Morris water maze, fear conditioning, and open field experiments. Regeneration of neurons in the mouse hippocampus was observed using immunofluorescence staining. The effect of LY01 on cell regeneration was also demonstrated using a series of tests on primary cultured neurons, astrocytes, and neural stem cells (NSCs). In addition, flow cytometry and transcriptome sequencing were carried out to preliminarily explored the mechanisms. Results: We found that LY01 reduced the decline of cognition and memory in the early stage of 5×FAD mice. This effect was related to the proliferation of astrocytes, the proliferation and migration of NSCs, and increases in the number of new cells and neural precursor cells in the dentate gyrus area of 5×FAD mice. This phenomenon could be observed both in 2-week-old female and 5-week-old male LY01-treated 5×FAD mice. The neuronal regeneration induced by LY01 was related to the regulation of the extracellular matrix and associated receptors, and effects on the S phase of the cell cycle. Conclusion: LY01 increases the proliferation of NSCs and astrocytes and the number of neural precursor cells in the hippocampus, resulting in neural regeneration in 5×FAD mice by acting on the extracellular matrix and associated receptors and regulating the S phase of the cell cycle. This provides a new idea for the early intervention and treatment of AD.
Collapse
Affiliation(s)
- Xiao-Wan Li
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang-Yang Lu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Shu-Yao Zhang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Ning-Ning Sai
- University Hospital, Tianjin Normal University, Tianjin, China
| | - Yu-Yan Fan
- Traditional Chinese Medicine Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Qing-Shan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| |
Collapse
|
23
|
Sammeta VR, Norris JD, Artham S, Torrice CD, Byemerwa J, Joiner C, Fanning SW, McDonnell DP, Willson TM. A New Chemotype of Chemically Tractable Nonsteroidal Estrogens Based on a Thieno[2,3- d]pyrimidine Core. ACS Med Chem Lett 2022; 13:1151-1158. [DOI: 10.1021/acsmedchemlett.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vamshikrishna Reddy Sammeta
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - John D. Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Chad D. Torrice
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Carstyn Joiner
- Department of Cancer Biology, Loyola University of Chicago Stritch School of Medicine, Maywood, Illinois 60611, United States
| | - Sean W. Fanning
- Department of Cancer Biology, Loyola University of Chicago Stritch School of Medicine, Maywood, Illinois 60611, United States
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Timothy M. Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Zhao TY, Xiao LJ, Zhou QL. Nickel-Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6-Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022; 61:e202115702. [PMID: 35043525 DOI: 10.1002/anie.202115702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/13/2022]
Abstract
We have developed a nickel-catalyzed desymmetric reductive cyclization/coupling of 1,6-dienes. The reaction provides an efficient method for constructing a chiral tertiary alcohol and a quaternary stereocenter by a single operation. The method has excellent diastereoselectivity and high enantioselectivity, a broad substrate scope, as well as good tolerance of functional groups. Preliminary mechanism studies show that alkyl nickel(I) species are involved in the reaction.
Collapse
Affiliation(s)
- Tian-Yuan Zhao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Li-Jun Xiao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Qi-Lin Zhou
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| |
Collapse
|
25
|
Novick AM, Johnson RL, Lazorwitz A, Belyavskaya A, Berkowitz L, Norton A, Sammel MD, Epperson CN. Discontinuation of hormonal contraception due to changes in mood and decreases in sexual desire: the role of adverse childhood experiences. EUR J CONTRACEP REPR 2022; 27:212-220. [PMID: 35133231 DOI: 10.1080/13625187.2022.2030702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate if adverse childhood experiences are associated with hormonal contraception discontinuation due to mood and sexual side effects. MATERIALS AND METHODS Women, ages 18-40 (N = 826), with current and/or previous hormonal contraceptive use completed surveys on demographics, contraceptive history, and the Adverse Childhood Experiences Questionnaire. We characterised women into high (≥2 adverse experiences) and low (0 or 1) adverse childhood experience groups. We calculated risk ratios for associations between adverse childhood experiences and outcomes of interest using log binomial generalised linear models, and adjusted for relevant demographic variables. RESULTS Women in the high adverse childhood experiences group (n = 355) were more likely to report having discontinued hormonal contraception due to decreases in sexual desire (adjusted risk ratio 1.44, 1.03-2.00, p = .030). Covariates included age, current hormonal contraception use, and various demographic variables associated with discontinuation. Adverse childhood experiences were not associated with mood or sexual side effects among current (n = 541) hormonal contraceptive users. CONCLUSIONS Self-reported adverse childhood experiences were associated with greater likelihood of discontinuing hormonal contraception due to behavioural side effects, particularly decreases in sexual desire. Identification of risk factors for behavioural side effects can assist patients and clinicians in making informed choices on contraception that minimise risk of early discontinuation.
Collapse
Affiliation(s)
- Andrew M Novick
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel L Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Aaron Lazorwitz
- Division of Family Planning, Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Belyavskaya
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Lily Berkowitz
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Aileen Norton
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Mary D Sammel
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,Department of Family Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
Zhao T, Xiao L, Zhou Q. Nickel‐Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6‐Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian‐Yuan Zhao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Li‐Jun Xiao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Qi‐Lin Zhou
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| |
Collapse
|
27
|
Tebbens M, Heijboer AC, T’Sjoen G, Bisschop PH, den Heijer M. The Role of Estrone in Feminizing Hormone Treatment. J Clin Endocrinol Metab 2022; 107:e458-e466. [PMID: 34632510 PMCID: PMC8764217 DOI: 10.1210/clinem/dgab741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/17/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT In trans women, hormone treatment induces feminization; however, the degree of feminization varies from person to person. A possible contributing factor could be estrone, a weak estrogen that interferes with the estrogen receptor. OBJECTIVE We assessed whether estrone is involved in feminization induced by hormone treatment. METHODS This prospective cohort study, with follow-up of 1 year, included 212 adult trans women at a gender identity clinic, who were starting gender-affirming hormone treatment between July 2017 and December 2019, median age 25 years. Change in fat percentage and breast development were assessed. RESULTS After 12 months of hormone treatment, estrone concentration was 187 pmol/L (95% CI, 153-220) in transdermal and 1516 pmol/L (95% CI, 1284-1748) in oral estradiol users. Fat percentage increased by 1.2% (interquartile range [IQR], 0.3-4.8) in transdermal and 4.6% (IQR, 2.5-5.9) in oral estradiol users. This was not associated with estrone concentrations in transdermal (+4.4% (95% CI, -4.0 to 13) per 100 pmol/L increase in estrone concentration) nor in oral estradiol users (-0.7% [95% CI, -1.7 to 0.3]). Breast volume increased by 69 mL (IQR, 58-134) in transdermal and 62 mL (IQR, 32-95) in oral estradiol users. This was not associated with estrone concentrations in transdermal (+14% [95% CI, -49 to 156] per 100 pmol/L increase in estrone concentration) nor oral estradiol users (+11% [95% CI -14 to 43]). CONCLUSIONS Change in fat percentage and breast development in trans women were not associated with estrone concentrations nor with administration route. Therefore, measurement of estrone concentrations does not have a place in the monitoring of feminization in trans women.
Collapse
Affiliation(s)
- Marieke Tebbens
- Department of Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Correspondence: M. Tebbens, MD, Department of Endocrinology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, The Netherlands.
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Guy T’Sjoen
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Peter H Bisschop
- Department of Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- M. den Heijer, MD, PhD, Department of Endocrinology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, The Netherlands.
| |
Collapse
|
28
|
Hampson E, Morley EE, Evans KL, Fleury C. Effects of oral contraceptives on spatial cognition depend on pharmacological properties and phase of the contraceptive cycle. Front Endocrinol (Lausanne) 2022; 13:888510. [PMID: 36147581 PMCID: PMC9487179 DOI: 10.3389/fendo.2022.888510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The central nervous system effects of oral contraceptives (OCs) are not well-documented. In a set of 3 studies, we investigated a specific cognitive function, mental rotation, in healthy women currently using OCs for contraceptive purposes (n = 201) and in medication-free controls not using OCs (n = 44). Mental rotation was measured using a well-standardized and extensively validated psychometric test, the Vandenberg Mental Rotations Test (MRT). In an initial study (Study 1), current OC users (n = 63) were tested during the active or inactive phases of the contraceptive cycle in a parallel-groups design. Studies 2 and 3 were based on an archival dataset (n = 201 current OC users) that consisted of data on the MRT collected in real-time over a 30-year period and compiled for purposes of the present work. The OCs were combined formulations containing ethinyl estradiol (10-35 ug/day) plus a synthetic progestin. All 4 families of synthetic progestins historically used in OCs were represented in the dataset. Cognitive performance was evaluated during either active OC use ('active phase') or during the washout week of the contraceptive cycle ('inactive phase') when OC steroids are not used. The results showed a significant phase-of-cycle (POC) effect. Accuracy on the MRT was mildly diminished during the active phase of OC use, while scores on verbal fluency and speeded motor tasks were modestly improved. The POC effect was most evident in women using OCs that contained first- or second-generation progestins (the estrane family of progestins or OCs containing levonorgestrel), but not in women using OCs containing recently developed progestins and lower doses of ethinyl estradiol. Using independently established ratings of the estrogenic, androgenic, and progestogenic intensities of the different OC formulations, each brand of OC was classified according to its distinct endocrine profile. Multiple regression revealed that the effects of OC use on the MRT could be predicted based on the estrogenic strength of the contraceptives used. Estrogenic potency, not androgenic or anti-androgenic effects of the OC pill, may underlie the effects of OC usage on spatial cognition.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- *Correspondence: Elizabeth Hampson,
| | - Erin E. Morley
- Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Kelly L. Evans
- Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Cathleen Fleury
- Department of Psychology, University of Western Ontario, London, ON, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
29
|
Dos Santos Cavaleiro RM, da Silva Arouche T, Martins Tanoue PS, Sá Pereira TS, de Carvalho Junior RN, Paranhos Costa FL, de Andrade Filho TS, Dos Santos Borges R, de Jesus Chaves Neto AM. Hormones Nanofiltration in Carbon Nanotubes and Boron Nitride Nanotubes Using Uniform External Electric Field Through Molecular Dynamics. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5499-5509. [PMID: 33980360 DOI: 10.1166/jnn.2021.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hormones are a dangerous group of molecules that can cause harm to humans. This study based on classical molecular dynamics proposes the nanofiltration of wastewater contaminated by hormones from a computer simulation study, in which the water and the hormone were filtered in two single-walled nanotube compositions. The calculations were carried out by changing the intensities of the electric field that acted as a force exerting pressure on the filtration along the nanotube, in the simulation time of 100 ps. The hormones studied were estrone, estradiol, estriol, progesterone, ethinylestradiol, diethylbestrol, and levonorgestrel in carbon nanotubes (CNTs) and boron nitride (BNNTs). The most efficient nanofiltrations were for fields with low intensities in the order of 10-8 au and 10-7 au. The studied nanotubes can be used in membranes for nanofiltration in water treatment plants due to the evanescent field potential caused by the action of the electric field inside. Our data showed that the action of EF in conjunction with the van der Walls forces of the nanotubes is sufficient to generate the attractive potential. Evaluating the transport of water molecules in CNTs and BNNTs, under the influence of the electric field, a sequence of simulations with the same boundary conditions was carried out, seeking to know the percentage of water molecules filtered in the nanotubes.
Collapse
Affiliation(s)
| | - Tiago da Silva Arouche
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | - Phelipe Seiichi Martins Tanoue
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | - Tais Souza Sá Pereira
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | | | - Fabio Luiz Paranhos Costa
- Federal University of Goiás, Campus Jataí. Rodovia BR-364, Setor Francisco Antônio, 75801615 - Jataí, GO - Brazil
| | - Tarciso Silva de Andrade Filho
- Federal University of the South and Southeast of Pará, Campus de Marabá. FL 17, QD 04, LT Especial Nova Marabá 68505080 - Maraba, PA - Brazil
| | - Rosivaldo Dos Santos Borges
- Federal University of Pará, Department of Pharmacy. Rua Augusto Correa, SN Pharmaceutical Chemistry Laboratory Guarna 66075-110 - Belem, PA - Brazil
| | | |
Collapse
|
30
|
Schmidt PJ, Wei SM, Martinez PE, Ben Dor RR, Guerrieri GM, Palladino PP, Harsh VL, Li HJ, Wakim P, Nieman LK, Rubinow DR. The short-term effects of estradiol, raloxifene, and a phytoestrogen in women with perimenopausal depression. Menopause 2021; 28:369-383. [PMID: 33470755 PMCID: PMC9022873 DOI: 10.1097/gme.0000000000001724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We examined the short-term efficacies of three estrogen-like compounds under placebo-controlled conditions in women with perimenopause-related depression (PMD). METHODS Women with PMD were randomized in a double-blind parallel design to one of four treatments: transdermal 17-beta estradiol (TE) (100 mcg/d); oral raloxifene (60 mg/d); a proprietary phytoestrogen compound, Rimostil (1,000 mg twice/d); or placebo for 8 weeks. The main outcome measures were the Center for Epidemiology Studies Depression Scale, 17-item Hamilton Rating Scale for Depression (HRSD), and the Beck Depression Inventory completed at each clinic visit. Secondary outcomes included a visual analogue self-rating completed at each clinic visit, and daily self-ratings of hot flush severity. Cognitive tests were performed at pretreatment baseline and at the end of the trial. In the primary analysis, we obtained four repeated measures in each woman in the four treatment arms. Analyses were done with SAS Version 9.4 software (SAS Institute, Inc, Cary, NC), using PROC MIXED (for mixed models). All models included the following four explanatory variables, regardless of whether they were statistically significant: 1) treatment group (TE, raloxifene, Rimostil, placebo); 2) week (W2, W4, W6, W8); 3) treatment group-by-week interaction; and 4) baseline value of the measure being analyzed. The inclusion of additional variables was evaluated individually for each outcome measure. RESULTS Sixty-six women were randomized into the trial, four women dropped out of the trial, and 62 women were included in the final data analysis. No effect of treatment group was observed in either the Center for Epidemiology Studies Depression Scale (P = 0.34) or Beck Depression Inventory (P = 0.27) scores; however, there was a difference in HRSD scores between treatment groups (P = 0.0037) that pair-wise comparisons of the combined weekly scores in each treatment demonstrated TE's beneficial effects on HRSD scores compared with Rimostil (P = 0.0005), and less consistently with placebo (P = 0.099). The average (SD) of the baseline scores for each treatment group on the HRSD was as follows: TE-15.3 (4.5), raloxifene-16.0 (3.7), Rimostil-14.0 (2.7), and placebo-15.2 (3.0). Whereas the HRSD scores after 8 weeks of treatment (least-square means) were TE-5.2(1.1), raloxifene-5.8(1.2), Rimostil-11.2(1.4), and placebo-7.8(1.1). No differences were observed between raloxifene and either TE or placebo in any scale score. HRSD scores in women assigned to TE were improved compared with those on Rimostil during weeks 6 and 8 (P values = 0.0008, 0.0011, respectively). Cognitive testing at week 8 showed that none of the three active treatment groups performed better than placebo. CONCLUSIONS This study did not identify significant therapeutic benefits of TE, Rimostil, or raloxifene compared with placebo in PMD. However, improvements in depression ratings were observed between TE compared with Rimostil. Thus, our findings do not support the role of ERbeta compounds in the treatment of PMD (and indeed could suggest a more important role of ERalpha).
Collapse
Affiliation(s)
- Peter J. Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Shau-Ming Wei
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Pedro E. Martinez
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Rivka R. Ben Dor
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Gioia M. Guerrieri
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Paula P. Palladino
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Veronica L. Harsh
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Howard J. Li
- Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, DHHS, Bethesda, MD
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Lynnette K. Nieman
- Intramural Research Program on Reproductive and Adult Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD
| | - David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
31
|
Silva H. The Vascular Effects of Isolated Isoflavones-A Focus on the Determinants of Blood Pressure Regulation. BIOLOGY 2021; 10:49. [PMID: 33445531 PMCID: PMC7827317 DOI: 10.3390/biology10010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Isoflavones are phytoestrogen compounds with important biological activities, including improvement of cardiovascular health. This activity is most evident in populations with a high isoflavone dietary intake, essentially from soybean-based products. The major isoflavones known to display the most important cardiovascular effects are genistein, daidzein, glycitein, formononetin, and biochanin A, although the closely related metabolite equol is also relevant. Most clinical studies have been focused on the impact of dietary intake or supplementation with mixtures of compounds, with only a few addressing the effect of isolated compounds. This paper reviews the main actions of isolated isoflavones on the vasculature, with particular focus given to their effect on the determinants of blood pressure regulation. Isoflavones exert vasorelaxation due to a multitude of pathways in different vascular beds. They can act in the endothelium to potentiate the release of NO and endothelium-derived hyperpolarization factors. In the vascular smooth muscle, isoflavones modulate calcium and potassium channels, leading to hyperpolarization and relaxation. Some of these effects are influenced by the binding of isoflavones to estrogen receptors and to the inhibition of specific kinase enzymes. The vasorelaxation effects of isoflavones are mostly obtained with plasma concentrations in the micromolar range, which are only attained through supplementation. This paper highlights isolated isoflavones as potentially suitable alternatives to soy-based foodstuffs and supplements and which could enlarge the current therapeutic arsenal. Nonetheless, more studies are needed to better establish their safety profile and elect the most useful applications.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| |
Collapse
|
32
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
33
|
Neale PA, Grimaldi M, Boulahtouf A, Leusch FDL, Balaguer P. Assessing species-specific differences for nuclear receptor activation for environmental water extracts. WATER RESEARCH 2020; 185:116247. [PMID: 32758789 DOI: 10.1016/j.watres.2020.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In vitro bioassays are increasingly applied to detect endocrine disrupting chemicals (EDCs) in environmental waters. Most studies use human nuclear receptor assays, but this raises questions about their relevance for evaluating ecosystem health. The current study aimed to assess species-specific differences in the activation or inhibition of a range of human and zebrafish nuclear receptors by different water extracts. Wastewater and surface water extracts were run in transactivation assays indicative of the estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR), pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ). The transactivation assays were complemented with competitive binding assays for human AR, GR, PR and MR. In most cases, both human and zebrafish nuclear receptor activity were detected in the water extracts. Only some species-specific differences in potency and activity were observed. Water extracts were more active in zebrafish PXR compared to human PXR whereas the opposite was observed for PPARγ. Further, all water extracts inhibited zebrafish PR, while only one extract showed weak anti-progestagenic activity for human PR. Due to these observed differences, zebrafish nuclear receptor assays may be preferable over human nuclear receptor assays to assess the potential risks of EDCs to aquatic organisms. However, recognizing issues with availability of zebrafish nuclear receptor assays and the relatively small differences in responsiveness for many of the human and zebrafish nuclear receptors, including the widely studied ER, the current study supports the continued use of human nuclear receptor assays for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| |
Collapse
|
34
|
Larsen SV, Köhler‐Forsberg K, Dam VH, Poulsen AS, Svarer C, Jensen PS, Knudsen GM, Fisher PM, Ozenne B, Frokjaer VG. Oral contraceptives and the serotonin 4 receptor: a molecular brain imaging study in healthy women. Acta Psychiatr Scand 2020; 142:294-306. [PMID: 33314049 PMCID: PMC7586815 DOI: 10.1111/acps.13211] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sex steroid hormones potently shape brain functions, including those critical to maintain mental health such as serotonin signaling. Use of oral contraceptives (OCs) profoundly changes endogenous sex steroid hormone levels and dynamics. Recent register-based studies show that starting an OC is associated with increased risk of developing depression. Here, we investigate whether use of OCs in healthy women is associated with a marker of the serotonin system in terms of serotonin 4 receptor (5-HT4R) brain imaging. METHODS [11C]SB207145-PET imaging data on 53 healthy women, of whom 16 used OCs, were available from the Cimbi database. We evaluated global effects of OC use on 5-HT4R binding in a latent variable model based on 5-HT4R binding across cortical and subcortical regions. RESULTS We demonstrate that OC users have 9-12% lower global brain 5-HT4R binding potential compared to non-users. Univariate region-based analyses (pallidostriatum, caudate, hippocampus, amygdala, anterior cingulate cortex, and neocortex) supported the global effect of OC use with the largest difference present in the hippocampus (-12.8% (95% CI [-21.0; -3.9], Pcorrected = 0.03). CONCLUSION We show that women who use OCs have markedly lower brain 5-HT4R binding relative to non-users, which constitutes a plausible molecular link between OC use and increased risk of depressive episodes. We propose that this reflects a reduced 5-HT4R gene expression, possibly related to a blunted ovarian hormone state among OC users.
Collapse
Affiliation(s)
- S. V. Larsen
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
| | - K. Köhler‐Forsberg
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Mental health services in the Capital Region of DenmarkCopenhagenDenmark
| | - V. H. Dam
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - A. S. Poulsen
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
| | - C. Svarer
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
| | - P. S. Jensen
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
| | - G. M. Knudsen
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - P. M. Fisher
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
| | - B. Ozenne
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
- Department of Public HealthSection of BiostatisticsUniversity of CopenhagenCopenhagen KDenmark
| | - V. G. Frokjaer
- Neurobiology Research UnitRigshospitaletCopenhagenDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Mental health services in the Capital Region of DenmarkCopenhagenDenmark
| |
Collapse
|
35
|
Ito-Harashima S, Matano M, Onishi K, Nomura T, Nakajima S, Ebata S, Shiizaki K, Kawanishi M, Yagi T. Construction of reporter gene assays using CWP and PDR mutant yeasts for enhanced detection of various sex steroids. Genes Environ 2020; 42:20. [PMID: 32514322 PMCID: PMC7251871 DOI: 10.1186/s41021-020-00159-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sex steroid hormone receptors are classified into three classes of receptors: estrogen receptors (ER) α and β, androgen receptor (AR), and progesterone receptor (PR). They belong to the nuclear receptor superfamily and activate their downstream genes in a ligand-dependent manner. Since sex steroid hormones are involved in a wide variety of physiological processes and cancer development, synthetic chemical substances that exhibit sex steroid hormone activities have been applied as pharmaceuticals and consumed in large amounts worldwide. They are potentially hazardous contaminants as endocrine disruptors in the environment because they may induce inappropriate gene expression mediated by sex steroid hormone receptors in vivo. Results To develop simple reporter gene assays with enhanced sensitivity for the detection of sex steroid hormones, we newly established mutant yeast strains lacking the CWP and PDR genes encoding cell wall mannoproteins and plasma membrane drug efflux pumps, respectively, and expressing human ERα, ERβ, AR, and PR. Reporter gene assays with mutant yeast strains responded to endogenous and synthetic ligands more strongly than those with wild-type strains. Sex steroid hormone activities in some pharmaceutical oral tablets and human urine were also detectable in these yeast assays. Conclusions Yeast reporter gene assay systems for all six steroid hormone receptors, including previously established glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) assay yeasts, are now available. Environmental endocrine disrupters with steroid hormone activity will be qualitatively detectable by simple and easy procedures. The yeast-based reporter gene assay will be valuable as a primary screening tool to detect and evaluate steroid hormone activities in various test samples. Our assay system will strongly support the detection of agonists, antagonists, and inverse agonists of steroid hormone receptors in the field of novel drug discovery and assessments of environmental pollutants.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Mami Matano
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kana Onishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Tomofumi Nomura
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Saki Nakajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Shingo Ebata
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kazuhiro Shiizaki
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan.,Present address: Department of Applied Biosciences, Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193 Japan
| | - Masanobu Kawanishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Takashi Yagi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
36
|
Petrick JL, Hyland PL, Caron P, Falk RT, Pfeiffer RM, Dawsey SM, Abnet CC, Taylor PR, Weinstein SJ, Albanes D, Freedman ND, Gapstur SM, Bradwin G, Guillemette C, Campbell PT, Cook MB. Associations Between Prediagnostic Concentrations of Circulating Sex Steroid Hormones and Esophageal/Gastric Cardia Adenocarcinoma Among Men. J Natl Cancer Inst 2020; 111:34-41. [PMID: 29788475 DOI: 10.1093/jnci/djy082] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Esophageal adenocarcinoma (EA) and gastric cardia adenocarcinoma (GCA) are characterized by a strong male predominance. Concentrations of sex steroid hormones have been hypothesized to explain this sex disparity. However, no prospective population-based study has examined sex steroid hormones in relation to EA/GCA risk. Thus, we investigated whether prediagnostic circulating sex steroid hormone concentrations were associated with EA/GCA in a nested case-control study drawn from participants in three prospective cohort studies. Methods Using gas chromatography-mass spectrometry (GC-MS) and electrochemiluminescence immunoassay, we quantitated sex steroid hormones and sex hormone binding globulin, respectively, in serum from 259 EA/GCA male case participants and 259 matched male control participants from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, and Cancer Prevention Study II Nutrition Cohort. Multivariable conditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between circulating hormones and EA/GCA risk. All statistical tests were two-sided. Results Higher concentrations of dehydroepiandrosterone (DHEA) were associated with a 38% decreased risk of EA/GCA (OR per unit increase in log2 DHEA = 0.62, 95% CI = 0.47 to 0.82, Ptrend = .001). Higher estradiol concentrations were associated with a 34% reduced risk of EA/GCA (OR = 0.66, 95% CI = 0.45 to 0.98, Ptrend = .05), and the association with free estradiol was similar. No other associations between baseline hormone concentrations and future EA/GCA risk were observed. Conclusions This study provides the first evidence that higher concentrations of circulating DHEA, estradiol, and free estradiol may be associated with lower risks of EA/GCA in men.
Collapse
Affiliation(s)
- Jessica L Petrick
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Paula L Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier de l'Université Laval de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Sanford M Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Gary Bradwin
- Clinical and Epidemiologic Research Laboratory, Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier de l'Université Laval de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| |
Collapse
|
37
|
Hampson E. A brief guide to the menstrual cycle and oral contraceptive use for researchers in behavioral endocrinology. Horm Behav 2020; 119:104655. [PMID: 31843564 DOI: 10.1016/j.yhbeh.2019.104655] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that reproductive hormones exert regulatory effects in the central nervous system that can influence behavioral, cognitive, perceptual, affective, and motivational processes. These effects occur in adults and post-pubertal individuals, and can be demonstrated in humans as well as laboratory animals. Large changes in 17β-estradiol and progesterone occur over the ovarian cycle (i.e., the menstrual cycle) and afford a way for researchers to explore the central nervous system (CNS) effects of these hormones under natural physiological conditions. Increasingly, oral contraceptives are also being studied, both as another route to understanding the CNS effects of reproductive hormones and also as pharmacological agents in their own right. This mini-review will summarize the basic physiology of the menstrual cycle and essential facts about oral contraceptives to help novice researchers to use both paradigms effectively.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology and Graduate Program in Neuroscience, University of Western Ontario, London, ON N6A 5C2, Canada.
| |
Collapse
|
38
|
Zhang Q, Liu R, Xu H, Yang X, Zhang Y, Wang Q, Gao P, Bi K, Han T, Li Q. Multifunctional isotopic standards based steroidomics strategy: Exploration of cancer screening model. J Chromatogr A 2020; 1614:460723. [DOI: 10.1016/j.chroma.2019.460723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022]
|
39
|
Lu J, Shang X, Zhong W, Xu Y, Shi R, Wang X. New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases. Acta Pharm Sin B 2020; 10:91-104. [PMID: 31998606 PMCID: PMC6984740 DOI: 10.1016/j.apsb.2019.11.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.
Collapse
Key Words
- CYP, cytochrome P450
- CYP1A
- EOAs, cis-epoxyoctadecenoics
- Endogenous substances
- FSH, follicle stimulating hormone
- HODEs, hydroxyoctadecdienoic acids
- IQ, 2-amino-3-methylimidazo [4,5-f] quinoline
- KO, knockout
- LIF/STAT3, inhibiting leukemia inhibitory factor/signal transducer and activator of transcription 3
- Metabolism and disease
- PhIP, 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine
- SNPs
- SNPs, single nucleotide polymorphisms
- WT, wild type
- Xenobiotics
- t-RA, all-trans-retinoic acid
- t-ROH, all-trans-retinol
Collapse
Affiliation(s)
- Jian Lu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuyang Shang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguo Zhong
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
40
|
Gramec Skledar D, Tvrdý V, Kenda M, Zega A, Pour M, Horký P, Mladěnka P, Sollner Dolenc M, Peterlin Mašič L. Applicability of the OECD 455 in-vitro assay for determination of hERa agonistic activity of isoflavonoids. Toxicol Appl Pharmacol 2019; 386:114831. [PMID: 31756431 DOI: 10.1016/j.taap.2019.114831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/30/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
The Organisation for Economic Co-operation and Development (OECD)-validated transactivation assay using the human estrogen receptor alpha (hERα) Hela9903 cell line is used for activity evaluation of hERα agonists and antagonists. Due to many advantages, this assay is broadly used as an initial screening process. However, response significantly higher from that of 17-β estradiol (E2) was observed with phytoestrogens for concentrations commonly above 1 μM in previous studies. The main aim of this study was thus to ascertain the applicability of OECD protocol 455 for evaluation of estrogenic activity of natural flavonoids, including known phytoestrogens. The estrogenic activities of aglycones as well as of O-methylated and glycosylated flavonoids were evaluated. Supra-maximal luciferase activity was seen for most of the flavonoids tested at concentrations even below 1 μM. hERα-mediated luciferase expression was confirmed with the competition assay specified in OECD protocol 455. However, at concentrations above 1 μM, non-specific interactions were also observed. Instead of EC50 values, which could not be determined for most of the isoflavonoids tested, the concentrations corresponding to 10% (PC10) and 50% (PC50) of the maximum activity of the positive control, E2, were used for quantitative determination of estrogenic activities. Appropriate evaluation of the data obtained with the current OECD protocol 455 validated assay represents a valuable tool for initial screening of natural flavonoids for estrogenic activity.
Collapse
Affiliation(s)
- Darja Gramec Skledar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavel Horký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | | | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
41
|
Assessment of human estrogen receptor agonistic/antagonistic effects of veterinary drugs used for livestock and farmed fish by OECD in vitro stably transfected transcriptional activation assays. Toxicol In Vitro 2019; 58:256-263. [DOI: 10.1016/j.tiv.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 11/20/2022]
|
42
|
Lopreside A, Calabretta MM, Montali L, Ferri M, Tassoni A, Branchini BR, Southworth T, D'Elia M, Roda A, Michelini E. Prêt-à-porter nanoYESα and nanoYESβ bioluminescent cell biosensors for ultrarapid and sensitive screening of endocrine-disrupting chemicals. Anal Bioanal Chem 2019; 411:4937-4949. [PMID: 30972468 DOI: 10.1007/s00216-019-01805-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Cell-based assays utilizing reporter gene technology have been widely exploited for biosensing, as they provide useful information about the bioavailability and cell toxicity of target analytes. The long assay time due to gene transcription and translation is one of the main drawbacks of cell biosensors. We report the development of two yeast biosensors stably expressing human estrogen receptors α and β and employing NanoLuc as the reporter protein to upgrade the widely used yeast estrogen screening (YES) assays. A viability control strain was also developed based on a chimeric green-emitting luciferase, PLG2, expressed for the first time in Saccharomycescerevisiae. Thanks to their brightness, NanoLuc and PLG2 provided excellent sensitivity, enabling the implementation of these biosensors into low-cost smartphone-based devices. The developed biosensors had a rapid (1 h) response and reported on (anti)estrogenic activity via human estrogen receptors α and β as well as general sample toxicity. Under optimized conditions, we obtained LODs of 7.1 ± 0.4 nM and 0.38 ± 0.08 nM for E2 with nanoYESα and nanoYESβ, respectively. As a proof of concept, we analyzed real samples from plants showing significant estrogenic activity or known to contain significant amounts of phytoestrogens. Graphical abstract.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Maura Ferri
- Department of Biological Geological and Environmental Sciences (BIGeA), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences (BIGeA), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Bruce R Branchini
- Department of Chemistry, Connecticut College, 270 Mohegan Ave., New London, CT, 06320, USA
| | - Tara Southworth
- Department of Chemistry, Connecticut College, 270 Mohegan Ave., New London, CT, 06320, USA
| | - Marcello D'Elia
- Gabinetto Regionale di Polizia Scientifica per l'Emilia-Romagna, Via Volto Santo 3, 40123, Bologna, Italy
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy.
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, 40064, Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
43
|
Renaud L, Agarwal N, Richards DJ, Falcinelli S, Hazard ES, Carnevali O, Hyde J, Hardiman G. Transcriptomic analysis of short-term 17α-ethynylestradiol exposure in two Californian sentinel fish species sardine (Sardinops sagax) and mackerel (Scomber japonicus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:926-937. [PMID: 30469287 DOI: 10.1016/j.envpol.2018.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Nisha Agarwal
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA
| | | | - Silvia Falcinelli
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Academic Affairs Faculty & Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC, USA
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Gary Hardiman
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA; Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA; MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC, USA; School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
44
|
Hou X, Adeosun SO, Zhao X, Hill R, Zheng B, Reddy R, Su X, Meyer J, Mosley T, Wang JM. ERβ agonist alters RNA splicing factor expression and has a longer window of antidepressant effectiveness than estradiol after long-term ovariectomy. J Psychiatry Neurosci 2019; 44:19. [PMID: 30565903 PMCID: PMC6306290 DOI: 10.1503/jpn.170199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Estrogen therapy (ET), an effective treatment for perimenopausal depression, often fails to ameliorate symptoms when initiated late after the onset of menopause. Our previous work has suggested that alternative splicing of RNA might mediate these differential effects of ET. METHODS Female Sprague–Dawley rats were treated with estradiol (E2) or vehicle 6 days (early ET) or 180 days (late ET) after ovariectomy (OVX). We investigated the differential expression of RNA splicing factors and tryptophan hydroxylase 2 (TPH2) protein using a customized RT2 Profiler PCR Array, reverse-transcription polymerase chain reaction, immunoprecipitation and behaviour changes in clinically relevant early and late ET. RESULTS Early ET, but not late ET, prolonged swimming time in the forced swim test and reduced anxiety-like behaviours in the elevated plus maze. It reversed OVX-increased (SFRS7 and SFRS16) or OVX-decreased (ZRSR2 and CTNNB1) mRNA levels of splicing factors and ERβ splicing changes in the brains of OVX rats. Early ET, but not late ET, also increased the expression of TPH2 and decreased monoamine oxidase A levels in the dorsal raphe in the brains of OVX rats. In late ET, only diarylpropionitrile (an ERβ-specific agonist) achieved similar results — not E2 (an ERα and ERβ agonist) or propylpyrazoletriol (an ERα-specific agonist). LIMITATIONS Our experimental paradigm mimicked early and late ET in the clinical setting, but the contribution of age and OVX might be difficult to distinguish. CONCLUSION These findings suggest that ERβ alternative splicing and altered responses in the regulatory system for serotonin may mediate the antidepressant efficacy of ET associated with the timing of therapy initiation. It is likely that ERβ-specific ligands would be effective estrogen-based antidepressants late after the onset of menopause.
Collapse
Affiliation(s)
- Xu Hou
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Samuel O. Adeosun
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Xueying Zhao
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Rosanne Hill
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Baoying Zheng
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Reveena Reddy
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Xiao Su
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Jeffrey Meyer
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Thomas Mosley
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Jun Ming Wang
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| |
Collapse
|
45
|
Perkins MS, Louw-du Toit R, Africander D. Hormone Therapy and Breast Cancer: Emerging Steroid Receptor Mechanisms. J Mol Endocrinol 2018; 61:R133-R160. [PMID: 29899079 DOI: 10.1530/jme-18-0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Although hormone therapy is widely used by millions of women to relieve symptoms of menopause, it has been associated with several side-effects such as coronary heart disease, stroke and increased invasive breast cancer risk. These side-effects have caused many women to seek alternatives to conventional hormone therapy, including the controversial custom-compounded bioidentical hormone therapy suggested to not increase breast cancer risk. Historically estrogens and the estrogen receptor were considered the principal factors promoting breast cancer development and progression, however, a role for other members of the steroid receptor family in breast cancer pathogenesis is now evident, with emerging studies revealing an interplay between some steroid receptors. In this review, we discuss examples of hormone therapy used for the relief of menopausal symptoms, highlighting the distinction between conventional hormone therapy and custom-compounded bioidentical hormone therapy. Moreover, we highlight the fact that not all hormones have been evaluated for an association with increased breast cancer risk. We also summarize the current knowledge regarding the role of steroid receptors in mediating the carcinogenic effects of hormones used in menopausal hormone therapy, with special emphasis on the influence of the interplay or crosstalk between steroid receptors. Unraveling the intertwined nature of steroid hormone receptor signaling pathways in breast cancer biology is of utmost importance, considering that breast cancer is the most prevalent cancer among women worldwide. Moreover, understanding these mechanisms may reveal novel prevention or treatment options, and lead to the development of new hormone therapies that does not cause increased breast cancer risk.
Collapse
Affiliation(s)
- Meghan S Perkins
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
46
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
47
|
Balaguer P, Delfosse V, Grimaldi M, Bourguet W. Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses. C R Biol 2018; 340:414-420. [PMID: 29126514 DOI: 10.1016/j.crvi.2017.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs.
Collapse
Affiliation(s)
- Patrick Balaguer
- Institut de recherche en cancérologie de Montpellier (IRCM), 34298 Montpellier, France; Inserm, U1194, 34298 Montpellier, France; Institut régional du cancer de Montpellier (ICM), 34298 Montpellier, France; Université de Montpellier, 34090 Montpellier, France.
| | - Vanessa Delfosse
- Université de Montpellier, 34090 Montpellier, France; Inserm U1054, 34090 Montpellier, France; CNRS UMR5048, Centre de biochimie structurale, 34090 Montpellier, France
| | - Marina Grimaldi
- Institut de recherche en cancérologie de Montpellier (IRCM), 34298 Montpellier, France; Inserm, U1194, 34298 Montpellier, France; Institut régional du cancer de Montpellier (ICM), 34298 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - William Bourguet
- Université de Montpellier, 34090 Montpellier, France; Inserm U1054, 34090 Montpellier, France; CNRS UMR5048, Centre de biochimie structurale, 34090 Montpellier, France
| |
Collapse
|
48
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
49
|
Borgert CJ, Matthews JC, Baker SP. Human-relevant potency threshold (HRPT) for ERα agonism. Arch Toxicol 2018; 92:1685-1702. [PMID: 29632997 PMCID: PMC5962616 DOI: 10.1007/s00204-018-2186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical’s ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical’s potency for a specific MoA—its mechanistic potency—is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17β-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| | - Stephen P Baker
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
50
|
Mixture Concentration-Response Modeling Reveals Antagonistic Effects of Estradiol and Genistein in Combination on Brain Aromatase Gene (cyp19a1b) in Zebrafish. Int J Mol Sci 2018; 19:ijms19041047. [PMID: 29614754 PMCID: PMC5979603 DOI: 10.3390/ijms19041047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/02/2022] Open
Abstract
Comprehension of compound interactions in mixtures is of increasing interest to scientists, especially from a perspective of mixture risk assessment. However, most of conducted studies have been dedicated to the effects on gonads, while only few of them were. interested in the effects on the central nervous system which is a known target for estrogenic compounds. In the present study, the effects of estradiol (E2), a natural estrogen, and genistein (GEN), a phyto-estrogen, on the brain ER-regulated cyp19a1b gene in radial glial cells were investigated alone and in mixtures. For that, zebrafish-specific in vitro and in vivo bioassays were used. In U251-MG transactivation assays, E2 and GEN produced antagonistic effects at low mixture concentrations. In the cyp19a1b-GFP transgenic zebrafish, this antagonism was observed at all ratios and all concentrations of mixtures, confirming the in vitro effects. In the present study, we confirm (i) that our in vitro and in vivo biological models are valuable complementary tools to assess the estrogenic potency of chemicals both alone and in mixtures; (ii) the usefulness of the ray design approach combined with the concentration-addition modeling to highlight interactions between mixture components.
Collapse
|