1
|
Zhan Z, Dai F, Zhang T, Chen Y, She J, Jiang H, Liu S, Gu T, Tang L. Oridonin alleviates hyperbilirubinemia through activating LXRα-UGT1A1 axis. Pharmacol Res 2022; 178:106188. [PMID: 35338002 DOI: 10.1016/j.phrs.2022.106188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Hyperbilirubinemia is a serious hazard to human health due to its neurotoxicity and lethality. So far, successful therapy for hyperbilirubinemia with fewer side effects is still lacking. In this study, we aimed to clarify the effects of oridonin (Ori), an active diterpenoid extracted from Rabdosia rubescens, on hyperbilirubinemia and revealed the underlying molecular mechanism in vivo and in vitro. Here, we showed that liver X receptor alpha (LXRα) deletion eliminated the protective effect of Ori on phenylhydrazine hydrochloride-induced hyperbilirubinemia mice, indicating that LXRα acted as a key target for Ori treatment of hyperbilirubinemia. Ori significantly increased the expression of LXRα and UDP-glucuronosyltransferase 1A1 (UGT1A1) in the liver of wild-type (WT) mice, which were lost in LXRα-/- mice. Ori or LXR agonist GW3965 also reduced lipopolysaccharide/D-galactosamine-induced hyperbilirubinemia via activating LXRα/UGT1A1 in WT mice. Liver UGT1A1 enzyme activity was elevated by Ori or GW3965 in WT mice. Further, Ori up-regulated LXRα gene expression, increased its nuclear translocation and stimulated UGT1A1 promoter activity in HepG2 cells. After silencing LXRα by siRNA, Ori-induced UGT1A1 expression was markedly reduced in HepG2 cells and primary mouse hepatocytes. Taken together, Ori stimulated the transcriptional activity of LXRα, resulting in the up-regulation of UGT1A1. Therefore, Ori or its analogs might have the potential to treat hyperbilirubinemia-related diseases through modulating LXRα-UGT1A1 signaling.
Collapse
Affiliation(s)
- Zhikun Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fahong Dai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Zhang
- Department of Pharmaceutical, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, China
| | - Yulian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Huanguo Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Liu D, Yu Q, Ning Q, Liu Z, Song J. The relationship between UGT1A1 gene & various diseases and prevention strategies. Drug Metab Rev 2021; 54:1-21. [PMID: 34807779 DOI: 10.1080/03602532.2021.2001493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
UDP-glucuronyltransferase 1A1 (UGT1A1) is a member of the Phase II metabolic enzyme family and the only enzyme that can metabolize detoxified bilirubin. Inactivation and very low activity of UGT1A1 in the liver can be fatal or lead to lifelong Gilbert's syndrome (GS) and Crigler-Najjar syndrome (CN). To date, more than one hundred UGT1A1 polymorphisms have been discovered. Although most UGT1A1 polymorphisms are not fatal, which diseases might be associated with low activity UGT1A1 or UGT1A1 polymorphisms? This scientific topic has been studied for more than a hundred years, there are still many uncertainties. Herein, this article will summarize all the possibilities of UGT1A1 gene-related diseases, including GS and CN, neurological disease, hepatobiliary disease, metabolic difficulties, gallstone, cardiovascular disease, Crohn's disease (CD) obesity, diabetes, myelosuppression, leukemia, tumorigenesis, etc., and provide guidance for researchers to conduct in-depth study on UGT1A1 gene-related diseases. In addition, this article not only summarizes the prevention strategies of UGT1A1 gene-related diseases, but also puts forward some insights for sharing.
Collapse
Affiliation(s)
- Dan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China.,Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing Ning
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| |
Collapse
|
3
|
He L, Guo C, Peng C, Li Y. Advances of natural activators for Nrf2 signaling pathway on cholestatic liver injury protection: a review. Eur J Pharmacol 2021; 910:174447. [PMID: 34461126 DOI: 10.1016/j.ejphar.2021.174447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Cholestasis is a common manifestation of obstruction of bile flow in various liver diseases. If the bile acid accumulation is not treated in time, it will further lead to hepatocyte damage, liver fibrosis and ultimately to cirrhosis, which seriously affects human life. The pathogenesis of cholestatic liver injury is very complicated, mainly including oxidative stress and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor responsible for upregulating expression of various genes with cytoprotective functions. Nrf2 activation has been proved to inhibit oxidative stress and inflammatory reaction, modulate bile acid homeostasis, and alleviate fibrosis during cholestasis. Therefore, Nrf2 emerges as a potential therapeutic target for cholestatic liver injury. In recent years, natural products with various biological activities including anti-inflammatory, anti-oxidant, anti-tumor and anti-fibrotic effects have received growing attention for being hepatoprotective agents. Natural products like asiatic acid, diosmin, rutin, and so forth have shown significant potential in activating Nrf2 pathway which can lead to attenuate cholestatic liver injury. Therefore, this paper emphasizes the effect of Nrf2 signaling pathway on alleviating cholestasis, and summarizes recent evidence about natural Nrf2 activators with hepatoprotective effect in various models of cholestatic liver injury, thus providing theoretical reference for the development of anti-cholestatic drug.
Collapse
Affiliation(s)
- Linfeng He
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Chaocheng Guo
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Cheng Peng
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Yunxia Li
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.
| |
Collapse
|
4
|
Liu D, Yu Q, Li Z, Zhang L, Hu M, Wang C, Liu Z. UGT1A1 dysfunction increases liver burden and aggravates hepatocyte damage caused by long-term bilirubin metabolism disorder. Biochem Pharmacol 2021; 190:114592. [PMID: 33961837 DOI: 10.1016/j.bcp.2021.114592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
UGT1A1 is the only enzyme that can metabolize bilirubin, and its encoding gene is frequently mutated. UGT1A1*6 (G71R) is a common mutant in Asia which leads to the decrease of UGT1A1 activity and abnormal bilirubin metabolism. However, it is not clear whether low UGT1A1 activity-induced bilirubin metabolism disorder increases hepatocyte fragility. ugt1a+/- mice were used to simulate the UGT1A1*6 (G71R) population. Under the same CCl4 induction condition, ugt1a+/- mice showed severer liver damage and fibrosis, indicating that ugt1a1 dysfunction increased liver burden and aggravated hepatocyte damage. In the animal experiment with a continuous intraperitoneal injection of bilirubin, the ugt1a+/- mice livers had more serious unconjugated bilirubin accumulation. The accumulated bilirubin leads to hyperphosphorylation of IκB-α, Ikk-β, and p65 and a significant increase of inflammatory factor. The α-SMA and Collagen I proteins markedly up-regulated in the ugt1a+/- mice livers. Immunofluorescence and confocal microscopy showed that hepatic stellate cells and Kupffer cells were activated in ugt1a+/- mice. Comprehensive results show that there was a crosstalk relationship between low UGT1A1 activity-bilirubin-liver damage. Furthermore, cell experiments confirmed that unconjugated bilirubin activated the NF-κB pathway and induced DNA damage in hepatocytes, leading to the significant increase of inflammatory factors. UGT1A1 knockdown in hepatocytes aggravated the toxicity of unconjugated bilirubin. Conversely, overexpression of UGT1A1 had a protective effect on hepatocytes. Finally, Schisandrin B, an active ingredient with hepatoprotective effects, extracted from a traditional Chinese medicinal herb, which could protect the liver from bilirubin metabolism disorders caused by ugt1a1 deficiency by downregulating p65 phosphorylation, inhibiting Kupffer cells, reducing inflammation levels. Our data clarified the mechanism of liver vulnerability caused by cross-talk between low UGT1A1 activity bilirubin, and provided a reference for individualized prevention of liver fragility in Gilbert's syndrome.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ming Hu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
5
|
Zhao YZ, Huang ZW, Zhai YY, Shi Y, Du CC, Zhai J, Xu HL, Xiao J, Kou L, Yao Q. Polylysine-bilirubin conjugates maintain functional islets and promote M2 macrophage polarization. Acta Biomater 2021; 122:172-185. [PMID: 33387663 DOI: 10.1016/j.actbio.2020.12.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Macrophage polarization is one of the main factors contributing to the proinflammatory milieu of transplanted islets. It causes significant islet loss. Bilirubin exhibits protective effects during the islet transplantation process, but the mode of delivering drugs along with the islet graft has not yet been developed. In addition, it remains unclear whether bilirubin or its derivatives can modulate macrophage polarization during islet transplantation. Therefore, this study aimed to develop an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets for protection and to explore its macrophage modulation activities. In in vitro studies, the PLL-BR was shown to tightly adhere to the islet surface. It also exhibited enhanced cytoprotective effects against oxidative and inflammatory conditions by promoting M2-type macrophage polarization. In in vivo studies, the PLL-BR-protected islets successfully prolonged the euglycemia period in diabetic mice and accelerated the blood glucose clearance rate by maintaining the insulin secretion function. Compared to the untreated islets, the PLL-BR-encapsulated islets induced anti-inflammatory responses that were characterized by elevated levels of M2 macrophage markers and local vascularization. In conclusion, PLL-BR can be used as a tool for reprograming macrophage polarization while providing a more efficient immune protection for transplanted islets. STATEMENT OF SIGNIFICANCE: Macrophage polarization is one main factor that caused significant loss of transplanted islets. Bilirubin possesses protective effects toward pancreatic islet, but how to deliver the drug along with the islet graft has not yet been harnessed. More importantly, whether bilirubin or its derivatives could modulate macrophage polarization during the host rejections has also not been answered. In this study, we developed an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets and explore its role in macrophage modulation activities. PLL-BR could attach to the surface of islets and exerted high oxidation resistance and anti-inflammatory effect. For the first time, we demonstrate that bilirubin and its derivatives effectively promoted the M2-type macrophage polarization, and optimize the immune microenvironment for islets survival and function.
Collapse
|
6
|
Fouzder C, Mukhuty A, Kundu R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Arch Biochem Biophys 2020; 697:108700. [PMID: 33271149 DOI: 10.1016/j.abb.2020.108700] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Chemoprevention failure is considered to be the most emerging problem that makes non-small cell lung cancer (NSCLC) as one of the deadliest malignancies in the world. In NSCLC cells, Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, promotes cancer cell survival and fosters mechanism for drug resistance. Here we report identification of Kaempferol, a dietary flavonoid, as a potent Nrf2 inhibitor using Nrf2 reporter assay in NSCLC cells (A549 and NCIH460). Kaempferol selectively reduces Nrf2 mRNA and protein levels and lower level of nuclear Nrf2 downregulates transcription of Nrf2 target genes (NQO1, HO1, AKR1C1 and GST). Kaempferol (25 μM) mediated downregulation of GST, NQO1 and HO1 expression is also observed even after stimulation of Nrf2 by tert-butylhydroquinone (tBHQ). Again, Kaempferol incubation does not change the levels of NFκBp65 and phospho NFκBp65, suggesting it hampers Nrf2 signalling pathway in these cells. Nrf2 inhibition by Kaempferol induces ROS accumulation after 48 h of treatment and makes NSCLC cells sensitive to apoptosis at physiological concentration. Taken together, our study demonstrates that Kaempferol is a potent inhibitor of Nrf2 and can be used as a natural sensitizer and anti-cancer agent for lung cancer therapeutics.
Collapse
Affiliation(s)
- Chandrani Fouzder
- Cell Signalling Laboratory, Department of Zoology, Siksha- Bhavana, Visva-Bharati University, Santiniketan, 731235, India
| | - Alpana Mukhuty
- Cell Signalling Laboratory, Department of Zoology, Siksha- Bhavana, Visva-Bharati University, Santiniketan, 731235, India
| | - Rakesh Kundu
- Cell Signalling Laboratory, Department of Zoology, Siksha- Bhavana, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
7
|
Yang P, Hu J, Liu J, Zhang Y, Gao B, Wang TTY, Jiang L, Granvogl M, Yu LL. Ninety-Day Nephrotoxicity Evaluation of 3-MCPD 1-Monooleate and 1-Monostearate Exposures in Male Sprague Dawley Rats Using Proteomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2765-2772. [PMID: 32045244 DOI: 10.1021/acs.jafc.0c00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fatty acid esters of 3-monochloropropane 1,2-diol (3-MCPD esters) are processing-induced food toxicants, with the kidney as their major target organ. For the first time, this study treated Sprague Dawley (SD) rats with 3-MCPD 1-monooleate at 10 and 100 mg/kg BW/day and 1-monostearate at 15 and 150 mg/kg BW/day for 90 days and examined for their potential semi-long-term nephrotoxicity and the associated molecular mechanisms. No bodyweight difference was observed between groups during the study. Both 3-MCPD 1-monooleate and 1-monostearate resulted in a dose-dependent increase of serum urea creatinine, uric acid and urea nitrogen levels, and histological renal impairment. The proteomic analysis of the kidney samples showed that the 3-MCPD esters deregulated proteins involved in the pathways for ion transportation, apoptosis, the metabolism of xenobiotics, and enzymes related to endogenous biological metabolisms of carbohydrates, amino acids, nitrogen, lipids, fatty acids, and the tricarboxylic acid (TCA) cycle, providing partial explanation for the nephrotoxicity of 3-MCPD esters.
Collapse
Affiliation(s)
- Puyu Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinyu Hu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junchen Liu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Agricultural Research Service (ARS), USDA, Beltsville, Maryland 20705, United States
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Michael Granvogl
- Institute of Food Chemistry, Section Food Chemistry and Analytical Chemistry (170a), University of Hohenheim, Stuttgart 70599, Germany
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Zhao GJ, Hou N, Cai SA, Liu XW, Li AQ, Cheng CF, Huang Y, Li LR, Mai YP, Liu SM, Ou CW, Xiong ZY, Chen XH, Chen MS, Luo CF. Contributions of Nrf2 to Puerarin Prevention of Cardiac Hypertrophy and its Metabolic Enzymes Expression in Rats. J Pharmacol Exp Ther 2018; 366:458-469. [PMID: 29945930 DOI: 10.1124/jpet.118.248369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
Previous evidence has suggested that puerarin may attenuate cardiac hypertrophy; however, the potential mechanisms have not been determined. Moreover, the use of puerarin is limited by severe adverse events, including intravascular hemolysis. This study used a rat model of abdominal aortic constriction (AAC)-induced cardiac hypertrophy to evaluate the potential mechanisms underlying the attenuating efficacy of puerarin on cardiac hypertrophy, as well as the metabolic mechanisms of puerarin involved. We confirmed that puerarin (50 mg/kg per day) significantly attenuated cardiac hypertrophy, upregulated Nrf2, and decreased Keap1 in the myocardium. Moreover, puerarin significantly promoted Nrf2 nuclear accumulation in parallel with the upregulated downstream proteins, including heme oxygenase 1, glutathione transferase P1, and NAD(P)H:quinone oxidoreductase 1. Similar results were obtained in neonatal rat cardiomyocytes (NRCMs) treated with angiotensin II (Ang II; 1 μM) and puerarin (100 μM), whereas the silencing of Nrf2 abolished the antihypertrophic effects of puerarin. The mRNA and protein levels of UGT1A1 and UGT1A9, enzymes for puerarin metabolism, were significantly increased in the liver and heart tissues of AAC rats and Ang II-treated NRCMs. Interestingly, the silencing of Nrf2 attenuated the puerarin-induced upregulation of UGT1A1 and UGT1A9. The results of chromatin immunoprecipitation-quantitative polymerase chain reaction indicated that the binding of Nrf2 to the promoter region of Ugt1a1 or Ugt1a9 was significantly enhanced in puerarin-treated cardiomyocytes. These results suggest that Nrf2 is the key regulator of antihypertrophic effects and upregulation of the metabolic enzymes UGT1A1 and UGT1A9 of puerarin. The autoregulatory circuits between puerarin and Nrf2-induced UGT1A1/1A9 are beneficial to attenuate adverse effects and maintain the pharmacologic effects of puerarin.
Collapse
Affiliation(s)
- Gan-Jian Zhao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Ning Hou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Shao-Ai Cai
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Xia-Wen Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Ai-Qun Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Chuan-Fang Cheng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Yin Huang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Li-Rong Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Yun-Pei Mai
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Shi-Ming Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Cai-Wen Ou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Zhen-Yu Xiong
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Xiao-Hui Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Min-Sheng Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| | - Cheng-Feng Luo
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease (G.-J.Z., A.-Q.L., C.-F.C., Y.H., L.-R.L., S.-M.L., C.-F.L.), School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University (N.H., X.-W.L., Y.-P.M.), The Second Affiliated Hospital of Guangzhou Medical University (S.-A.C., X.-H.C.); Zhujiang Hospital, Southern Medical University, Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Disease (C.-W.O., M.-S.C.), and The First Affiliated Hospital, Sun Yat-sen University (Z.-Y.X.), Guangzhou, China
| |
Collapse
|
9
|
Das S, Teja KC, Mukherjee S, Seal S, Sah RK, Duary B, Kim KH, Bhattacharya SS. Impact of edaphic factors and nutrient management on the hepatoprotective efficiency of Carlinoside purified from pigeon pea leaves: An evaluation of UGT1A1 activity in hepatitis induced organelles. ENVIRONMENTAL RESEARCH 2018; 161:512-523. [PMID: 29223776 DOI: 10.1016/j.envres.2017.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Carlinoside is a unique compound well-known for its excellent curative potential in hepatitis. There is a substantial research gap regarding the medicinal use of carlinoside, as its concentrations are greatly variable (depending on locality). We cultivated Cajanus cajan using vermicompost as a major organic amendment at two locations (Sonitpur and Birbhum) with different soil types, but identical climate conditions. Sonitpur soils were richer in soil organic C (SOC), enzyme activation, and N/P content than Birbhum. However, vermi-treatment improved many soil properties (bulk density, water retention, pH, N/P/K, and enzyme activity) to narrow the locational gap in soil quality by 15-28%. We also recorded a many-fold increment in SOC storage capacities in both locations, which was significantly correlated with carlinoside, total phenol, and flavonoid contents in Cajanus leaves. This significantly up-regulated the carlinoside induced expression of the bilirubin-solubilizing UGT1A1enzyme in HepG2 cell and rat liver. Leaf extracts of vermicompost-aided plants could cure hepatitis in affected rat livers and in the HepG2 cell line. Accordingly, vermi-treatment is an effective route for the growth of Cajanus as a cash crop for biomedical applications and can produce a concurrent improvement in soil quality.
Collapse
Affiliation(s)
- Subhasish Das
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784028, India
| | - K Charan Teja
- Department of Agronomy, Palli Siksha Bhavana, Visva Bharati, Sriniketan 731236, India
| | - Sandip Mukherjee
- Molecular Endocrinology Lab, Department of Zoology, Visva Bharati, Santiniketan 731235, India
| | - Soma Seal
- Molecular Endocrinology Lab, Department of Zoology, Visva Bharati, Santiniketan 731235, India
| | - Rajesh Kumar Sah
- Remote Sensing and GIS Lab, Department of Environmental Science, Tezpur University, Tezpur 784028, India
| | - Buddhadeb Duary
- Department of Agronomy, Palli Siksha Bhavana, Visva Bharati, Sriniketan 731236, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 Republic of Korea.
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784028, India.
| |
Collapse
|
10
|
Yuan-Jing F, Wei W, Jian-Ping L, Yu-Xia J, Zi-Ling D. Genistein promotes the metabolic transformation of acetaminophen to glucuronic acid in human L-O2, HepG2 and Hep3b cells via the Nrf2/Keap1 pathway. Food Funct 2018; 7:4683-4692. [PMID: 27781231 DOI: 10.1039/c6fo00889e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to explore the effects of genistein on regulating the activation of UGTs via the Nrf2/Keap1 pathway and to elucidate the underlying mechanisms of detoxification and hepatic protection. Experiments monitoring genistein-induced protection against acetaminophen-induced cell damage were performed in L-02, HepG2 and Hep3b cells. The results of the MTT, AST, ALT, LDH, GSH and GSSG assays showed that genistein evidently protected the cells from acetaminophen-induced injury in a dose-dependent manner. The control cells were treated with 10 mM acetaminophen without genistein to compare with the effects of the combination of acetaminophen and genistein on the expression of UGT1A1, 1A6 and 1A9, Nrf2 and Keap1 mRNAs, as well as the expression of Nrf2 and Keap1 proteins, which were tested by western blotting. The results showed that the expression of the Nrf2 mRNA and protein increased; in contrast, the expression levels of the Keap1 mRNA and protein were obviously reduced by genistein in a dose-dependent manner. Meanwhile, the expression of the UGT mRNA was increased, and UGT1A9 exhibited the highest expression among the three UGTs. Accordingly, the residual acetaminophen content was obviously reduced and acetaminophen glucuronidation increased after 24 hours of treatment with genistein in a dose-dependent manner.
Collapse
Affiliation(s)
- Fan Yuan-Jing
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Wei Wei
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Luo Jian-Ping
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jin Yu-Xia
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Dai Zi-Ling
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
11
|
Das S, Hussain N, Gogoi B, Buragohain AK, Bhattacharya SS. Vermicompost and farmyard manure improves food quality, antioxidant and antibacterial potential of Cajanus cajan (L. Mill sp.) leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:956-966. [PMID: 27226361 DOI: 10.1002/jsfa.7820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Pigeon pea (Cajanus cajan) leaves are a good source of nutrition and health benefitting phenolic compounds. However, its importance has not yet been effectively addressed. Recently, a 2-year field experiment was attempted in an alluvial soil to understand the role of various organic and inorganic fertilisers and their combinations not only on soil quality, but also on production of foremost phenolic compounds and imparting antioxidant and antibacterial properties in C. cajan under vermicompost treatments. RESULTS Notable enhancements in crude protein, soluble carbohydrate, ash content and total flavonoid content were recorded in Cajanus leaves under vermicompost treatments. We detected a significant rise in carlinoside content in C. cajan leaves, which is known to reduce bilirubin concentration in hepatitis affected human blood. Farmyard manure treatments resulted in a high crude fibre content coupled with a substantially high concentration of total phenols, and chlorophyll. In addition, incorporation of vermicompost with or without inorganic fertiliser in the soil had a significant impact on antioxidant and antibacterial properties of C. cajan leaves. Above and beyond, farmyard manure and vermicompost positively influenced the physico-chemical health of the soil. CONCLUSION The present nutrient management scheme based on organic input not only induced a higher yield of C. cajan endowed with improved antioxidant and antibacterial properties, but also enhanced the production of various phenolic compounds. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Subhasish Das
- Soil & Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, -784028, Assam, India
| | - Nazneen Hussain
- Soil & Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, -784028, Assam, India
| | - Bhaskarjyoti Gogoi
- Department of Molecular Biology & Biotechnology, Tezpur University, Tezpur, -784028, Assam, India
| | - Alak Kumar Buragohain
- Department of Molecular Biology & Biotechnology, Tezpur University, Tezpur, -784028, Assam, India
- Dibrugarh University, Dibrugarh, -786001, Assam, India
| | - Satya Sundar Bhattacharya
- Soil & Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, -784028, Assam, India
| |
Collapse
|
12
|
Liu T, Hou J, Xie W, Li Y, Ren H, Liang J, Xiong B, Chen G, Cheng M, Zhao D, Shen J, Chen YL. Stereoselective and Regioselective Preparation ofC-Pentopyranosides and Formal Synthesis of Omarigliptin. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tongchao Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education; Shenyang Pharmaceutical University; 103 Wenhua Lu 110016 Shenyang P. R. China
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
| | - Jian Hou
- Shanghai Shynedec Pharmaceutical Co., Ltd.; 378 Jianlu Road 200137 Shanghai P. R. China
| | - Wuchen Xie
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
- School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P. R. China
| | - You Li
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
- School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P. R. China
| | - Huanming Ren
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
- School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P. R. China
| | - Jianpeng Liang
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
| | - Bing Xiong
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
| | - Guohua Chen
- School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education; Shenyang Pharmaceutical University; 103 Wenhua Lu 110016 Shenyang P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education; Shenyang Pharmaceutical University; 103 Wenhua Lu 110016 Shenyang P. R. China
| | - Jingkang Shen
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
| | - Yue-Lei Chen
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai P. R. China
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing P. R. China
| |
Collapse
|
13
|
Hashimoto N, Blumberg JB, Chen CYO. Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells. J Med Food 2016; 19:141-7. [DOI: 10.1089/jmf.2015.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Naoto Hashimoto
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
- Koshi Headquarters, National Agricultural Research Center for Kyushu Okinawa Region, Koshi, Kumamoto, Japan
- Memuro Research Station, National Agriculture Research Center for Hokkaido Region, Kasai, Hokkaido, Japan
| | - Jeffrey B. Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - C.-Y. Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Kostov RV, Knatko EV, McLaughlin LA, Henderson CJ, Zheng S, Huang JTJ, Honda T, Dinkova-Kostova AT. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action. Biochem Biophys Res Commun 2015; 465:402-7. [PMID: 26265043 PMCID: PMC4567061 DOI: 10.1016/j.bbrc.2015.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022]
Abstract
The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC0-24h was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the kel was 0.068 h(-1). To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs.
Collapse
Affiliation(s)
- Rumen V Kostov
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Elena V Knatko
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Lesley A McLaughlin
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Colin J Henderson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Suqing Zheng
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jeffrey T-J Huang
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Batista MT, Costa G, Nunes F, Vitorino C, Sousa JJ, Figueiredo IV. Validation of a RP-HPLC Method for Quantitation of Phenolic Compounds in three Different Extracts from Cymbopogon citratus. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/rjmp.2015.331.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection. Toxicol Appl Pharmacol 2013; 270:129-38. [DOI: 10.1016/j.taap.2013.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 12/19/2022]
|
17
|
Sugatani J. Function, Genetic Polymorphism, and Transcriptional Regulation of Human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab Pharmacokinet 2013; 28:83-92. [DOI: 10.2133/dmpk.dmpk-12-rv-096] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|