1
|
Bair A, Printy N, Choi SH, Wilkinson J, O'Brien J, Myers B, Roman D, Mahfouz TM. In Silico Design of Novel RGS2-G alpha-q Interaction Inhibitors with Anticancer Activity. J Chem Inf Model 2024; 64:8052-8062. [PMID: 39401155 DOI: 10.1021/acs.jcim.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Regulators of G-protein signaling (RGS) are a family of approximately 30 proteins that bind to and deactivate the alpha subunits of G-proteins (Gα) by accelerating their GTP hydrolysis rates, which terminates G-protein coupled receptor (GPCR) signaling. Thus, RGS proteins are essential in regulating GPCR signaling, and most members are implicated as critical nodes in human diseases such as hypertension, depression, and others. Regulator of G-protein signaling 2 (RGS2), a member of the R4 family of RGS proteins, is overexpressed in many solid breast cancers, and its levels in prostate cancer significantly correlate with the metastatic stage and poor prognosis. We sought to develop RGS2 inhibitors as potential chemotherapeutic agents utilizing structure-based drug design approaches. Available structures of the RGS2-Gα complex were used to extract a pharmacophore model for searching chemical databases. Docking of identified hits to RGS2 as well as other RGS structures was used to screen the hits for potent and selective RGS2 inhibitors. Whole cell assays showed the top 10 ranking compounds, AJ-1-AJ-10, to inhibit RGS2-Gαq interactions. Differential scanning fluorimetry showed AJ-3 to bind RGS2 but not Gαq. All 10 compounds inhibited the growth of several RGS2 expressing cancers in cell culture assays. In addition, AJ-3 inhibited the migration of LNCaP prostate cancer cells in wound healing assays. This is the first group of RGS2 inhibitors identified by structure-based approaches and that show anticancer activity. These results highlight the potential RGS2 inhibitors have to be a new class of chemotherapeutic agents.
Collapse
Affiliation(s)
- Adam Bair
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - Natalie Printy
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - So Hee Choi
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - Joshua Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joseph O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brian Myers
- Department of Chemistry and Biochemistry, Getty College of Arts and Sciences, Ohio Northern University, Ada, Ohio 45817, United States
| | - David Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Tarek M Mahfouz
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| |
Collapse
|
2
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
3
|
Li X, Ding Z, Tong Y. Identification of SUMOylation-related biomarkers in papillary thyroid carcinoma. Cancer Cell Int 2024; 24:149. [PMID: 38671425 PMCID: PMC11055338 DOI: 10.1186/s12935-024-03323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Small ubiquitin-like modifier (SUMO) modification is increasingly recognized as critical in tumorigenesis and progression. This study identifies biomarkers linked to SUMOylation in papillary thyroid carcinoma (PTC), aiming to advance therapeutic and prognostic strategies. METHODS Employing PTC datasets and SUMO related genes (SRGs), we utilized univariate Cox regression for prognosis-related SRGs, conducted differential expression analyses, and integrated findings to pinpoint candidate genes. These genes underwent further validation through survival, gene set enrichment, immune infiltration, and drug sensitivity analyses, including external validation via quantitative RT-qPCR. In our final step, we conducted immunohistochemical staining on tumor samples from PTC patients at our center and integrated this with their clinical data to validate BMP8A's effectiveness in predicting recurrence in PTC. RESULTS Three biomarkers-BMP8A, RGS8, and SERPIND1-emerged as significant. Gene Set Enrichment Analysis (GSEA) showed their involvement in immune-related pathways, with differential immune infiltration patterns and drug response correlations observed, underscoring their potential for targeted therapy. Lastly, we validated the efficacy of BMP8A in predicting the recurrence of PTC in patients using clinical and pathological data from our center. CONCLUSION The study identifies BMP8A, RGS8, and SERPIND1 as key biomarkers associated with SUMOylation in PTC. Their linkage to immune response and drug sensitivity highlights their importance as targets for therapeutic intervention and prognosis in PTC research.
Collapse
Affiliation(s)
- Xiang Li
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Zigang Ding
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Yun Tong
- Department of Pain, The Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
4
|
Yang Y, Xing S, Luo X, Guan L, Lu Y, Wang Y, Wang F. Unraveling the prognostic significance of RGS gene family in gastric cancer and the potential implication of RGS4 in regulating tumor-infiltrating fibroblast. Front Mol Biosci 2024; 11:1158852. [PMID: 38693916 PMCID: PMC11061405 DOI: 10.3389/fmolb.2024.1158852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/09/2024] [Indexed: 05/03/2024] Open
Abstract
Regulator of G-protein signaling (RGS) proteins are regulators of signal transduction mediated by G protein-coupled receptors (GPCRs). Current studies have shown that some molecules in the RGS gene family are related to the occurrence, development and poor prognosis of malignant tumors. However, the RGS gene family has been rarely studied in gastric cancer. In this study, we explored the mutation and expression profile of RGS gene family in gastric cancer, and evaluated the prognostic value of RGS expression. Then we established a prognostic model based on RGS gene family and performed functional analysis. Further studies showed that RGS4, as an independent prognostic predictor, may play an important role in regulating fibroblasts in the immune microenvironment. In conclusion, this study explores the value of RGS gene family in gastric cancer, which is of great significance for predicting the prognosis and guiding the treatment of gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ma Z, Chen M, Liu X, Cui H. Identification and verification of a prognostic autophagy-related gene signature in hepatocellular carcinoma. Sci Rep 2024; 14:3032. [PMID: 38321105 PMCID: PMC10847443 DOI: 10.1038/s41598-024-53565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
This study aimed to investigate the potential of autophagy-related genes (ATGs) as a prognostic signature for HCC and explore their relationships with immune cells and immune checkpoint molecules. A total of 483 samples were collected from the GEO database (n = 115) and The Cancer Genome Atlas (TCGA) database (n = 368). The GEO dataset was used as the training set, while the TCGA dataset was used for validation. The list of ATGs was obtained from the human autophagy database (HADB). Using Cox regression and LASSO regression methods, a prognostic signature based on ATGs was established. The independent use of this prognostic signature was tested through subgroup analysis. Additionally, the predictive value of this signature for immune-related profiles was explored. Following selection through univariate Cox regression analysis and iterative LASSO Cox analysis, a total of 11 ATGs were used in the GEO dataset to establish a prognostic signature that stratified patients into high- and low-risk groups based on survival. The robustness of this prognostic signature was validated using an external dataset. This signature remained a prognostic factor even in subgroups with different clinical features. Analysis of immune profiles revealed that patients in the high-risk group exhibited immunosuppressive states characterized by lower immune scores and ESTIMATE scores, greater tumour purity, and increased expression of immune checkpoint molecules. Furthermore, this signature was found to be correlated with the infiltration of different immune cell subpopulations. The results suggest that the ATG-based signature can be utilized to evaluate the prognosis of HCC patients and predict the immune status within the tumour microenvironment (TME). However, it is important to note that this study represents a preliminary attempt to use ATGs as prognostic indicators for HCC, and further validation is necessary to determine the predictive power of this signature.
Collapse
Affiliation(s)
- Zhen Ma
- The Second Clinical Medical School, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou City, 730000, Gansu Province, China
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Mali Chen
- Department of Obstetrics, Gansu Provincial Maternity and Child-Care Hospital, 143 North Street, Qilihe District, Lanzhou City, 730030, Gansu Province, People's Republic of China
| | - XiaoLong Liu
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hongbin Cui
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
6
|
Yang C, Zhang X, Yang X, Lian F, Sun Z, Huang Y, Shen W. Function and regulation of RGS family members in solid tumours: a comprehensive review. Cell Commun Signal 2023; 21:316. [PMID: 37924113 PMCID: PMC10623796 DOI: 10.1186/s12964-023-01334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.
Collapse
Affiliation(s)
- Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Zongrun Sun
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China.
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
7
|
Xu Q, Yao M, Tang C. RGS2 and female common diseases: a guard of women's health. J Transl Med 2023; 21:583. [PMID: 37649067 PMCID: PMC10469436 DOI: 10.1186/s12967-023-04462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Currently, women around the world are still suffering from various female common diseases with the high incidence, such as ovarian cancer, uterine fibroids and preeclampsia (PE), and some diseases are even with the high mortality rate. As a negative feedback regulator in G Protein-Coupled Receptor signaling (GPCR), the Regulator of G-protein Signaling (RGS) protein family participates in regulating kinds of cell biological functions by destabilizing the enzyme-substrate complex through the transformation of hydrolysis of G Guanosine Triphosphate (GTP). Recent work has indicated that, the Regulator of G-protein Signaling 2 (RGS2), a member belonging to the RGS protein family, is closely associated with the occurrence and development of certain female diseases, providing with the evidence that RGS2 functions in sustaining women's health. In this review paper, we summarize the current knowledge of RGS2 in female common diseases, and also tap and discuss its therapeutic potential by targeting multiple mechanisms.
Collapse
Affiliation(s)
- Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China
| | - Mukun Yao
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
8
|
Crippa V, Malighetti F, Villa M, Graudenzi A, Piazza R, Mologni L, Ramazzotti D. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering. Comput Biol Med 2023; 162:107064. [PMID: 37267828 DOI: 10.1016/j.compbiomed.2023.107064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Cancer patients show heterogeneous phenotypes and very different outcomes and responses even to common treatments, such as standard chemotherapy. This state-of-affairs has motivated the need for the comprehensive characterization of cancer phenotypes and fueled the generation of large omics datasets, comprising multiple omics data reported for the same patients, which might now allow us to start deciphering cancer heterogeneity and implement personalized therapeutic strategies. In this work, we performed the analysis of four cancer types obtained from the latest efforts by The Cancer Genome Atlas, for which seven distinct omics data were available for each patient, in addition to curated clinical outcomes. We performed a uniform pipeline for raw data preprocessing and adopted the Cancer Integration via MultIkernel LeaRning (CIMLR) integrative clustering method to extract cancer subtypes. We then systematically review the discovered clusters for the considered cancer types, highlighting novel associations between the different omics and prognosis.
Collapse
Affiliation(s)
- Valentina Crippa
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
9
|
Neto BV, Tavares V, da Silva JB, Liz-Pimenta J, Marques IS, Carvalho L, Salgado L, Pereira D, Medeiros R. Thrombogenesis-associated genetic determinants as predictors of thromboembolism and prognosis in cervical cancer. Sci Rep 2023; 13:9519. [PMID: 37308506 DOI: 10.1038/s41598-023-36161-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of death among cancer patients. Khorana score (KS) is the most studied tool to predict cancer-related VTE, however, it exerts poor sensitivity. Several single-nucleotide polymorphisms (SNPs) have been associated with VTE risk in the general population, but whether they are predictors of cancer-related VTE is a matter of discussion. Compared to other solid tumours, little is known about VTE in the setting of cervical cancer (CC) and whether thrombogenesis-related polymorphisms could be valuable biomarkers in patients with this neoplasia. This study aims to analyse the effect of VTE occurrence on the prognosis of CC patients, explore the predictive capability of KS and the impact of thrombogenesis-related polymorphisms on CC-related VTE incidence and patients' prognosis regardless of VTE. A profile of eight SNPs was evaluated. A retrospective hospital-based cohort study was conducted with 400 CC patients under chemoradiotherapy. SNP genotyping was carried on by using TaqMan® Allelic Discrimination methodology. Time to VTE occurrence and overall survival were the two measures of clinical outcome evaluated. The results indicated that VTE occurrence (8.5%) had a significant impact on the patient's survival (log-rank test, P < 0.001). KS showed poor performance (KS ≥ 3, χ2, P = 0.191). PROCR rs10747514 and RGS7 rs2502448 were significantly associated with the risk of CC-related VTE development (P = 0.021 and P = 0.006, respectively) and represented valuable prognostic biomarkers regardless of VTE (P = 0.004 and P = 0.010, respectively). Thus, thrombogenesis-related genetic polymorphisms may constitute valuable biomarkers among CC patients allowing a more personalized clinical intervention.
Collapse
Affiliation(s)
- Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal
| | - José Brito da Silva
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Joana Liz-Pimenta
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508, Vila Real, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FCUP, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Luísa Carvalho
- External Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Lurdes Salgado
- External Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal.
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal.
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- FCUP, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal.
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150, Porto, Portugal.
| |
Collapse
|
10
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
11
|
Shockley KR, Dunnick JK. Gene expression profiling after exposure to a chemical carcinogen, Pentabrominated Diphenyl Ether, at different life stages. FRONTIERS IN TOXICOLOGY 2023; 4:1028309. [PMID: 36687508 PMCID: PMC9847571 DOI: 10.3389/ftox.2022.1028309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to environmental hazards occurs at different stages of our lifetime-infant, child, adult. This study integrates recently published toxicogenomics data to examine how exposure to a known rat chemical carcinogen (pentabrominated diphenyl ether (PBDE)) upregulated liver transcriptomic changes at different life cycle stages (PND 4, PND 22, adult). We found that at all three life cycle stages PBDE exposure induced hepatocellular transcriptomic changes in disease pathways including cancer, metabolic, membrane function, and Nrf2 antioxidant pathways, pathways all characteristics of chemical carcinogens. In addition, in the adult rat after a 5-day exposure to the chemical carcinogen, there was upregulation of members of the Ras oncogenic pathway, a specific pathway found to be activated in the PBDE-induced tumors in rats in a previous hazard identification cancer study. The findings of liver transcript changes characteristic of carcinogenic activity after early life exposures and after short-term adult exposures provides data to support the use of transcriptomic data to predict the apical cancer endpoints in model studies. Using data from gene expression profiling studies after neonatal, young, or adult short-term chemical exposure helps to meet the 21st century toxicology goal of developing study designs to reduce, refine, and replace the use of traditional 2-year rodent cancer studies to provide hazard identification information. The studies reported here find that key transcripts associated with carcinogenesis were elevated in neonate (PND 4), young (PND 22) and adult animals after short-term exposure to PBDE, a known experimental chemical carcinogen in model systems.
Collapse
Affiliation(s)
- Keith R. Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - June K. Dunnick
- Systems Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
12
|
Montañez-Miranda C, Perszyk RE, Harbin NH, Okalova J, Ramineni S, Traynelis SF, Hepler JR. Functional Assessment of Cancer-Linked Mutations in Sensitive Regions of Regulators of G Protein Signaling Predicted by Three-Dimensional Missense Tolerance Ratio Analysis. Mol Pharmacol 2023; 103:21-37. [PMID: 36384958 PMCID: PMC10955721 DOI: 10.1124/molpharm.122.000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling by acting as negative regulators of G proteins. Genetic variants in RGS proteins are associated with many diseases, including cancers, although the impact of these mutations on protein function is uncertain. Here we analyze the RGS domains of 15 RGS protein family members using a novel bioinformatic tool that measures the missense tolerance ratio (MTR) using a three-dimensional (3D) structure (3DMTR). Subsequent permutation analysis can define the protein regions that are most significantly intolerant (P < 0.05) in each dataset. We further focused on RGS14, RGS10, and RGS4. RGS14 exhibited seven significantly tolerant and seven significantly intolerant residues, RGS10 had six intolerant residues, and RGS4 had eight tolerant and six intolerant residues. Intolerant and tolerant-control residues that overlap with pathogenic cancer mutations reported in the COSMIC cancer database were selected to define the functional phenotype. Using complimentary cellular and biochemical approaches, proteins were tested for effects on GPCR-Gα activation, Gα binding properties, and downstream cAMP levels. Identified intolerant residues with reported cancer-linked mutations RGS14-R173C/H and RGS4-K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T resulted in a loss-of-function phenotype in GPCR-G protein signaling activity. In downstream cAMP measurement, tolerant RGS14-D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in change of function phenotypes. These findings show that 3DMTR identified intolerant residues that overlap with cancer-linked mutations cause phenotypic changes that negatively impact GPCR-G protein signaling and suggests that 3DMTR is a potentially useful bioinformatics tool for predicting functionally important protein residues. SIGNIFICANCE STATEMENT: Human genetic variant/mutation information has expanded rapidly in recent years, including cancer-linked mutations in regulator of G protein signaling (RGS) proteins. However, experimental testing of the impact of this vast catalogue of mutations on protein function is not feasible. We used the novel bioinformatics tool three-dimensional missense tolerance ratio (3DMTR) to define regions of genetic intolerance in RGS proteins and prioritize which cancer-linked mutants to test. We found that 3DMTR more accurately classifies loss-of-function mutations in RGS proteins than other databases thereby offering a valuable new research tool.
Collapse
Affiliation(s)
- Carolina Montañez-Miranda
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer Okalova
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Shriebman Y, Yitzhaky A, Kosloff M, Hertzberg L. Gene expression meta-analysis in patients with schizophrenia reveals up-regulation of RGS2 and RGS16 in Brodmann Area 10. Eur J Neurosci 2023; 57:360-372. [PMID: 36443250 DOI: 10.1111/ejn.15876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Regulator of G-protein signalling (RGS) proteins inhibit signalling by G-protein-coupled receptors (GPCRs). GPCRs mediate the functions of several important neurotransmitters and serve as targets of many anti-psychotics. RGS2, RGS4, RGS5 and RGS16 are located on chromosome 1q23.3-31, a locus found to be associated with schizophrenia. Although previous gene expression analysis detected down-regulation of RGS4 expression in brain samples of patients with schizophrenia, the results were not consistent. In the present study, we performed a systematic meta-analysis of differential RGS2, RGS4, RGS5 and RGS16 expression in Brodmann Area 10 (BA10) samples of patients with schizophrenia and from healthy controls. Two microarray datasets met the inclusion criteria (overall, 41 schizophrenia samples and 38 controls were analysed). RGS2 and RGS16 were found to be up-regulated in BA10 samples of individuals with schizophrenia, whereas no differential expression of RGS4 and RGS5 was detected. Analysis of dorso-lateral prefrontal cortex samples of the CommonMind Consortium (258 schizophrenia samples vs. 279 controls) further validated the results. Given their central role in inactivating G-protein-coupled signalling pathways, our results suggest that differential gene expression might lead to enhanced inactivation of G-protein signalling in schizophrenia. This, in turn, suggests that additional studies are needed to further explore the consequences of the differential expression we detected, this time at the protein and functional levels.
Collapse
Affiliation(s)
- Yaen Shriebman
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mickey Kosloff
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Yang S, Sun B, Li W, Yang H, Li N, Zhang X. Fatty acid metabolism is related to the immune microenvironment changes of gastric cancer and RGS2 is a new tumor biomarker. Front Immunol 2022; 13:1065927. [PMID: 36591293 PMCID: PMC9797045 DOI: 10.3389/fimmu.2022.1065927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Background Alterations in lipid metabolism promote tumor progression. However, the role of lipid metabolism in the occurrence and development of gastric cancer have not been fully clarified. Method Here, genes that are related to fatty acid metabolism and differentially-expressed between normal and gastric cancer tissues were identified in the TCGA-STAD cohort. The intersection of identified differentially-expressed genes with Geneset was determined to obtain 78 fatty acid metabolism-related genes. The ConsensusClusterPlus R package was used to perform differentially-expressed genes, which yielded divided two gastric cancer subtypes termed cluster 1 and cluster 2. Results Patients in cluster 2 was found to display poorer prognosis than patients in cluster 1. Using machine learning method to select 8 differentially expressed genes among subtypes to construct fatty acid prognostic risk score model (FARS), which was found to display good prognostic efficacy. We also identified that certain anticancer drugs, such as bortezomib, elesclomol, GW843682X, and nilotinib, showed significant sensitivity in the high FARS score group. RGS2 was selected as the core gene upon an analysis of the gastric cancer single-cell, and Western blotting and immunofluorescence staining results revealed high level of expression of this gene in gastric cancer cells. The results of immunohistochemical staining showed that a large amount of RGS2 was deposited in the stroma in gastric cancer. A pan-cancer analysis also revealed a significant association of RGS2 with TMB, TIDE, and CD8+ T-cell infiltration in other cancer types as well. RGS2 may thus be studied further as a new target for immunotherapy in future studies on gastric cancer. Conclusion In summary, the FARS model developed here enhances our understanding of lipid metabolism in the TME in gastric cancer, and provides a theoretical basis for predicting tumor prognosis and clinical treatment.
Collapse
Affiliation(s)
- Shifeng Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nana Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Bioinformatics analysis identified RGS4 as a potential tumor promoter in glioma. Pathol Res Pract 2022; 240:154225. [DOI: 10.1016/j.prp.2022.154225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
16
|
Wang Z, Chen J, Wang S, Sun Z, Lei Z, Zhang HT, Huang J. RGS6 suppresses TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancers via a novel mechanism dependent on its interaction with SMAD4. Cell Death Dis 2022; 13:656. [PMID: 35902557 PMCID: PMC9334288 DOI: 10.1038/s41419-022-05093-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Regulator of G-protein signaling 6 (RGS6) is a newly discovered tumor suppressor that has been shown to be protective in development of various cancers such as breast cancer and bladder cancer. But the mechanisms underlying these tumor-suppressing functions of RGS6 are not fully understood. Here, we discover a novel function of RGS6 in suppressing TGF-β-induced epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC) cells and in vivo NSCLC metastasis. Using both bioinformatics and experimental tools, we showed that RGS6 was downregulated in lung cancer tissues compared to noncancerous counterparts, and low expression of RGS6 was associated with poor survival of lung cancer patients. Overexpression of RGS6 suppressed TGF-β-induced EMT in vitro and TGF-β-promoted metastasis in vivo, by impairing gene expression of downstream effectors induced by the canonical TGF-β-SMAD signaling. The ability of RGS6 to suppress TGF-β-SMAD-mediated gene expression relied on its binding to SMAD4 to prevent complex formation between SMAD4 and SMAD2/3, but independent of its regulation of the G-protein signaling. Interaction between RGS6 and SMAD4 caused less nuclear entry of p-SMAD3 and SMAD4, resulting in inefficient SMAD3-mediated gene expression. Taken together, our findings reveal a novel and noncanonical role of RGS6 in regulation of TGF-β-induced EMT and metastasis of NSCLC and identify RGS6 as a prognostic marker and a potential novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Zhao Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Jun Chen
- grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Shengjie Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.89957.3a0000 0000 9255 8984Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000 China
| | - Zelong Sun
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Zhe Lei
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Hong-Tao Zhang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Jie Huang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| |
Collapse
|
17
|
Castro I, Lopes-Rodrigues V, Branco H, Vasconcelos MH, Xavier CPR. Establishing and characterizing a novel doxorubicin-resistant acute myeloid leukaemia cell line. J Chemother 2022:1-15. [PMID: 35822500 DOI: 10.1080/1120009x.2022.2097432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Drug resistance is a major setback in cancer treatment, thus models to study its mechanisms are needed. Our work aimed to establish and characterize a resistant cell line from a sensitive acute myeloid leukaemia (AML) cell line - HL60 - by treating the sensitive cells with increasing concentrations of doxorubicin. We confirmed (cell viability assays) that the established subline, HL60-CDR, was resistant to doxorubicin for at least 30 days without drug treatment. The HL60-CDR cells were also resistant to three other drugs (cisplatin, etoposide and daunorubicin), exhibiting a multidrug resistant (MDR) profile. We verified (Western Blotting) that the MDR cells do not express drug efflux pumps, nor present altered expression of apoptotic proteins, when compared with the parental cell line. HL60-CDR cells presented alterations in the cell cycle profile, and in the expression levels of proteins involved in DNA repair mechanisms and drug metabolism, when compared with their drug sensitive counterpart. Proteomic analysis revealed that HL60-CDR cells presented an upregulation of proteins involved in oncogenic pathways, such as TSC2, PDPK1, Annexin A2, among others. Overall, we established an AML MDR subline - HL60-CDR - which presents several resistance mechanisms, providing an in vitro model to test new compounds to circumvent MDR in AML.
Collapse
Affiliation(s)
- Inês Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Vanessa Lopes-Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
19
|
Abstract
DHHC3 is a DHHC-family palmitoyl acyltransferase that is responsible for many mammalian palmitoylation events. By regulating the posttranslational modification of its specific substrates, DHHC3 has shown a strong protumor effect in various cancers. In this review, the authors introduce the research progress of DHHC3 as a new antitumor target through the expression of DHHC3 in patients with tumors, substrate proteins and potential mechanisms. Recent advances in the search for protein structures and inhibitors are also reviewed. Several design strategies to facilitate the optimization of the process of drug design based on DHHC3 are also discussed.
Collapse
|
20
|
Urtatiz O, Haage A, Tanentzapf G, Van Raamsdonk CD. Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. eLife 2021; 10:71825. [PMID: 34939927 PMCID: PMC8747508 DOI: 10.7554/elife.71825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract, or central nervous system. It is rare in melanomas arising in the epidermis. The mechanism for this specificity is unknown. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene. We found that GNAQQ209L, in combination with signaling from the interfollicular epidermis (IFE), stimulates dendrite extension, leads to actin cytoskeleton disorganization, inhibits proliferation, and promotes apoptosis in melanocytes. The effect was reversible and paracrine. In contrast, the epidermal environment increased the survival of wildtype and BrafV600E expressing melanocytes. Hence, our studies reveal the flip side of Gαq/11 signaling, which was hitherto unsuspected. In the future, the identification of the epidermal signals that restrain the GNAQQ209L oncogene could suggest novel therapies for GNAQ and GNA11 mutant melanomas.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
21
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
22
|
Torii K, Okada Y, Morita A. Determining the immune environment of cutaneous T-cell lymphoma lesions through the assessment of lesional blood drops. Sci Rep 2021; 11:19629. [PMID: 34608214 PMCID: PMC8490448 DOI: 10.1038/s41598-021-98804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Detailed analysis of the cells that infiltrate lesional skin cannot be performed in skin biopsy specimens using immunohistochemistry or cell separation techniques because enzyme treatments applied during the isolation step can destroy small amounts of protein and minor cell populations in the biopsy specimen. Here, we describe a method for isolating T cells from drops of whole blood obtained from lesions during skin biopsy in patients with cutaneous T-cell lymphoma. Lesional blood is assumed to contain lesional resident cells, cells from capillary vessels, and blood overflowing from capillary vessels into the lesion area. The lesional blood showed substantial increases in distinct cell populations, chemokines, and the expression of various genes. The proportion of CD8+CD45RO+ T cells in the lesional blood negatively correlated with the modified severity-weighted assessment tool scores. CD4+CD45RO+ T cells in the lesional blood expressed genes associated with the development of cancer and progression of cutaneous T-cell lymphoma. In addition, CD8+CD45RO+ T cells in lesional blood had unique T-cell receptor repertoires in lesions of each stage. Assessment of lesional blood drops might provide new insight into the pathogenesis of mycosis fungoides and facilitate evaluation of the treatment efficacy for mycosis fungoides as well as other skin inflammatory diseases.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Disease Management
- Disease Susceptibility
- Female
- Humans
- Immunohistochemistry
- Immunophenotyping
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphoma, T-Cell, Cutaneous/blood
- Lymphoma, T-Cell, Cutaneous/diagnosis
- Lymphoma, T-Cell, Cutaneous/etiology
- Male
- Middle Aged
- Neoplasm Staging
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kan Torii
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
23
|
Liu Y, Lou W, Chen G, Ding B, Kuang J, Zhang Y, Wang C, Duan S, Deng Y, Lu X. Genome-wide screening for the G-protein-coupled receptor (GPCR) pathway-related therapeutic gene RGS19 (regulator of G protein signaling 19) in bladder cancer. Bioengineered 2021; 12:5892-5903. [PMID: 34482807 PMCID: PMC8806424 DOI: 10.1080/21655979.2021.1971035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is one of the most severe genitourinary cancers, causing high morbidity worldwide. However, the underlying molecular mechanism is not clear, and it is urgent to find target genes for treatment. G-protein-coupled receptors are currently a target of high interest for drug design. Thus, we aimed to identify a target gene-related to G-protein-coupled receptors for therapy. We used The Cancer Genome Atlas (TCGA) and DepMap databases to obtain the expression and clinical data of RGS19. The results showed that RGS19 was overexpressed in a wide range of tumor, especially bladder cancer. We also explored its effect on various types of cancer. High expression of RGS19 was also shown to be significantly associated with poor prognosis. Cell models were constructed for cell cycle detection. shRGS19 can halt the cell cycle at a polyploid point. RGS19 is a G-protein-coupled receptor signaling pathway-related gene with a significant effect on survival. We chose RGS19 as a therapeutic target gene in bladder cancer. The drug GSK1070916 was found to inhibit the effect of RGS19 via cell rescue experiments in vitro.
Collapse
Affiliation(s)
- Yue Liu
- Queen Mary School, Medical Collage of Nanchang University, Nanchang, China
| | - Weiming Lou
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Guang Chen
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bing Ding
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Kuang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yize Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Cong Wang
- The First Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Sainan Duan
- The First Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Ying Deng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Xiongbing Lu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Ranjpour M, Wajid S, Jain SK. Elevated expression of sepiapterin reductase, regulator of G protein signaling 1, hypothetical protein CXorf58 homolog, and zinc finger and BTB domain-containing protein 21 isoform X2 is associated with progression of hepatocellular carcinoma. PROTOPLASMA 2021; 258:1133-1143. [PMID: 33683453 DOI: 10.1007/s00709-021-01632-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers associated with high mortality rate. Understanding of events leading to HCC pathophysiology is essential for its better management. We earlier reported development of a novel rodent model by administrating chemical carcinogens, DEN, and 2-AAF for study of HCC at very early stage. 2D-Electrophoresis analysis of total serum proteins identified several differentially expressed proteins in animals undergoing tumorigenesis. MALDI-TOF-MS/MS analyses were performed to characterize the differentially expressed proteins. Further real-time PCR analyses were taken place to quantify the transcript expression for the identified proteins at HCC initiation and tumor stages. Considering protein-protein interactions among the experimentally identified proteins and their interacting neighbors, a protein network has been analyzed that provided further insight into molecular events taking place during HCC development. Histological changes confirmed HCC initiation and hepatotumorigenesis at 1 and 4 months post carcinogen treatment, respectively. Four differentially expressed proteins were identified which were further characterized as regulator of G protein signaling 1 (RGS1), sepiapterin reductase (SPR), similar to zinc finger and BTB domain-containing protein 21 isoform X2 (ZNF295), and a hypothetical protein CXorf58 homolog. Quantification of transcripts for these proteins revealed elevation in their expression both at initiation and tumorigenesis stages. The study deciphers the regulatory role of these proteins during HCC progression.
Collapse
Affiliation(s)
- Maryam Ranjpour
- Departmentof Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Departmentof Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Swatantra Kumar Jain
- Department of Medical Biochemistry, HIMSR, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
25
|
Asli A, Higazy-Mreih S, Avital-Shacham M, Kosloff M. Residue-level determinants of RGS R4 subfamily GAP activity and specificity towards the G i subfamily. Cell Mol Life Sci 2021; 78:6305-6318. [PMID: 34292354 PMCID: PMC11072900 DOI: 10.1007/s00018-021-03898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
The structural basis for the GTPase-accelerating activity of regulators of G protein signaling (RGS) proteins, as well as the mechanistic basis for their specificity in interacting with the heterotrimeric (αβγ) G proteins they inactivate, is not sufficiently understood at the family level. Here, we used biochemical assays to compare RGS domains across the RGS family and map those individual residues that favorably contribute to GTPase-accelerating activity, and those residues responsible for attenuating RGS domain interactions with Gα subunits. We show that conserved interactions of RGS residues with both the Gα switch I and II regions are crucial for RGS activity, while the reciprocal effects of "modulatory" and "disruptor" residues selectively modulate RGS activity. Our results quantify how specific interactions between RGS domains and Gα subunits are set by a balance between favorable RGS residue interactions with particular Gα switch regions, and unfavorable interactions with the Gα helical domain.
Collapse
Affiliation(s)
- Ali Asli
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Sabreen Higazy-Mreih
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Meirav Avital-Shacham
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
26
|
Jiang L, Shen J, Zhang N, He Y, Wan Z. Association of RGS20 expression with the progression and prognosis of renal cell carcinoma. Oncol Lett 2021; 22:643. [PMID: 34386065 PMCID: PMC8299006 DOI: 10.3892/ol.2021.12904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Regulator of G protein signaling 20 (RGS20) has been shown to be highly expressed in various types of cancer. The present study aimed to investigate the effects of RGS20 in patients with renal cell carcinoma (RCC) and in RCC cells. Bioinformatics analysis was performed to analyze the role of RGS20 in RCC. Quantitative PCR and western blotting were used to determine the mRNA and protein expression levels of RGS20 in cells, respectively. After RGS20 inhibition, the proliferation, apoptosis, migration and invasiveness of A-498 cells were tested using MTT assay, EdU assay, propidium iodide staining, Annexin V-FITC/PI kit, wound healing assay and Transwell assay. High RGS20 expression was closely associated with the progression and immune infiltration of RCC, and may be considered as an independent indicator of poor prognosis in RCC. After knocking down RGS20, the proliferation, migration and invasiveness of cells were impaired, the cell cycle was arrested at the G0/G1 phase, and the level of apoptosis was increased. In addition, the mRNA expression levels of securin, CDC20 and cyclin B1 were decreased in RGS20-knockdown cells. RGS20 expression was significantly associated with the infiltration level of activated CD4 T cells, type 1 T helper cells and activated dendritic cells. In summary, RGS20 expression was associated with RCC progression and poor prognosis; thus, it may be used to estimate the prognosis of RCC and may serve as a new potential treatment strategy for RCC.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Jiangwei Shen
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Ning Zhang
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Yongchao He
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Zhenghua Wan
- Department of Urology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
27
|
Rgs4 is a regulator of mTOR activity required for motoneuron axon outgrowth and neuronal development in zebrafish. Sci Rep 2021; 11:13338. [PMID: 34172795 PMCID: PMC8233358 DOI: 10.1038/s41598-021-92758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.
Collapse
|
28
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Li Y, Liu M, Yang S, Fuller AM, Eisinger TSK, Yang S. RGS12 is a novel tumor suppressor in osteosarcoma that inhibits YAP-TEAD1-Ezrin signaling. Oncogene 2021; 40:2553-2566. [PMID: 33686240 PMCID: PMC8694668 DOI: 10.1038/s41388-020-01599-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of the bone that predominantly affects children and adolescents. Hippo pathway is a crucial regulator of organ size and tumorigenesis. However, how Hippo pathway regulates the occurrence of osteosarcoma is largely unknown. Here, we reported the regulator of G protein signaling protein 12 (RGS12) is a novel Hippo pathway regulator and tumor suppressor of osteosarcoma. Depletion of Rgs12 promotes osteosarcoma progression and lung metastasis in an orthotopic xenograft mouse model. Our data showed that the knockdown of RGS12 upregulates Ezrin expression through promoting the GNA12/13-RhoA-YAP pathway. Moreover, RGS12 negatively regulates the transcriptional activity of YAP/TEAD1 complex through its PDZ domain function to inhibit the expression and function of the osteosarcoma marker Ezrin. PDZ domain peptides of RGS12 can inhibit the development of intratibial tumor and lung metastases. Collectively, this study identifies that the RGS12 is a novel tumor suppressor in osteosarcoma through inhibiting YAP-TEAD1-Ezrin signaling pathway and provides a proof of principle that targeting RGS12 may be a therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Liu
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M. Fuller
- The Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - T. S. Karin Eisinger
- The Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, PA, USA,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Correspondence: Shuying Yang ()
| |
Collapse
|
30
|
Zhao X, Xing J, Li J, Hou R, Niu X, Liu R, Jiao J, Yang X, Li J, Liang J, Zhou L, Wang Q, Chang W, Yin G, Li X, Zhang K. Dysregulated Dermal Mesenchymal Stem Cell Proliferation and Differentiation Interfered by Glucose Metabolism in Psoriasis. Int J Stem Cells 2021; 14:85-93. [PMID: 33632981 PMCID: PMC7904530 DOI: 10.15283/ijsc20073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Psoriasis is a chronic inflammatory skin disease, which the mechanisms behind its initiation and development are related to many factors. DMSCs (dermal mesenchymal stem cells) represent an important member of the skin microenvironment and play an important role in the surrounding environment and in neighbouring cells, but they are also affected by the microenvironment. We studied the glucose metabolism of DMSCs in psoriasis patients and a control group to reveal the relationship among glucose metabolism, cell proliferation activity,and VEC (vascular endothelial cell) differentiation in vitro, we demonstrated the biological activity and molecular mechanisms of DMSCs in psoriasis. Methods and Results We found that the OCR of DMSCs in psoriatic lesions was higher than that in the control group, and mRNA of GLUT1 and HK2 were up-regulated compared with the control group. The proliferative activity of DMSCs in psoriasis was reduced at an early stage, and mRNA involved in proliferation, JUNB and FOS were expressed at lower levels than those in the control group. The number of blood vessels in psoriatic lesions was significantly higher than that in the control group (p<0.05), which the mRNA of VEC differentiation, CXCL12, CXCR7, HEYL and RGS5 tended to be increased in psoriatic lesions compared to the control group, in addition to Notch3. Conclusions We speculated that DMSCs affected local psoriatic blood vessels through glucose metabolism, and the differentiation of VECs, which resulted in the pathophysiological process of psoriasis.
Collapse
Affiliation(s)
- Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruifeng Liu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Fok C, Bogosanovic M, Pandya M, Telang R, Thorne PR, Vlajkovic SM. Regulator of G Protein Signalling 4 (RGS4) as a Novel Target for the Treatment of Sensorineural Hearing Loss. Int J Mol Sci 2020; 22:ijms22010003. [PMID: 33374915 PMCID: PMC7792627 DOI: 10.3390/ijms22010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
We and others have previously identified signalling pathways associated with the adenosine A1 receptor (A1R) as important regulators of cellular responses to injury in the cochlea. We have shown that the “post-exposure” treatment with adenosine A1R agonists confers partial protection against acoustic trauma and other forms of sensorineural hearing loss (SNHL). The aim of this study was to determine if increasing A1R responsiveness to endogenous adenosine would have the same otoprotective effect. This was achieved by pharmacological targeting of the Regulator of G protein Signalling 4 (RGS4). RGS proteins inhibit signal transduction pathways initiated by G protein-coupled receptors (GPCR) by enhancing GPCR deactivation and receptor desensitisation. A molecular complex between RGS4 and neurabin, an intracellular scaffolding protein expressed in neural and cochlear tissues, is the key negative regulator of A1R activity in the brain. In this study, Wistar rats (6–8 weeks) were exposed to traumatic noise (110 dBSPL, 8–16 kHz) for 2 h and a small molecule RGS4 inhibitor CCG-4986 was delivered intratympanically in a Poloxamer-407 gel formulation for sustained drug release 24 or 48 h after noise exposure. Intratympanic administration of CCG-4986 48 h after noise exposure attenuated noise-induced permanent auditory threshold shifts by up to 19 dB, whilst the earlier drug administration (24 h) led to even better preservation of auditory thresholds (up to 32 dB). Significant improvement of auditory thresholds and suprathreshold responses was linked to improved survival of sensorineural tissues and afferent synapses in the cochlea. Our studies thus demonstrate that intratympanic administration of CCG-4986 can rescue cochlear injury and hearing loss induced by acoustic overexposure. This research represents a novel paradigm for the treatment of various forms of SNHL based on regulation of GPCR.
Collapse
|
32
|
Fu C, Yuan G, Yang ST, Zhang D, Yang S. RGS12 Represses Oral Cancer via the Phosphorylation and SUMOylation of PTEN. J Dent Res 2020; 100:522-531. [PMID: 33198557 DOI: 10.1177/0022034520972095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer characterized by aggressive local invasion and metastasis. The pathogenesis of OSCC is mainly due to the accumulation of genetic alterations in epithelial cells, but the underlying mechanism for its development remains unclear. Here, we found that the expression level of regulator of G protein signaling 12 (RGS12) was significantly reduced in human OSCC. To understand the role and mechanism of RGS12 in OSCC, we generated a novel RGS12 global knockout (CMVCre/+; RGS12fl/fl) mouse model by crossing RGS12fl/fl mice with CMV-Cre transgenic mice and then further induced the mice to develop OSCC by using 4-nitroquinoline 1-oxide (4NQO). Deletion of RGS12 exhibited aggressive OSCC in the tongue compared with the control RGS12fl/fl mice. Knockdown of RGS12 in OSCC cells significantly increased cell proliferation and migration. Mechanistically, we found that RGS12 associated with phosphatase and tension homolog (PTEN) via the PDZ domain to upregulate the phosphorylation and SUMOylation of PTEN and then correspondingly inactivated the AKT/mTOR signaling pathway. To test the potential therapeutic effect of RGS12 on OSCC, we overexpressed RGS12 in OSCC cells and found a significant inhibition of cancer cell proliferation and migration. Moreover, subcutaneous inoculation of RGS12-overexpressed OSCC cells in NOD scid mice showed a significant reduction in tumor formation. Our findings reveal that RGS12 is an essential tumor suppressor and highlights RGS12 as a potential therapeutic target and prognostic biomarker of OSCC.
Collapse
Affiliation(s)
- C Fu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - G Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S T Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Zhang
- Department of Orthodontics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Almutairi F, Lee JK, Rada B. Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal 2020; 75:109765. [PMID: 32882407 PMCID: PMC7579743 DOI: 10.1016/j.cellsig.2020.109765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 10 (RGS10) belongs to the superfamily of RGS proteins, defined by the presence of a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. RGS proteins act as GTPase activating proteins (GAPs), which accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. RGS10 is the smallest protein of the D/R12 subfamily and selectively interacts with Gαi proteins. It is widely expressed in many cells and tissues, with the highest expression found in the brain and immune cells. RGS10 expression is transcriptionally regulated via epigenetic mechanisms. Although RGS10 lacks multiple of the defined regulatory domains found in other RGS proteins, RGS10 contains post-translational modification sites regulating its expression, localization, and function. Additionally, RGS10 is a critical protein in the regulation of physiological processes in multiple cells, where dysregulation of its expression has been implicated in various diseases including Parkinson's disease, multiple sclerosis, osteopetrosis, chemoresistant ovarian cancer and cardiac hypertrophy. This review summarizes RGS10 features and its regulatory mechanisms, and discusses the known functions of RGS10 in cellular physiology and pathogenesis of several diseases.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
34
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
35
|
Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158716. [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada; Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
36
|
Wang Y, Li H, Li F. ELMO2 association with G αi2 regulates pancreatic cancer cell chemotaxis and metastasis. PeerJ 2020; 8:e8910. [PMID: 32292657 PMCID: PMC7144586 DOI: 10.7717/peerj.8910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background Pancreatic cancer is a highly lethal disease. Nearly half of the patients have distant metastasis and remain asymptomatic. Emerging evidence suggests that the chemokine, CXCL12, has a role in cancer metastasis. The interaction between CXCL12 and CXCR4 activates heterotrimeric G proteins, which regulates actin polymerization and cancer cell migration. However, the molecular mechanisms underlying pancreatic cancer cell migration are still largely obscure. Here, we addressed the role of ELMO2 in chemotaxis and metastasis of pancreatic cancer cells. Methods Pancreatic cancer cell lines PANC-1 and AsPC-1 and siRNA-mediated knockdown of ELMO2 were used to determine the effects of ELMO2 on cancer cell chemotaxis, invasion, migration. Co-immunoprecipitation assays were carried out to identify interacting partners of ELMO2. Results ELMO2 knockdown inhibited pancreatic cancer cell chemotaxis, migration, invasion, and F-actin polymerization. Co-immunoprecipitation assays revealed that ELMO2 interacted with Gαi2 and that CXCL12 triggered Gα i2-dependent membrane translocation of ELMO2. Thus, ELMO2 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yecheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Su S, Shahriyari L. RGS5 plays a significant role in renal cell carcinoma. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191422. [PMID: 32431860 PMCID: PMC7211867 DOI: 10.1098/rsos.191422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Recent advances in biotechnology led to generation of large complex biological and clinical datasets that can be used to infer the underlying mechanism of many diseases and arrive at personalized treatments. One of these datasets are the whole genome profiles, including a good collection of publicly available human gene expression datasets. In this project, we analysed gene expression profiles of patients with renal cell carcinoma (RCC). We found that the regulator of G-protein signalling 5 (RGS5) might play a crucial role in initiation and progression of RCC, and it might be prognostic. We observed that a high expression level of RGS5 is associated with better survival months. Importantly, when the grade of tumour increases, the RGS5 expression level significantly decreases. Although there is no difference between expression level of RGS5 in male and female patients with primary tumours in the right kidney, among patients with primary tumours in the left kidney, females have a significantly higher RGS5 expression than male patients. Interestingly, we also observed a significant association between the high expression level of RGS5 and low serum calcium level and elevated white blood cells level.
Collapse
Affiliation(s)
- Sumeyye Su
- Department of Mathematics, University of Texas Arlington, Arlington, TX 76019, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
38
|
Regulator of G protein signaling 20 promotes proliferation and migration in bladder cancer via NF-κB signaling. Biomed Pharmacother 2019; 117:109112. [PMID: 31212130 DOI: 10.1016/j.biopha.2019.109112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/25/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bladder cancer is a complicated disease with high rate of morbidity and mortality, in which proliferation and migration are both well acknowledged as aggressive phenotypes of bladder cancer cells. A better understanding of the mechanisms of tumor proliferation and migration would provide an insight into cancer progression and provide effective therapeutic strategies. METHODS The expression of RGS20 was detected using qRT-PCR,western blotting and immunohistochemistry. MTT, Colony formation, anchorage-independent growth assay, and transwell assay were used to evaluate the pro-proliferation and pro-migration potential of RGS20 in vitro. Tumor growth was monitored and analyzed in an animal model. Luciferase activity assay, nuclear extract analysis, and multiple blockade of NF-κB were used to evaluate NF-κB signaling activity. RESULTS It revealed that RGS20 was significantly upregulated in bladder cancer and increased RGS20 expression correlated significantly with worse 5-year overall survival. Ectopic overexpression of RGS20 accelerated the proliferation and migration of bladder cancer cells, whereas knockdown of RGS20 inhibited these effects. Mechanistically, RGS20 could activate NF-κB signaling, which played a crucial role in RGS20's effects on proliferation, migration, and tumorigenicity of bladder cancer cells. CONCLUSION Our study highlights that RGS20 acted as an oncogene in bladder cancer and a better understanding of RGS20's functions might provide the potential for clinical intervention in this disease.
Collapse
|
39
|
Vastrad C, Vastrad B. Investigation into the underlying molecular mechanisms of non-small cell lung cancer using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Israeli R, Asli A, Avital-Shacham M, Kosloff M. RGS6 and RGS7 Discriminate between the Highly Similar Gα i and Gα o Proteins Using a Two-Tiered Specificity Strategy. J Mol Biol 2019; 431:3302-3311. [PMID: 31153905 DOI: 10.1016/j.jmb.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 11/15/2022]
Abstract
RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αβγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1-two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 "disruptor residues" that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique "modulatory" residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits-emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.
Collapse
Affiliation(s)
- Ran Israeli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ali Asli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Meirav Avital-Shacham
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
41
|
Abe Y, Ogasawara S, Akiba J, Naito Y, Kondo R, Nakamura K, Kusukawa J, Yano H. Expression and role of regulator of G-protein signaling 5 in squamous cell carcinoma of the tongue. Clin Exp Dent Res 2019; 5:160-169. [PMID: 31049219 PMCID: PMC6483038 DOI: 10.1002/cre2.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
Regulator of G-protein signaling (RGS) 5 acts as a GTPase-activating protein to negatively regulate G-protein signaling. RGS5 is reportedly related to the invasion and metastasis of cancers, such as nonsmall lung cancer and hepatocellular carcinoma. We examined RGS5 expression and its relationship with invasion in squamous cell carcinoma (SCC) of the tongue. For immunohistochemical analysis of RGS5, we used SCC tissues of the tongue obtained from 43 patients. We examined the relationship between RGS5 expression in the deepest point of invasion and clinicopathological features. Because the invasion and metastasis of cancers are related to epithelial-mesenchymal transition (EMT), we carried out staining for N-cadherin, vimentin, and E-cadherin to examine the relationship between EMT and RGS5. RGS5 expression in the deepest point of invasion in SCC of the tongue was observed in 32 cases (75%). Immunohistochemical analysis revealed a significant correlation between RGS5 expression in the aggressive invasion pattern, invasion depth, and lymphovascular invasion. Kaplan-Meier analysis revealed that high RGS5 expression was associated with postoperative early lymph node metastasis. Further, a significant positive correlation was observed between RGS5 and N-cadherin (P = 0.0003) and vimentin (P < 0.0001). In contrast, E-cadherin and RGS5 or vimentin were significantly negatively correlated (P < 0.0001-0.005). The findings indicate that RGS5 expression is related to tumor invasion and EMT in SCC of the tongue and that RGS5 may predict postoperative early lymph node metastasis. Therefore, RGS5 may be a useful prognostic biomarker of the surgically resected SCC and a potential target of molecular therapy for treating SCC of the tongue.
Collapse
Affiliation(s)
- Yushi Abe
- Department of PathologyKurume University School of MedicineKurumeJapan
- Dental and Oral Medical CenterKurume University School of MedicineKurumeJapan
| | - Sachiko Ogasawara
- Department of PathologyKurume University School of MedicineKurumeJapan
| | - Jun Akiba
- Department of Diagnostic PathologyKurume University HospitalKurumeJapan
| | - Yoshiki Naito
- Department of PathologyKurume University School of MedicineKurumeJapan
- Department of Diagnostic PathologyKurume University HospitalKurumeJapan
| | - Reiichiro Kondo
- Department of PathologyKurume University School of MedicineKurumeJapan
| | - Ken Nakamura
- Dental and Oral Medical CenterKurume University School of MedicineKurumeJapan
| | - Jingo Kusukawa
- Dental and Oral Medical CenterKurume University School of MedicineKurumeJapan
| | - Hirohisa Yano
- Department of PathologyKurume University School of MedicineKurumeJapan
| |
Collapse
|
42
|
Wang D, Xu Y, Feng L, Yin P, Song SS, Wu F, Yan P, Liang Z. RGS5 decreases the proliferation of human ovarian carcinoma‑derived primary endothelial cells through the MAPK/ERK signaling pathway in hypoxia. Oncol Rep 2018; 41:165-177. [PMID: 30365142 PMCID: PMC6278583 DOI: 10.3892/or.2018.6811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Regulator of G-protein signaling 5 (RGS5), a tissue-specific signal-regulating molecule, plays a key role in the development of the vasculature. It was recently found that RGS5 is abundantly expressed in epithelial ovarian cancer (EOC) compared with the normal ovaries. However, the distribution of RGS5 in EOC and its significance require further investigation. The aim of the present study was to investigate the expression of RGS5 in EOC, as well as its association with cancer differentiation, metastasis and clinicopathological parameters. Immunohistochemistry (IHC), western blotting, RT-PCR, wound-healing, cell proliferation and flow cytometric assays were the methods used in the present study. RGS5 was highly expressed in the cytoplasm of ovarian carcinoma cells and in microvascular structures. The expression of RGS5 in EOC was negatively associated with peritoneal metastasis (P=0.004), but it was not found to be associated with age, tumor size, clinical stage or lymph node metastasis (P>0.05). EOC patients with high RGS5 expression had a prolonged progression-free survival (72.34±8.41 vs. 43.56±5.41 months, P<0.001). High expression of RGS5 was correlated with significantly lower microvascular density (MVD) as indicated by the expression of CD34, whereas the opposite was observed in tissues with low RGS5 expression (P<0.05). Hypoxia increased RGS5 expression in ovarian carcinoma-derived endothelial cells (ODMECs), whereas the proliferative capacity of ODMECs exhibited a significant increase following RNAi-mediated reduction of RGS5 expression. These data indicated that RGS5 plays a key role in angiogenesis in ovarian carcinoma. In addition, RGS5 downregulated the expression of the downstream proteins CDC25A, CDK2 and cyclin E, which are mediated by the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, causing ODMEC arrest in the G1 phase of the cell cycle under hypoxic conditions. Collectively, our data indicated that RGS5 is crucial for the occurrence and development of ovarian cancer, and that RGS5 and its signaling pathway may serve as anti-angiogenesis targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yan Xu
- 77103rd troops, PLA, Chongqing 400038, P.R. China
| | - Lu Feng
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Pin Yin
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shuang Shuang Song
- Department of Geriatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Feng Wu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ping Yan
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
43
|
Silencing ELMO3 Inhibits the Growth, Invasion, and Metastasis of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3764032. [PMID: 30345300 PMCID: PMC6174816 DOI: 10.1155/2018/3764032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
ELMO3 is a member of the engulfment and cell motility (ELMO) protein family, which plays a vital role in the process of chemotaxis and metastasis of tumor cells. However, remarkably little is known about the role of ELMO3 in cancer. The present study was conducted to investigate the function and role of ELMO3 in gastric cancer (GC) progression. The expression level of ELMO3 in gastric cancer tissues and cell lines was measured by means of real-time quantitative PCR (qPCR) and Western blot analysis. RNA interference was used to inhibit ELMO3 expression in gastric cancer cells. Then, wound-healing assays, Transwell assays, MTS assays, flow cytometry, and fluorescence microscopy were applied to detect cancer cell migration, cell invasion, cell proliferation, the cell cycle, and F-actin polymerization, respectively. The results revealed that ELMO3 expression in GC tumor tissues was significantly higher than in the paired adjacent tissues. Moreover, knockdown of ELMO3 by a specific siRNA significantly inhibited the processes of cell proliferation, invasion, metastasis, regulation of the cell cycle, and F-actin polymerization. Collectively, the results indicate that ELMO3 participates in the processes of cell growth, invasion, and migration, and ELMO3 is expected to be a potential diagnostic and prognostic marker for GC.
Collapse
|
44
|
Structural motifs in the RGS RZ subfamily combine to attenuate interactions with Gα subunits. Biochem Biophys Res Commun 2018; 503:2736-2741. [DOI: 10.1016/j.bbrc.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022]
|
45
|
Yang C, Ren J, Li B, Zhang D, Ma C, Cheng C, Sun Y, Fu L, Shi X. Identification of clinical tumor stages related mRNAs and miRNAs in cervical squamous cell carcinoma. Pathol Res Pract 2018; 214:1638-1647. [PMID: 30149901 DOI: 10.1016/j.prp.2018.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/21/2018] [Accepted: 07/31/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The aim of this study is to identify the clinical tumor stage related mRNAs and miRNAs, shedding light on the potential molecular mechanisms of cervical squamous cell carcinoma (CSCC). METHODS Firstly, the mRNA and miRNA next-generation sequencing data were downloaded. Secondly, clinical tumor stage correlation analysis of mRNAs and miRNA was performed, followed by the functional enrichment analysis of all clinical tumor stage related mRNAs. Thirdly, differentially expression analysis of mRNAs and miRNA between different clinical tumor stages was performed, followed by target gene prediction of these differentially expressed miRNAs. RESULTS 3 mRNAs (PER1, PRKAB1 and PMM2) and 5 miRNAs (hsa-mir-486, hsa-mir-451, hsa-mir-424, hsa-mir-144 and hsa-mir-450a-2) were overlapped from stage 1, stage 2, stage 3 and stage 4. CONCLUSIONS Alterations of differentially expressed mRNAs and miRNAs may offer important insights into the molecular mechanisms in the pathology of CSCC.
Collapse
Affiliation(s)
- Chenggang Yang
- Gu'an Bojian Bio-Technology Co., LTD., Langfang, China; Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Jing Ren
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Bangling Li
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Dongmei Zhang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Cui Ma
- Gu'an Bojian Bio-Technology Co., LTD., Langfang, China; Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Cheng Cheng
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Yaolan Sun
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Lina Fu
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China
| | - Xiaofeng Shi
- Gu'an Bojian Bio-Technology Co., LTD., Langfang, China; Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD., Beijing, China.
| |
Collapse
|
46
|
Interplay between negative and positive design elements in Gα helical domains of G proteins determines interaction specificity toward RGS2. Biochem J 2018; 475:2293-2304. [PMID: 29925530 DOI: 10.1042/bcj20180285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023]
Abstract
Regulators of G protein signaling (RGS) proteins inactivate Gα subunits, thereby controlling G protein-coupled signaling networks. Among all RGS proteins, RGS2 is unique in interacting only with the Gαq but not with the Gαi subfamily. Previous studies suggested that this specificity is determined by the RGS domain and, in particular, by three RGS2-specific residues that lead to a unique mode of interaction with Gαq This interaction was further proposed to act through contacts with the Gα GTPase domain. Here, we combined energy calculations and GTPase activity measurements to determine which Gα residues dictate specificity toward RGS2. We identified putative specificity-determining residues in the Gα helical domain, which among G proteins is found only in Gα subunits. Replacing these helical domain residues in Gαi with their Gαq counterparts resulted in a dramatic specificity switch toward RGS2. We further show that Gα-RGS2 specificity is set by Gαi residues that perturb interactions with RGS2, and by Gαq residues that enhance these interactions. These results show, for the first time, that the Gα helical domain is central to dictating specificity toward RGS2, suggesting that this domain plays a general role in governing Gα-RGS specificity. Our insights provide new options for manipulating RGS-G protein interactions in vivo, for better understanding of their 'wiring' into signaling networks, and for devising novel drugs targeting such interactions.
Collapse
|
47
|
Asli A, Sadiya I, Avital-Shacham M, Kosloff M. “Disruptor” residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Gα subunits. Sci Signal 2018; 11:11/534/eaan3677. [DOI: 10.1126/scisignal.aan3677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
De Meulder B, Lefaudeux D, Bansal AT, Mazein A, Chaiboonchoe A, Ahmed H, Balaur I, Saqi M, Pellet J, Ballereau S, Lemonnier N, Sun K, Pandis I, Yang X, Batuwitage M, Kretsos K, van Eyll J, Bedding A, Davison T, Dodson P, Larminie C, Postle A, Corfield J, Djukanovic R, Chung KF, Adcock IM, Guo YK, Sterk PJ, Manta A, Rowe A, Baribaud F, Auffray C. A computational framework for complex disease stratification from multiple large-scale datasets. BMC SYSTEMS BIOLOGY 2018; 12:60. [PMID: 29843806 PMCID: PMC5975674 DOI: 10.1186/s12918-018-0556-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.
Collapse
Affiliation(s)
- Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, CB4 OWS, UK
| | - Alexander Mazein
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Amphun Chaiboonchoe
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Hassan Ahmed
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Irina Balaur
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Mansoor Saqi
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Johann Pellet
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Stéphane Ballereau
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Nathanaël Lemonnier
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Kai Sun
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, SW7 2AZ, UK.,Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Xian Yang
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | | | | | | | | | - Timothy Davison
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Paul Dodson
- AstraZeneca Ltd, Alderley Park, Macclesfield, SK10 4TG, UK
| | | | - Anthony Postle
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julie Corfield
- AstraZeneca R & D, 43150, Mölndal, Sweden.,Arateva R & D Ltd, Nottingham, NG1 1GF, UK
| | - Ratko Djukanovic
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kian Fan Chung
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ian M Adcock
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Yi-Ke Guo
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, AZ1105, The Netherlands
| | - Alexander Manta
- Research Informatics, Roche Diagnostics GmbH, 82008, Unterhaching, Germany
| | - Anthony Rowe
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | | | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | | |
Collapse
|
49
|
Sakaguchi T, Yoshino H, Sugita S, Miyamoto K, Yonemori M, Osako Y, Meguro-Horike M, Horike SI, Nakagawa M, Enokida H. Bromodomain protein BRD4 inhibitor JQ1 regulates potential prognostic molecules in advanced renal cell carcinoma. Oncotarget 2018; 9:23003-23017. [PMID: 29796168 PMCID: PMC5955408 DOI: 10.18632/oncotarget.25190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
Sunitinib is a standard molecular-targeted drug used as a first-line treatment for metastatic clear cell renal cell carcinoma (ccRCC); however, resistance to sunitinib has become a major problem in medical practice. Recently, bromodomain containing 4 (BRD4), a member of the bromodomain family proteins, was identified as a promising therapeutic target, and its inhibitor JQ1 has been shown to have inhibitory effects in various human cancers. However, the anti-cancer effects of JQ1 in ccRCC, particularly sunitinib-resistant ccRCC, are still unclear. Here, we aimed to elucidate the anti-cancer effects of JQ1 and the mechanisms underlying BRD4 inhibition in sunitinib-sensitive and -resistant ccRCCs. Analysis of The Cancer Genome Atlas (TCGA) ccRCC cohort showed that patients with high BRD4 expression had shorter overall survival than those with low expression. JQ1 treatment significantly inhibited tumor growth of sunitinib-sensitive and -resistant ccRCC cells in part through MYC regulation. Based on RNA sequencing analyses of ccRCC cells treated with JQ1 to elucidate the mechanisms other than MYC regulation, we identified several oncogenes that may be potential therapeutic targets or prognostic markers; patients with high expression of SCG5, SPOCD1, RGS19, and ARHGAP22 had poorer overall survival than those with low expression in TCGA ccRCC cohort. Chromatin immunoprecipitation assays revealed that these oncogenes may be promising BRD4 targets, particularly in sunitinib-resistant ccRCC cells. These results identified SCG5, SPOCD1, RGS19, and ARHGAP22 as potential prognostic markers and showed that BRD4 inhibition may have applications as a potential therapeutic approach in sunitinib-sensitive and -resistant ccRCC.
Collapse
Affiliation(s)
- Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazutaka Miyamoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shin-Ichi Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
50
|
Zhang W, Qian S, Yang G, Zhu L, Zhou B, Wang J, Liu R, Yan Z, Qu X. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma. Gene 2018; 659:22-28. [PMID: 29559347 DOI: 10.1016/j.gene.2018.03.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Sheng Qian
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Guowei Yang
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Liang Zhu
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Bo Zhou
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Jianhua Wang
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Rong Liu
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Zhiping Yan
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| | - Xudong Qu
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui, Shanghai 20032, China..
| |
Collapse
|