1
|
Tajabadi Z, Dadkhah PA, Gholami Chahkand MS, Esmaeilpour Moallem F, Karimi MA, Amini-Salehi E, Karimi M. Exploring the role of exosomes in diabetic neuropathy: From molecular mechanisms to therapeutic potential. Biomed Pharmacother 2025; 185:117959. [PMID: 40056828 DOI: 10.1016/j.biopha.2025.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Diabetic neuropathy (DN) is a debilitating complication of diabetes mellitus (DM), characterized by progressive neuronal damage, sensory dysfunction, and impaired quality of life. Recent advances in exosome research have elucidated their crucial role in DN's pathogenesis, diagnosis, and treatment. Exosomes-nanoscale extracellular vesicles-function as vehicles for molecular cargo, including microRNAs (miRNAs), proteins, and lipids, which mediate intercellular communication and regulate key biological processes. Pathologically, hyperglycemia and hyperlipidemia induce the release of exosomes enriched with pathogenic miRNAs, such as miR-130a and miR-20b-3p, which disrupt neuronal function, axonal regeneration, and inflammatory pathways. Conversely, diagnostic studies highlight the utility of exosomal biomarkers like miR-7 and miR-221 in the early detection and monitoring of DN. Therapeutically, Schwann cell-derived and mesenchymal stromal cell (MSC)-derived exosomes demonstrate neuroprotective and reparative effects by enhancing mitochondrial function, modulating inflammation, and promoting axonal repair. Emerging approaches, including engineered exosomes and miRNA-enriched vesicles, further expand their therapeutic potential. Despite these advances, challenges such as standardization, large-scale production, and clinical validation remain in translating these findings into clinical practice. This review underscores the multifaceted roles of exosomes in DN and highlights their potential as innovative tools for precision diagnostics and targeted therapies, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| |
Collapse
|
2
|
Zhang CY, Liu S, Sui YX, Yang M. Nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 inflammasome: From action mechanism to therapeutic target in clinical trials. World J Gastrointest Oncol 2025; 17:100094. [PMID: 39958558 PMCID: PMC11756006 DOI: 10.4251/wjgo.v17.i2.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 01/18/2025] Open
Abstract
The nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a critical modulator in inflammatory disease. Activation and mutation of NLRP3 can cause severe inflammation in diseases such as chronic infantile neurologic cutaneous and articular syndrome, Muckle-Wells syndrome, and familial cold autoinflammatory syndrome 1. To date, a great effort has been made to decode the underlying mechanisms of NLRP3 activation. The priming and activation of NLRP3 drive the maturation and release of active interleukin (IL)-18 and IL-1β to cause inflammation and pyroptosis, which can significantly trigger many diseases including inflammatory diseases, immune disorders, metabolic diseases, and neurodegenerative diseases. The investigation of NLRP3 as a therapeutic target for disease treatment is a hot topic in both preclinical studies and clinical trials. Developing potent NLRP3 inhibitors and downstream IL-1 inhibitors attracts wide-spectrum attention in both research and pharmaceutical fields. In this minireview, we first updated the molecular mechanisms involved in NLRP3 inflammasome activation and the associated downstream signaling pathways. We then reviewed the molecular and cellular pathways of NLRP3 in many diseases, including obesity, diabetes, and other metabolic diseases. In addition, we briefly reviewed the roles of NLRP3 in cancer growth and relative immune checkpoint therapy. Finally, clinical trials with treatments targeting NLRP3 and its downstream signaling pathways were summarized.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Yu-Xiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Ming Yang
- Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, United States
| |
Collapse
|
3
|
Sowka A, Balatskyi VV, Navrulin VO, Ntambi JM, Dobrzyn P. Stearoyl-CoA Desaturase 1 Regulates Metabolism and Inflammation in Mouse Perivascular Adipose Tissue in Response to a High-Fat Diet. J Cell Physiol 2025; 240:e31510. [PMID: 39943782 DOI: 10.1002/jcp.31510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 02/19/2025]
Abstract
The dysregulation of perivascular adipose tissue (PVAT) is a key contributor to obesity-induced vascular dysfunction. Mouse periaortic adipose tissue is divided into two parts: thoracic perivascular adipose tissue (TPVAT) and abdominal perivascular adipose tissue (APVAT). These two parts have different physiological properties, which translate into different effects on the vascular wall in the onset of metabolic syndrome. Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the synthesis of monounsaturated fatty acids and has been shown to play an important role in metabolic syndrome, including vascular homeostasis. Despite a considerable focus on the role of SCD1 in the development of vascular disorders, there is currently a lack of knowledge of the relationship between SCD1 and PVAT. The present study investigated effects of SCD1 deficiency on lipolysis, β-oxidation, mitochondrial dynamics, and inflammation in mouse TPVAT and APVAT under high-fat diet (HFD) feeding conditions. We found lower triglyceride levels in PVAT in SCD1-/- mice both in vitro and in vivo compared with wildtype perivascular adipocytes, attributable to activated lipolysis and β-oxidation. Moreover, PVAT in HFD-fed SCD1-/- mice was characterized by higher levels of oxidative phosphorylation complexes and mitochondrial respiratory potential and alterations of mitochondrial morphology compared with wildtype mice. Furthermore, TPVAT and APVAT in SCD1-/- mice showed signs of greater pro-inflammatory macrophage polarization and higher inflammatory markers that were induced by a HFD. This may be related to the accumulation free fatty acids and diacylglycerols, which are enriched in saturated fatty acids. These findings elucidate the role of SCD1 in maintaining vascular integrity.
Collapse
Affiliation(s)
- Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Lorza-Gil E, Strauss OD, Ziegler E, Kansy K, Katschke MT, Rahimi G, Neuscheler D, Sandforth L, Sandforth A, Sancar G, Kaufmann B, Hartmann D, Singer S, Mihaljevic AL, Jumpertz-von Schwartzenberg R, Sbierski-Kind J, Müller TD, Birkenfeld AL, Gerst F. Incretin-responsive human pancreatic adipose tissue organoids: A functional model for fatty pancreas research. Mol Metab 2025; 91:102067. [PMID: 39549913 PMCID: PMC11625218 DOI: 10.1016/j.molmet.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVE Infiltration of adipocytes into the pancreatic parenchyma has been linked to impaired insulin secretion in individuals with increased genetic risk of T2D and prediabetic conditions. However, the study of this ectopic fat depot has been limited by the lack of suitable in vitro models. METHODS Here, we developed a novel 3D model of functionally mature human pancreatic adipose tissue organoids by aggregating human pancreatic adipose tissue-derived stromal vascular fraction (SVF) cells into organoids and differentiating them over 19 days. RESULTS These organoids carry biological properties of the in situ pancreatic fat, presenting levels of adipogenic markers comparable to native pancreatic adipocytes and improved lipolytic and anti-lipolytic response compared to conventional 2D cultures. The organoids harbour a small population of immune cells, mimicking in vivo adipose environment. Furthermore, they express GIPR, allowing investigation of incretin effects in pancreatic fat. In accordance, GIP and the dual GLP1R/GIPR agonist tirzepatide stimulate lipolysis but had distinct effects on the expression of proinflammatory cytokines. CONCLUSIONS This novel adipose organoid model is a valuable tool to study the metabolic impact of incretin signalling in pancreatic adipose tissue, revealing potential therapeutic targets of incretins beyond islets. The donor-specific metabolic memory of these organoids enables examination of the pancreatic fat-islet crosstalk in a donor-related metabolic context.
Collapse
Affiliation(s)
- E Lorza-Gil
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.
| | - O D Strauss
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - E Ziegler
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - K Kansy
- German Center for Diabetes Research (DZD e.V.), Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - M-T Katschke
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - G Rahimi
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - D Neuscheler
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - L Sandforth
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - A Sandforth
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - G Sancar
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - B Kaufmann
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - D Hartmann
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - S Singer
- Department of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - A L Mihaljevic
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - R Jumpertz-von Schwartzenberg
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - J Sbierski-Kind
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - T D Müller
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Munich, Germany
| | - A L Birkenfeld
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - F Gerst
- German Center for Diabetes Research (DZD e.V.), Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Singh U, Sharma R, Kumar R. An Overview on Diabetic Neuropathy. Curr Diabetes Rev 2025; 21:29-42. [PMID: 38919000 DOI: 10.2174/0115733998295741240606104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
The term "Diabetic neuropathy" refers to a collection of clinical and subclinical symptoms caused by problems with the peripheral nervous system. Diabetes, which affects approximately 381 million people worldwide, is the source of dysfunction due to the emergence of microvascular complications. It is anticipated that in the next ten years, Diabetic neuropathy will manifest in about 50% of patients who are currently diagnosed with diabetes. Clinical diagnosis can be established by getting a thorough patient history and exploring the symptoms to rule out alternative causes. Although distal symmetrical polyneuropathy, or just, is the most common and well-researched variant of the disorder, this review will concentrate on it. The multifactorial pathogenesis is linked to various inflammatory, vascular, metabolic, and neurodegenerative illnesses. The three fundamental molecular alterations that lead to the development of diabetic neuropathic pain are oxidative stress, endothelial dysfunction, and chronic inflammation. These three elements are crucial in the development of polyneuropathy because their combination might result in direct axonal damage and nerve ischemia. The purpose of this article was to provide a narrative review of diabetic neuropathy. We provide an overview of the most recent data on biomarkers, the pathogenesis of the illness, the most recent epidemiology of diabetic neuropathy, and the existing screening and diagnosis outcome measures used in both clinical and research contexts.
Collapse
Affiliation(s)
- Ujjawal Singh
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| | - Ramsha Sharma
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
- Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Rohtas, Bihar, 821305, India
| |
Collapse
|
6
|
El-Sayed S, McMahon E, Musleh S, Freeman S, Brough D, Kasher PR, Bryce RA. Virtual screening-led design of inhibitor scaffolds for the NLRP3 inflammasome. Bioorg Chem 2024; 153:107909. [PMID: 39467507 DOI: 10.1016/j.bioorg.2024.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The NLRP3 inflammasome is a key target for drug discovery due to its implication in a range of inflammation-related diseases. In this work, we identify new inhibitors of the NLRP3 inflammasome via a hierarchical virtual screening strategy using molecular similarity, docking and MD simulation. The most potent inhibitors identified from a subsequent biological assay (IC50 of 1 - 4 μM) feature a sulfonamide group, a motif known to favour NLRP3 inhibition, in conjunction with an indole, benzofuran or tricyclic 6,7-dihydro-5H-indeno[5,6-b]furan ring, yielding novel scaffolds. These structures provide a basis for the design of more potent, selective NLRP3 inhibitors.
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Emily McMahon
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Sondos Musleh
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK.
| |
Collapse
|
7
|
Yamashima T. 4-Hydroxynonenal from Mitochondrial and Dietary Sources Causes Lysosomal Cell Death for Lifestyle-Related Diseases. Nutrients 2024; 16:4171. [PMID: 39683565 DOI: 10.3390/nu16234171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity. In patients with metabolic syndrome, saturated fatty acids, especially palmitate, are used as an energy source. Since abundant reactive oxygen species are produced during β-oxidation of the palmitate in mitochondria, an increased amount of 4-hydroxy-2-nonenal (4-HNE) is endogenously generated from linoleic acids constituting cardiolipin of the inner membranes. Further, due to the daily intake of deep-fried foods and/or high-fat diets cooked using vegetable oils, exogenous 4-HNE being generated via lipid peroxidation during heating is incorporated into the blood. By binding with atheromatous and/or senile plaques, 4-HNE inactivates proteins via forming hybrid covalent chemical addition compounds and causes cellular dysfunction and tissue damage by the specific oxidation carbonylation. 4-HNE overstimulates G-protein-coupled receptors to induce abnormal Ca2+ mobilization and µ-calpain activation. This endogenous and exogenous 4-HNE synergically causes POMC neuronal degeneration/death and obesity. Then, the resultant metabolic disorder facilitates degeneration/death of hippocampal neurons, pancreatic β-cells, and hepatocytes. Hsp70.1 is a molecular chaperone which is crucial for both protein quality control and the stabilization of lysosomal limiting membranes. Focusing on the monkey hippocampus after ischemia, previously we formulated the 'calpain-cathepsin hypothesis', i.e., that calpain-mediated cleavage of carbonylated Hsp70.1 is a trigger of programmed neuronal death. This review aims to report that in diverse organs, lysosomal cell degeneration/death occurs via the calpain-cathepsin cascade after the consecutive injections of synthetic 4-HNE in monkeys. Presumably, 4-HNE is a root substance of lysosomal cell death for lifestyle-related diseases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Takara-machi 13-1, Kanazawa 920-8040, Japan
| |
Collapse
|
8
|
Chen F, Tang H, Cai X, Lin J, Kang R, Tang D, Liu J. DAMPs in immunosenescence and cancer. Semin Cancer Biol 2024; 106-107:123-142. [PMID: 39349230 DOI: 10.1016/j.semcancer.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released by cells in response to injury or stress, recognized by host pattern recognition receptors that assess the immunological significance of cellular damage. The interaction between DAMPs and innate immune receptors triggers sterile inflammation, which serves a dual purpose: promoting tissue repair and contributing to pathological conditions, including age-related diseases. Chronic inflammation mediated by DAMPs accelerates immunosenescence and influences both tumor progression and anti-tumor immunity, underscoring the critical role of DAMPs in the nexus between aging and cancer. This review explores the characteristics of immunosenescence and its impact on age-related cancers, investigates the various types of DAMPs, their release mechanisms during cell death, and the immune activation pathways they initiate. Additionally, we examine the therapeutic potential of targeting DAMPs in age-related diseases. A detailed understanding of DAMP-induced signal transduction could provide critical insights into immune regulation and support the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
9
|
Major TJ, Takei R, Matsuo H, Leask MP, Sumpter NA, Topless RK, Shirai Y, Wang W, Cadzow MJ, Phipps-Green AJ, Li Z, Ji A, Merriman ME, Morice E, Kelley EE, Wei WH, McCormick SPA, Bixley MJ, Reynolds RJ, Saag KG, Fadason T, Golovina E, O'Sullivan JM, Stamp LK, Dalbeth N, Abhishek A, Doherty M, Roddy E, Jacobsson LTH, Kapetanovic MC, Melander O, Andrés M, Pérez-Ruiz F, Torres RJ, Radstake T, Jansen TL, Janssen M, Joosten LAB, Liu R, Gaal OI, Crişan TO, Rednic S, Kurreeman F, Huizinga TWJ, Toes R, Lioté F, Richette P, Bardin T, Ea HK, Pascart T, McCarthy GM, Helbert L, Stibůrková B, Tausche AK, Uhlig T, Vitart V, Boutin TS, Hayward C, Riches PL, Ralston SH, Campbell A, MacDonald TM, Nakayama A, Takada T, Nakatochi M, Shimizu S, Kawamura Y, Toyoda Y, Nakaoka H, Yamamoto K, Matsuo K, Shinomiya N, Ichida K, Lee C, Bradbury LA, Brown MA, Robinson PC, Buchanan RRC, Hill CL, Lester S, Smith MD, Rischmueller M, Choi HK, Stahl EA, Miner JN, Solomon DH, Cui J, Giacomini KM, Brackman DJ, Jorgenson EM, Liu H, Susztak K, Shringarpure S, So A, Okada Y, Li C, Shi Y, Merriman TR. A genome-wide association analysis reveals new pathogenic pathways in gout. Nat Genet 2024; 56:2392-2406. [PMID: 39406924 DOI: 10.1038/s41588-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/21/2024] [Indexed: 10/18/2024]
Abstract
Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.
Collapse
Affiliation(s)
- Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Riku Takei
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
- Department of Biomedical Information Management, National Defense Medical College Research Institute, National Defense Medical College, Saitama, Japan
| | - Megan P Leask
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas A Sumpter
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruth K Topless
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wei Wang
- Genomics R&D, 23andMe, Inc, Sunnyvale, CA, USA
| | - Murray J Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Zhiqiang Li
- The Biomedical Sciences Institute and The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Aichang Ji
- Shandong Provincial Key Laboratory of Metabolic Diseases, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- The Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China
| | - Marilyn E Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Morice
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Wen-Hua Wei
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | | | - Matthew J Bixley
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Richard J Reynolds
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth G Saag
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tayaza Fadason
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Evgenia Golovina
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
- Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Abhishek Abhishek
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael Doherty
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Edward Roddy
- School of Medicine, Keele University, Keele, Staffordshire, United Kingdom
- Haywood Academic Rheumatology Centre, Midlands Partnership University NHS Foundation Trust, Stoke-on-Trent, UK
| | - Lennart T H Jacobsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meliha C Kapetanovic
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Mariano Andrés
- Rheumatology Department, Dr Balmis General University Hospital-ISABIAL, Alicante, Spain
- Department of Clinical Medicine, Miguel Hernandez University, Alicante, Spain
| | - Fernando Pérez-Ruiz
- Osakidetza, OSI-EE-Cruces, BIOBizkaia Health Research Institute and Medicine Department of Medicine and Nursery School, University of the Basque Country, Biskay, Spain
| | - Rosa J Torres
- Department of Biochemistry, Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Timothy Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center, Utrecht, The Netherlands
| | - Timothy L Jansen
- Department of Rheumatology, VieCuri Medical Centre, Venlo, The Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Centre, Venlo, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ruiqi Liu
- Department of Internal Medicine and Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Orsolya I Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Rednic
- Department of Rheumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
| | - Fina Kurreeman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frédéric Lioté
- Rheumatology Department, Feel'Gout, GH Paris Saint Joseph, Paris, France
- Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France
| | - Pascal Richette
- Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France
| | - Thomas Bardin
- Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France
| | - Hang Korng Ea
- Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France
| | - Tristan Pascart
- Department of Rheumatology, Hopital Saint-Philibert, Lille Catholic University, Lille, France
| | - Geraldine M McCarthy
- Department of Rheumatology, Mater Misericordiae University Hospital and School of Medicine, University College, Dublin, Ireland
| | - Laura Helbert
- Department of Rheumatology, Mater Misericordiae University Hospital and School of Medicine, University College, Dublin, Ireland
| | - Blanka Stibůrková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
| | - Anne-K Tausche
- Department of Rheumatology, University Clinic 'Carl Gustav Carus' at the Technical University, Dresden, Germany
| | - Till Uhlig
- Center for Treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet Hospital, Oslo, Norway
| | - Véronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Thibaud S Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip L Riches
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Thomas M MacDonald
- MEMO Research, Division of Molecular and Clinical Medicine, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yusuke Kawamura
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Yu Toyoda
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology & Prevention, Aichi Cancer Center, Aichi, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Aichi, Japan
- The Japan Multi-Institutional Collaborative Cohort (J-MICC) Study, Tokyo, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chaeyoung Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, South Korea
| | - Linda A Bradbury
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Philip C Robinson
- School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | | | - Catherine L Hill
- Rheumatology Department, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Susan Lester
- Rheumatology Department, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | | | - Maureen Rischmueller
- Rheumatology Department, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Hyon K Choi
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eli A Stahl
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeff N Miner
- Viscient Biosciences, 5752 Oberlin Dr., Suite 111, San Diego, CA, 92121, USA
| | - Daniel H Solomon
- Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Cui
- Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Deanna J Brackman
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Eric M Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Hongbo Liu
- Penn / The Children's Hospital of Pennsylvania Kidney Innovation Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA
| | - Katalin Susztak
- Penn / The Children's Hospital of Pennsylvania Kidney Innovation Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA
| | | | - Alexander So
- Service of Rheumatology, Center Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Diseases, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- The Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- The Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China.
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
10
|
Liao C, Zhang W. Nerve decompression for diabetic peripheral neuropathy with nerve entrapment: a narrative review. Ther Adv Neurol Disord 2024; 17:17562864241265287. [PMID: 39411723 PMCID: PMC11475385 DOI: 10.1177/17562864241265287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/12/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes which primarily affects the sensory nervous system. Pain is the most common complaint that prompts patients to seek medical advice. With various presentations and intricate pathological mechanisms, diabetic peripheral neuropathic pain is currently the most crucial and challenging aspect of managing diabetic complications. As a heterogeneous disorder, there is no medication or treatment modality that is effective for all types of DPN and its associated neuropathic pain. Peripheral nerve decompression provides a new option for treating patients with diabetic peripheral neuropathic pain in the lower extremities. However, the clinical applicability of nerve decompression has been debated since it was first proposed. This review discusses the theoretical basis of nerve decompression, the clinical indications, and the progress of basic research based on the pathological mechanisms and nerve impairment patterns of diabetic peripheral neuropathic pain. The heterogeneity of DPN patients is summarized in terms of three aspects: complex pathophysiological mechanisms, multilevel nervous system involvement, and various nerve impairment properties. Identifying the presence of nerve entrapment among complex pathophysiological mechanisms is the key to successful outcomes. Tinel signs, focal pain, mechanical allodynia, and two-point discrimination were reported to be prognostic factors for good surgical outcomes, and their predictive ability might stem from their association with the early stage of entrapment neuropathy.
Collapse
Affiliation(s)
- Chenlong Liao
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Shanghai Zhizaoju Road, Huangpu District, Shanghai 200011, China
| |
Collapse
|
11
|
Tezcan D, Eryavuz Onmaz D, Körez MK, Limon M, Gülcemal S, Yılmaz S, Sivrikaya A. The role of fatty acids in patients with Behçet's disease and their association with thrombosis. Lipids 2024; 59:123-133. [PMID: 38742533 DOI: 10.1002/lipd.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Behçet's disease (BD) is a systemic disease with unknown etiopathogenesis and varying disease presentations. Fatty acids (FA) are essential biological compounds that are involved in complex metabolic pathways. They may contribute to inflammation and endothelial dysfunction by participating in many signaling pathways. Increased FAs levels are associated with an increased risk for various diseases. This study aimed to determine the relationship between FA, BD, and thrombotic complications. A total of 97 patients were recruited from the rheumatology department of a single center as a case-control study. The participants were divided into three groups: 36 patients with BD with thrombosis (Group 1), 24 patients with BD without thrombosis (Group 2), and 37 age- and sex-matched controls (Group 3). The analysis of 37 different FA with carbon numbers in the range of (4:0) and (24:1) in the samples were analyzed and compared between groups. Myristic acid (MA), methyl eicosatrienoate, and stearic acid (STA) levels were found to be significantly higher in BD with thrombosis than in BD without thrombosis, and palmitic acid (PA) levels were significantly higher in BD with thrombosis than in healthy individuals. MA was found to be a significant marker for differentiating between thrombotic BD. PA and STA are important markers for detecting thrombotic BD. In BD, lipotoxicity created by FA, such as PA, STA, and MA, plays a role as an inducer of inflammation and thrombosis through various mechanisms.
Collapse
Affiliation(s)
- Dilek Tezcan
- Department of Internal Medicine, Division of Rheumatology, Gülhane Faculty of Medicine, University of Health Sciences Turkey, Ankara, Turkey
| | - Duygu Eryavuz Onmaz
- Division of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Muslu Kazım Körez
- Division of Biostatistics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Muhammet Limon
- Division of Rheumatology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Semral Gülcemal
- Division of Rheumatology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sema Yılmaz
- Division of Rheumatology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Abdullah Sivrikaya
- Division of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
12
|
Hu S, Chen W, Tan X, Zhang Y, Wang J, Huang L, Duan J. Early Identification of Metabolic Syndrome in Adults of Jiaxing, China: Utilizing a Multifactor Logistic Regression Model. Diabetes Metab Syndr Obes 2024; 17:3087-3102. [PMID: 39193547 PMCID: PMC11348986 DOI: 10.2147/dmso.s468718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose The purpose of this study is to develop and validate a clinical prediction model for diagnosing Metabolic Syndrome (MetS) based on indicators associated with its occurrence. Patients and Methods This study included a total of 26,637 individuals who underwent health examinations at the Jiaxing First Hospital Health Examination Center from January 19, 2022, to December 31, 2022. They were randomly divided into training (n = 18645) and validation (n = 7992) sets in a 7:3 ratio. Firstly, the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was employed for variable selection. Subsequently, a multifactor Logistic regression analysis was conducted to establish the predictive model, accompanied by nomograms. Thirdly, model validation was performed using Receiver Operating Characteristic (ROC) curves, Harrell's concordance index (C-index), calibration plots, and Decision Curve Analysis (DCA), followed by internal validation. Results In this study, six predictive indicators were selected, including Body Mass Index, Triglycerides, Blood Pressure, High-Density Lipoprotein Cholesterol, Low-Density Lipoprotein Cholesterol, and Fasting Blood Glucose. The model demonstrated excellent predictive performance, with an AUC of 0.978 (0.976-0.980) for the training set and 0.977 (0.974-0.980) for the validation set in the nomogram. Calibration curves indicated that the model possessed good calibration ability (Training set: Emax 0.081, Eavg 0.005, P = 0.580; Validation set: Emax 0.062, Eavg 0.007, P = 0.829). Furthermore, decision curve analysis suggested that applying the nomogram for diagnosis is more beneficial when the threshold probability of MetS is less than 89%, compared to either treating-all or treating-none at all. Conclusion We developed and validated a nomogram based on MetS risk factors, which can effectively predict the occurrence of MetS. The proposed nomogram demonstrates significant discriminative ability and clinical applicability. It can be utilized to identify variables and risk factors for diagnosing MetS at an early stage.
Collapse
Affiliation(s)
- Shiyu Hu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Wenyu Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaoli Tan
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Ye Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiaye Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Lifang Huang
- Health Management Center, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jianwen Duan
- Department of Hepatobiliary Surgery, Quzhou People’s Hospital, Quzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Shiri H, Fallah H, Abolhassani M, Fooladi S, Ramezani Karim Z, Danesh B, Abbasi-Jorjandi M. Relationship between types and levels of free fatty acids, peripheral insulin resistance, and oxidative stress in T2DM: A case-control study. PLoS One 2024; 19:e0306977. [PMID: 39133724 PMCID: PMC11318896 DOI: 10.1371/journal.pone.0306977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Free Fatty Acids (FFAs) are vital for energy homeostasis and the pathogenesis of a variety of diseases, including diabetes. For the first time, we presumed and investigated the types and levels of FFAs and their links to Insulin Resistance (IR) and Oxidative Stress (OS) in T2DM. A case-control study was conducted on 60 individuals with diabetes, 60 prediabetics with IFG, and 60 control groups. A Gas Chromatography Flame Ionization Detector (GC-FID) was used to estimate FFAs, which were then classified based on length and saturation. Indeed, antioxidant parameters such as TAC, MDA levels, PON-1, SOD-3, and CAT activity were assessed. Higher levels of LCFFA, SFFA, USFFA, and total FFA were found in people with diabetes and prediabetes. These levels were also linked to higher levels of HOMA-IR, BMI, FBS, HbA1C, and MDA, but lower levels of antioxidants. Furthermore, adjusting the above FFAs with age, sex, and antihypertensive medication increased T2DM development. SCFFA and ω3/6 fatty acids had a negative relationship with HOMA-IR, FBS, and insulin and a positive relationship with TAC. Adjusted SCFFA reduces T2DM risk. According to our models, total FFA is utilized to diagnose diabetes (AUC = 83.98, cut-off > 919 μM) and SCFFA for prediabetes (AUC = 82.32, cut-off < 39.56 μM). Total FFA (≥ 776 μM), LCFFA (≥ 613 μM), SFFA (≥ 471 μM), and USFFA (≥ 398 μM) all increase the risk of T2DM by increasing OS, BMI, and HOMA-IR. On the other hand, SCFFAs (≥ 38.7 μM) reduce the risk of T2DM by reducing BMI, HOMA-IR, and OS. SCFFAs and total FFAs can be used for the diagnosis of prediabetes and diabetes, respectively.
Collapse
Affiliation(s)
- Hamidreza Shiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Fallah
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Ramezani Karim
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Danesh
- Department of Internal Medicine, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
16
|
Sharifi S, Yamamoto T, Zeug A, Elsner M, Avezov E, Mehmeti I. Non-esterified fatty acid palmitate facilitates oxidative endoplasmic reticulum stress and apoptosis of β-cells by upregulating ERO-1α expression. Redox Biol 2024; 73:103170. [PMID: 38692092 PMCID: PMC11070623 DOI: 10.1016/j.redox.2024.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Adipose tissue-derived non-esterified saturated long-chain fatty acid palmitate (PA) decisively contributes to β-cell demise in type 2 diabetes mellitus in part through the excessive generation of hydrogen peroxide (H2O2). The endoplasmic reticulum (ER) as the primary site of oxidative protein folding could represent a significant source of H2O2. Both ER-oxidoreductin-1 (ERO-1) isoenzymes, ERO-1α and ERO-1β, catalyse oxidative protein folding within the ER, generating equimolar amounts of H2O2 for every disulphide bond formed. However, whether ERO-1-derived H2O2 constitutes a potential source of cytotoxic luminal H2O2 under lipotoxic conditions is still unknown. Here, we demonstrate that both ERO-1 isoforms are expressed in pancreatic β-cells, but interestingly, PA only significantly induces ERO-1α. Its specific deletion significantly attenuates PA-mediated oxidative ER stress and subsequent β-cell death by decreasing PA-mediated ER-luminal and mitochondrial H2O2 accumulation, by counteracting the dysregulation of ER Ca2+ homeostasis, and by mitigating the reduction of mitochondrial membrane potential and lowered ATP content. Moreover, ablation of ERO-1α alleviated PA-induced hyperoxidation of the ER redox milieu. Importantly, ablation of ERO-1α did not affect the insulin secretory capacity, the unfolded protein response, or ER redox homeostasis under steady-state conditions. The involvement of ERO-1α-derived H2O2 in PA-mediated β-cell lipotoxicity was corroborated by the overexpression of a redox-active ERO-1α underscoring the proapoptotic activity of ERO-1α in pancreatic β-cells. Overall, our findings highlight the critical role of ERO-1α-derived H2O2 in lipotoxic ER stress and β-cell failure.
Collapse
Affiliation(s)
- Sarah Sharifi
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Tomoko Yamamoto
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Edward Avezov
- Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, CB2 0AH Cambridge, UK
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
18
|
Qin J, Yang Q, Wang Y, Shi M, Zhao X, Zhou Y. The role of pyroptosis in heart failure and related traditional chinese medicine treatments. Front Pharmacol 2024; 15:1377359. [PMID: 38868667 PMCID: PMC11168204 DOI: 10.3389/fphar.2024.1377359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
Pyroptosis is a type of programmed cell death that is mediated by both typical and atypical pathways and ultimately leads to the lysis and rupture of cell membranes and the release of proinflammatory factors, triggering an intense inflammatory response. Heart failure (HF) is a serious and terminal stage of various heart diseases. Myocardial hypertrophy, myocardial fibrosis, ventricular remodeling, oxidative stress, the inflammatory response and cardiomyocyte ionic disorders caused by various cardiac diseases are all risk factors for and aggravate HF. Numerous studies have shown that pyroptosis can induce and exacerbate these reactions, causing progression to HF. Therefore, targeting pyroptosis is a promising strategy to treat HF. This paper summarizes the role of pyroptosis in the development of HF and the underlying mechanism involved. Recent research progress on the ability of traditional Chinese medicine (TCM) extracts and formulas to inhibit pyroptosis and treat HF was summarized, and some traditional Chinese medicine extracts and formulas can alleviate different types of HF, including heart failure with preserved ejection fraction (HFpEF), heart failure with reduced ejection fraction (HFrEF), and heart failure with midrange ejection fraction (HFmrEF), by targeting pyroptosis. These findings may provide new ideas and evidence for the treatment or adjuvant treatment of HF by targeting pyroptosis.
Collapse
Affiliation(s)
- Jie Qin
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qianhe Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengdi Shi
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Liang L, Chung SI, Guon TE, Park KH, Lee JH, Park JW. Statin administration or blocking PCSK9 alleviates airway hyperresponsiveness and lung fibrosis in high-fat diet-induced obese mice. Respir Res 2024; 25:213. [PMID: 38762465 PMCID: PMC11102611 DOI: 10.1186/s12931-024-02842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-β1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-β1, IL-1β, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-β1 over-expressed transgenic mice with normal diet. CONCLUSIONS Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.
Collapse
Affiliation(s)
- Lin Liang
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Sook In Chung
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Eun Guon
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
20
|
Inia JA, de Jong JCBC, Keijzer N, Menke AL, Princen HMG, Jukema JW, van den Hoek AM. Effects of repeated weight cycling on non-alcoholic steatohepatitis in diet-induced obese mice. FASEB J 2024; 38:e23579. [PMID: 38568838 DOI: 10.1096/fj.202400167r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Lifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.Leiden mice received a high-fat diet (HFD) for 20 weeks to induce obesity. Subsequently, weight-cycled mice were switched between the healthy chow diet and HFD for four 2-week periods and compared to mice that received HFD for the total study period. Repeated weight cycling tended to decrease body weight and significantly reduced fat mass, whereas adipose tissue inflammation was similar relative to HFD controls. Weight cycling did not significantly affect blood glucose or plasma insulin levels yet significantly reduced plasma free fatty acid and alanine transaminase/aspartate transaminase levels. Hepatic macrovesicular steatosis was similar and microvesicular steatosis tended to be increased upon weight cycling. Weight cycling resulted in a robust decrease in hepatic inflammation compared to HFD controls while hepatic fibrosis and atherosclerosis development were not affected. These results argue against the postulate that repeated weight cycling leads to unfavorable metabolic effects, when compared to a continuous unhealthy lifestyle, and in fact revealed beneficial effects on hepatic inflammation, an important hallmark of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
21
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
22
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
23
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
24
|
Nicholas DA, Mbongue JC, Garcia-Pérez D, Sorensen D, Ferguson Bennit H, De Leon M, Langridge WHR. Exploring the Interplay between Fatty Acids, Inflammation, and Type 2 Diabetes. IMMUNO 2024; 4:91-107. [PMID: 39606781 PMCID: PMC11600342 DOI: 10.3390/immuno4010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Around 285 million people worldwide currently have type 2 diabetes and it is projected that this number will be surpassed by 2030. Therefore, it is of the utmost importance to enhance our comprehension of the disease's development. The regulation of diet, obesity, and inflammation in type 2 diabetes is believed to play a crucial role in enhancing insulin sensitivity and reducing the risk of onset diabetes. Obesity leads to an increase in visceral adipose tissue, which is a prominent site of inflammation in type 2 diabetes. Dyslipidemia, on the other hand, plays a significant role in attracting activated immune cells such as macrophages, dendritic cells, T cells, NK cells, and B cells to visceral adipose tissue. These immune cells are a primary source of pro-inflammatory cytokines that are believed to promote insulin resistance. This review delves into the influence of elevated dietary free saturated fatty acids and examines the cellular and molecular factors associated with insulin resistance in the initiation of inflammation induced by obesity. Furthermore, it explores novel concepts related to diet-induced inflammation and its relationship with type 2 diabetes.
Collapse
Affiliation(s)
- Dequina A. Nicholas
- School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Jacques C. Mbongue
- Department of Biological Sciences, School of Arts and Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - Darysbel Garcia-Pérez
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
- Division of Molecular Genetics and Microbiology, School of Medicine Alumni Hall, Loma Linda University, Rm 102, 11021 Campus Street, Loma Linda, CA 92350, USA
| | - Dane Sorensen
- Center for Perinatal Biology, Division of Physiology, Loma Linda School of Medicine, Rm A572, 11234 Anderson Street, Loma Linda, CA 92350, USA
| | - Heather Ferguson Bennit
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| |
Collapse
|
25
|
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:297-327. [PMID: 39287856 DOI: 10.1007/978-3-031-63657-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
26
|
Wang M, Qi Y, Zhou Y, Zhang Z, Guo C, Shu C, Pan F, Guo Z, Di HJ, Hu Z. Impeding DNA Polymerase β Activity by Oleic Acid to Inhibit Base Excision Repair and Induce Mitochondrial Dysfunction in Hepatic Cells. Cell Biochem Biophys 2023; 81:765-776. [PMID: 37695502 DOI: 10.1007/s12013-023-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
Free fatty acids (FFAs) hepatic accumulation and the resulting oxidative stress contribute to several chronic liver diseases including nonalcoholic steatohepatitis. However, the underlying pathological mechanisms remain unclear. In this study, we propose a novel mechanism whereby the toxicity of FFAs detrimentally affects DNA repair activity. Specifically, we have discovered that oleic acid (OA), a prominent dietary free fatty acid, inhibits the activity of DNA polymerase β (Pol β), a crucial enzyme involved in base excision repair (BER), by actively competing with 2'-deoxycytidine-5'-triphosphate. Consequently, OA hinders the efficiency of BER, leading to the accumulation of DNA damage in hepatocytes overloaded with FFAs. Additionally, the excessive presence of both OA and palmitic acid (PA) lead to mitochondrial dysfunction in hepatocytes. These findings suggest that the accumulation of FFAs hampers Pol β activity and contributes to mitochondrial dysfunction, shedding light on potential pathogenic mechanisms underlying FFAs-related diseases.
Collapse
Affiliation(s)
- Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yannan Qi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yu Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Ziyu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Chenxi Guo
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hong-Jie Di
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
27
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
28
|
Snider AP, Gomes RS, Summers AF, Tenley SC, Abedal-Majed MA, McFee RM, Wood JR, Davis JS, Cupp AS. Identification of Lipids and Cytokines in Plasma and Follicular Fluid before and after Follicle-Stimulating Hormone Stimulation as Potential Markers for Follicular Maturation in Cattle. Animals (Basel) 2023; 13:3289. [PMID: 37894013 PMCID: PMC10603728 DOI: 10.3390/ani13203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.
Collapse
Affiliation(s)
- Alexandria P. Snider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Renata S. Gomes
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | | | - Sarah C. Tenley
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198, USA;
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| |
Collapse
|
29
|
Wang Z, Zhang S, Du J, Lachance BB, Chen S, Polster BM, Jia X. Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation. Transl Stroke Res 2023; 14:723-739. [PMID: 35921049 PMCID: PMC9895128 DOI: 10.1007/s12975-022-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023]
Abstract
Cardiac arrest (CA) is common and devastating, and neuroprotective therapies for brain injury after CA remain limited. Neuroinflammation has been a target for two promising but underdeveloped post-CA therapies: neural stem cell (NSC) engrafting and glibenclamide (GBC). It is critical to understand whether one therapy has superior efficacy over the other and to further understand their immunomodulatory mechanisms. In this study, we aimed to evaluate and compare the therapeutic effects of NSC and GBC therapies post-CA. In in vitro studies, BV2 cells underwent oxygen-glucose deprivation (OGD) for three hours and were then treated with GBC or co-cultured with human NSCs (hNSCs). Microglial polarization phenotype and TLR4/NLRP3 inflammatory pathway proteins were detected by immunofluorescence staining. Twenty-four Wistar rats were randomly assigned to three groups (control, GBC, and hNSCs, N = 8/group). After 8 min of asphyxial CA, GBC was injected intraperitoneally or hNSCs were administered intranasally in the treatment groups. Neurological-deficit scores (NDSs) were assessed at 24, 48, and 72 h after return of spontaneous circulation (ROSC). Immunofluorescence was used to track hNSCs and quantitatively evaluate microglial activation subtype and polarization. The expression of TLR4/NLRP3 pathway-related proteins was quantified via Western blot. The in vitro studies showed the highest proportion of activated BV2 cells with an increased expression of TLR4/NLRP3 signaling proteins were found in the OGD group compared to OGD + GBC and OGD + hNSCs groups. NDS showed significant improvement after CA in hNSC and GBC groups compared to controls, and hNSC treatment was superior to GBC treatment. The hNSC group had more inactive morphology and anti-inflammatory phenotype of microglia. The quantified expression of TLR4/NLRP3 pathway-related proteins was significantly suppressed by both treatments, and the suppression was more significant in the hNSC group compared to the GBC group. hNSC and GBC therapy regulate microglial activation and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling and exert multiple neuroprotective effects, including improved neurological function and shortened time of severe neurological deficit. In addition, hNSCs displayed superior inflammatory regulation over GBC.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Liang X, Qi X, Yang J, Wang X, Qin H, Hu F, Bai H, Li Y, Zhang C, Shi B. Lipid alternations in the plasma of COVID-19 patients with various clinical presentations. Front Immunol 2023; 14:1221493. [PMID: 37705971 PMCID: PMC10495680 DOI: 10.3389/fimmu.2023.1221493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
Background COVID-19 is a highly infectious respiratory disease that can manifest in various clinical presentations. Although many studies have reported the lipidomic signature of COVID-19, the molecular changes in asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals remain elusive. Methods This study combined a comprehensive lipidomic analysis of 220 plasma samples from 166 subjects: 62 healthy controls, 16 asymptomatic infections, and 88 COVID-19 patients. We quantified 732 lipids separately in this cohort. We performed a difference analysis, validated with machine learning models, and also performed GO and KEGG pathway enrichment analysis using differential lipids from different control groups. Results We found 175 differentially expressed lipids associated with SASR-CoV-2 infection, disease severity, and viral persistence in patients with COVID-19. PC (O-20:1/20:1), PC (O-20:1/20:0), and PC (O-18:0/18:1) better distinguished asymptomatic infected individuals from normal individuals. Furthermore, some patients tested positive for SARS-CoV-2 nucleic acid by RT-PCR but did not become negative for a longer period of time (≥60 days, designated here as long-term nucleic acid test positive, LTNP), whereas other patients became negative for viral nucleic acid in a shorter period of time (≤45 days, designated as short-term nucleic acid test positive, STNP). We have found that TG (14:1/14:1/18:2) and FFA (4:0) were differentially expressed in LTNP and STNP. Conclusion In summary, the integration of lipid information can help us discover novel biomarkers to identify asymptomatic individuals and further deepen our understanding of the molecular pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Xiao Liang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xin Qi
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yixin Li
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The MED-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chengsheng Zhang
- The MED-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
31
|
Bauer S, Hezinger L, Rexhepi F, Ramanathan S, Kufer TA. NOD-like Receptors-Emerging Links to Obesity and Associated Morbidities. Int J Mol Sci 2023; 24:ijms24108595. [PMID: 37239938 DOI: 10.3390/ijms24108595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.
Collapse
Affiliation(s)
- Sarah Bauer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lucy Hezinger
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
32
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
33
|
Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat 2023; 165:106704. [PMID: 36621562 DOI: 10.1016/j.prostaglandins.2023.106704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.
Collapse
|
34
|
Santillana N, Astudillo-Guerrero C, D’Espessailles A, Cruz G. White Adipose Tissue Dysfunction: Pathophysiology and Emergent Measurements. Nutrients 2023; 15:nu15071722. [PMID: 37049561 PMCID: PMC10096946 DOI: 10.3390/nu15071722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
White adipose tissue (AT) dysfunction plays an important role in the development of cardiometabolic alterations associated with obesity. AT dysfunction is characterized by the loss of the expansion capacity of the AT, an increment in adipocyte hypertrophy, and changes in the secretion profile of adipose cells, associated with accumulation of macrophages and inflammation. Since not all people with an excess of adiposity develop comorbidities, it is necessary to find simple tools that can evidence AT dysfunction and allow the detection of those people with the potential to develop metabolic alterations. This review focuses on the current pathophysiological mechanisms of white AT dysfunction and emerging measurements to assess its functionality.
Collapse
Affiliation(s)
- Natalia Santillana
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8380453, Chile
| | - Camila Astudillo-Guerrero
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Amanda D’Espessailles
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
35
|
Dual Role of Mitogen-Activated Protein Kinase 8 Interacting Protein-1 in Inflammasome and Pancreatic β-Cell Function. Int J Mol Sci 2023; 24:ijms24054990. [PMID: 36902422 PMCID: PMC10002854 DOI: 10.3390/ijms24054990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Inflammasomes have been implicated in the pathogenesis of type 2 diabetes (T2D). However, their expression and functional importance in pancreatic β-cells remain largely unknown. Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) is a scaffold protein that regulates JNK signaling and is involved in various cellular processes. The precise role of MAPK8IP1 in inflammasome activation in β-cells has not been defined. To address this gap in knowledge, we performed a set of bioinformatics, molecular, and functional experiments in human islets and INS-1 (832/13) cells. Using RNA-seq expression data, we mapped the expression pattern of proinflammatory and inflammasome-related genes (IRGs) in human pancreatic islets. Expression of MAPK8IP1 in human islets was found to correlate positively with key IRGs, including the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3), Gasdermin D (GSDMD) and Apoptosis-associated speck-like protein containing a CARD (ASC), but correlate inversely with Nuclear factor kappa β1 (NF-κβ1), Caspase-1 (CASP-1), Interleukin-18 (IL-18), Interleukin-1β (IL-1β) and Interleukin 6 (IL-6). Ablation of Mapk8ip1 by siRNA in INS-1 cells down-regulated the basal expression levels of Nlrp3, NLR family CARD domain containing 4 (Nlrc4), NLR family CARD domain containing 1 (Nlrp1), Casp1, Gsdmd, Il-1β, Il-18, Il-6, Asc, and Nf-κβ1 at the mRNA and/or protein level and decreased palmitic acid (PA)-induced inflammasome activation. Furthermore, Mapk8ip1-silened cells substantially reduced reactive oxygen species (ROS) generation and apoptosis in palmitic acid-stressed INS-1 cells. Nonetheless, silencing of Mapk8ip1 failed to preserve β-cell function against inflammasome response. Taken together, these findings suggest that MAPK8IP1 is involved in regulating β-cells by multiple pathways.
Collapse
|
36
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, Batiha GES, De Waard M. A Potential Link Between Visceral Obesity and Risk of Alzheimer's Disease. Neurochem Res 2023; 48:745-766. [PMID: 36409447 DOI: 10.1007/s11064-022-03817-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut du thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France.,LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
37
|
Palma Albornoz SP, Fraga-Silva TF, de Carvalho RV, Rodrigues TS, Gembre AF, de Oliveira RS, de Souza FM, Corrêa GF, Ramalho LN, Carlos D, de Almeida DC, Câmara NO, Zamboni DS, Takahashi VN, Sorgi CA, Faccioli LH, Medeiros AI, Costa DL, Bonato VL. Cell death induced by NLRP3-palmitate axis impairs pulmonary damage tolerance and aggravates immunopathology during obesity-tuberculosis comorbidity. J Pathol 2023; 259:291-303. [PMID: 36441400 DOI: 10.1002/path.6041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
A low-grade and persistent inflammation, which is the hallmark of obesity, requires the participation of NLRP3 and cell death. During Mycobacterium tuberculosis infection, NLRP3 signaling is important for bacterial killing by macrophages in vitro but was shown to be dispensable for host protection in vivo. We hypothesized that during obesity-tuberculosis (TB) comorbidity, NLRP3 signaling might play a detrimental role by inducing excessive inflammation. We employed a model of high-fat-diet-induced obesity, followed by M. tuberculosis infection in C57BL/6 mice. Obese mice presented increased susceptibility to infection and pulmonary immunopathology compared to lean mice. Using treatment with NLRP3 antagonist and Nlrp3-/- mice, we showed that NLRP3 signaling promoted cell death, with no effect in bacterial loads. The levels of palmitate were higher in the lungs of obese infected mice compared to lean counterparts, and we observed that this lipid increased M. tuberculosis-induced macrophage death in vitro, which was dependent on NLRP3 and caspase-1. At the chronic phase, although lungs of obese Nlrp3-/- mice showed an indication of granuloma formation compared to obese wild-type mice, there was no difference in the bacterial load. Our findings indicate that NLRP3 may be a potential target for host-directed therapy to reduce initial and severe inflammation-mediated disease and to treat comorbidity-associated TB. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sandra P Palma Albornoz
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Thais Fc Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Renan Vh de Carvalho
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Tamara S Rodrigues
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Rômulo Silva de Oliveira
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Fernanda Mesquita de Souza
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Giseli Furlan Corrêa
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Leandra Nz Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Daniela Carlos
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Danilo C de Almeida
- Department of Immunology, Institute of Biomedical Sciences IV, University of Sao Paulo, São Paulo, Brazil
| | - Niels Os Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of Sao Paulo, São Paulo, Brazil
| | - Dario S Zamboni
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Cell Biology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Viviani Nardini Takahashi
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Carlos A Sorgi
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Lucia H Faccioli
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Alexandra I Medeiros
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, São Paulo, Brazil
| | - Diego Luís Costa
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Vânia Ld Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
39
|
Mázala-de-Oliveira T, Jannini de Sá YAP, Carvalho VDF. Impact of gut-peripheral nervous system axis on the development of diabetic neuropathy. Mem Inst Oswaldo Cruz 2023; 118:e220197. [PMID: 36946851 PMCID: PMC10027071 DOI: 10.1590/0074-02760220197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial for the development of neuropathy.
Collapse
Affiliation(s)
| | | | - Vinicius de Frias Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Rio de Janeiro, RJ, Brasil
- + Corresponding author:
| |
Collapse
|
40
|
We are what we eat: The role of lipids in metabolic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516463 DOI: 10.1016/bs.afnr.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids play a fundamental role, both structurally and functionally, for the correct functioning of the organism. In the last two decades, they have evolved from molecules involved only in energy storage to compounds that play an important role as components of cell membranes and signaling molecules that regulate cell homeostasis. For this reason, their interest as compounds involved in human health has been gaining weight. Indeed, lipids derived from dietary sources and endogenous biosynthesis are relevant for the pathophysiology of numerous diseases. There exist pathological conditions that are characterized by alterations in lipid metabolism. This is particularly true for metabolic diseases, such as liver steatosis, type 2 diabetes, cancer and cardiovascular diseases. The main issue to be considered is lipid homeostasis. A precise control of fat homeostasis is required for a correct regulation of metabolic pathways and safe and efficient energy storage in adipocytes. When this fails, a deregulation occurs in the maintenance of systemic metabolism. This happens because an increased concentrations of lipids impair cellular homeostasis and disrupt tissue function, giving rise to lipotoxicity. Fat accumulation results in many alterations in the physiology of the affected organs, mainly in metabolic tissues. These alterations include the activation of oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, increased inflammation, accumulation of bioactive molecules and modification of gene expression. In this chapter, we review the main metabolic diseases in which alterations in lipid homeostasis are involved and discuss their pathogenic mechanisms.
Collapse
|
41
|
Guo Z, Wang L, Liu H, Xie Y. Innate Immune Memory in Monocytes and Macrophages: The Potential Therapeutic Strategies for Atherosclerosis. Cells 2022; 11:4072. [PMID: 36552836 PMCID: PMC9776628 DOI: 10.3390/cells11244072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a complex metabolic disease characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel. As the most abundant innate immune cells, monocyte-derived macrophages play a pivotal role in the inflammatory response, cholesterol metabolism, and foam cell formation. In recent decades, it has been demonstrated that monocytes and macrophages can establish innate immune memory (also termed trained immunity) via endogenous and exogenous atherogenic stimuli and exhibit a long-lasting proinflammatory phenotype. The important cellular metabolism processes, including glycolysis, oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, fatty acid synthesis, and cholesterol synthesis, are reprogrammed. Trained monocytes/macrophages with innate immune memory can be persistently hyperactivated and can undergo extensive epigenetic rewiring, which contributes to the pathophysiological development of atherosclerosis via increased proinflammatory cytokine production and lipid accumulation. Here, we provide an overview of the regulation of cellular metabolic processes and epigenetic modifications of innate immune memory in monocytes/macrophages as well as the potential endogenous and exogenous stimulations involved in the progression of atherosclerosis that have been reported recently. These elucidations might be beneficial for further understanding innate immune memory and the development of therapeutic strategies for inflammatory diseases and atherosclerosis.
Collapse
Affiliation(s)
- Zhigang Guo
- Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Hongjian Liu
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, China
| | - Yuhuai Xie
- Huanghe Science and Technology College, Zhengzhou 450006, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
El‐Sayed S, Freeman S, Bryce RA. Probing the effect of
NEK7
and cofactor interactions on dynamics of
NLRP3
monomer using molecular simulation. Protein Sci 2022; 31:e4420. [PMID: 36173167 PMCID: PMC9601872 DOI: 10.1002/pro.4420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/22/2022]
Abstract
The NLRP3 inflammasome is a cytoplasmic complex that regulates the activation of inflammatory cytokines and, given its implication in a range of diseases, is an important therapeutic target. The cofactor ATP and the centrosomal kinase NEK7 are important for NLRP3 activation. Here we have constructed and simulated computational models of full‐length monomeric NLRP3 to shed light on the importance of NEK7 and cofactor interactions for its conformation and dynamics in aqueous solution. We find that molecular dynamics simulation reproduces well the features of the recently published cryo‐EM structure of the ADP‐bound NLRP3–NEK7 complex; on the removal of NEK7, the NLRP3 molecule adopts a more compact closed form during simulations. Replacement of ADP by ATP promotes a rearrangement of hydrogen‐bonding interactions, domain interfaces, and a degree of opening of the NLRP3 conformation. We also examine the dynamics of an acidic loop of the LRR domain of NLRP3, which samples in a region observed in the NEK7‐bound cryo‐EM structure but not in an oligomeric form of inactive NLRP3. During the molecular dynamics simulations of NLRP3, we find some plasticity in its topology that suggests access routes for ATP to the cofactor pocket not immediately evident from the existing NEK7‐bound cryo‐EM structure. These computed dynamical trajectories of NLRP3 provide insight into coordinates of deformation that may be key for cofactor binding and inflammasome activation.
Collapse
Affiliation(s)
- Sherihan El‐Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre University of Manchester Manchester UK
- Department of Medicinal Chemistry, Faculty of Pharmacy Zagazig University Zagazig Egypt
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| | - Richard A. Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| |
Collapse
|
43
|
Hao Y, Qu L, Guo Y, Ma L, Guo M, Zhu Y, Jin Y, Gu Q, Zhang Y, Sun W. Association of pre-pregnancy low-carbohydrate diet with maternal oral glucose tolerance test levels in gestational diabetes. BMC Pregnancy Childbirth 2022; 22:734. [PMID: 36162989 PMCID: PMC9511732 DOI: 10.1186/s12884-022-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Limited evidence exists on the correlation between the pre-pregnancy low-carbohydrate (LC) diet and maternal oral glucose tolerance test (OGTT) levels during pregnancy. Our aim was to compare the differences in maternal OGTT levels among women who had been diagnosed with gestational diabetes mellitus (GDM) during pregnancy and adopted different dietary patterns in the pre-pregnancy period. Methods A case–control study was conducted in 20 women with GDM who adhering to an LC diet (carbohydrate intake < 130 g/d) during pre-conception (LC/GDM,cases). Control subjects, who were matched in a 4:1 ratio, were 80 women with GDM and conventional diet (Con/GDM,control), and 80 women with conventional diet but without GDM (Con/Healthy,control). Women diagnosed with GDM using 75-g OGTT between 24 and 28 weeks of gestation. We used unadjusted raw data to compare the dietary composition data and biomarkers of the three study groups. Results The average pre-conception BMI in each group suggested a similar body size from the three study groups(19.12 ± 2.00 LC/GDM, 19.65 ± 2.32 Con/GDM, 19.53 ± 2.30 Con/Healthy; P = 0.647). Compared with the Con/GDM group, the OGTT-1 h and OGTT-2 h values in LC/GDM group were significantly higher (10.36 ± 1.28 mmol/L vs. 9.75 ± 0.98 mmol/L; 9.12 ± 0.98 mmol/L vs. 8.29 ± 1.06 mmol/L). Furthermore, the percentage of women who had more than one abnormal OGTT value (OGTT-1 h and OGTT-2 h) was 40% in the LC/GDM group, which was significantly higher than in the Con/GDM group (16.3%). Conclusions We observed a relationship between the pre-pregnancy LC diet and more detrimental OGTT values in patients with GDM. This finding warrants further studies to understand the effect of pre-pregnancy LC diet practice on maternal glucose tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-05059-2.
Collapse
Affiliation(s)
- Yanhui Hao
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Lei Qu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China
| | - Yuna Guo
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China
| | - Liying Ma
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China
| | - Muhe Guo
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yiqing Zhu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China
| | - Yan Jin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China
| | - Qin Gu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China
| | - Yue Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China
| | - Wenguang Sun
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 910 Hengshan Road, 200030, Shanghai, China.
| |
Collapse
|
44
|
El-Sayed S, Freeman S, Bryce RA. A Selective Review and Virtual Screening Analysis of Natural Product Inhibitors of the NLRP3 Inflammasome. Molecules 2022; 27:molecules27196213. [PMID: 36234744 PMCID: PMC9573361 DOI: 10.3390/molecules27196213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The NLRP3 inflammasome is currently an exciting target for drug discovery due to its role in various inflammatory diseases; however, to date, no NLRP3 inhibitors have reached the clinic. Several studies have used natural products as hit compounds to facilitate the design of novel selective NLRP3 inhibitors. Here, we review selected natural products reported in the literature as NLRP3 inhibitors, with a particular focus on those targeting gout. To complement this survey, we also report a virtual screen of the ZINC20 natural product database, predicting favored chemical features that can aid in the design of novel small molecule NLRP3 inhibitors.
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-7950403456
| | - Richard A. Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
45
|
Acne, Microbiome, and Probiotics: The Gut–Skin Axis. Microorganisms 2022; 10:microorganisms10071303. [PMID: 35889022 PMCID: PMC9318165 DOI: 10.3390/microorganisms10071303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this narrative review was to check the influence of the human microbiota in the pathogenesis of acne and how the treatment with probiotics as adjuvant or alternative therapy affects the evolution of acne vulgaris. Acne is a chronic inflammatory skin disease involving the pilosebaceous units. The pathogenesis of acne is complex and multifactorial involving genetic, metabolic, and hormonal factors in which both skin and gut microbiota are implicated. Numerous studies have shown the bidirectionality between the intestinal microbiota and skin homeostasis, a communication mainly established by modifying the immune system. Increased data on the mechanisms of action regarding the relevance of Cutibacterium acnes, as well as the importance of the gut–skin axis, are becoming known. Diverse and varied in vitro studies have shown the potential beneficial effects of probiotics in this context. Clinical trials with both topical and oral probiotics are scarce, although they have shown positive results, especially with oral probiotics through the modulation of the intestinal microbiota, generating an anti-inflammatory response and restoring intestinal integrity, or through metabolic pathways involving insulin-like growth factor I (IGF-1). Given the aggressiveness of some standard acne treatments, probiotics should continue to be investigated as an alternative or adjuvant therapy.
Collapse
|
46
|
Gao J, Xia L, Wei Y. Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:165-174. [PMID: 35477544 PMCID: PMC9046894 DOI: 10.4196/kjpp.2022.26.3.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jingying Gao
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.,Pediatric Internal Medicine, Children's Hospital of Shanxi Province, Shanxi Medical University, Taiyuan 030001, China
| | - Lixia Xia
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China
| | - Yuanyuan Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.,Pediatric Internal Medicine, Children's Hospital of Shanxi Province, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
47
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
48
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
49
|
Huang RY, Lee CN, Moochhala S. Circulating Antibodies to Skin Bacteria Detected by Serological Lateral Flow Immunoassays Differentially Correlated With Bacterial Abundance. Front Microbiol 2021; 12:709562. [PMID: 34867837 PMCID: PMC8635989 DOI: 10.3389/fmicb.2021.709562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The serological lateral flow immunoassay (LFIA) was used to detect circulating antibodies to skin bacteria. Next-generation sequencing analysis of the skin microbiome revealed a high relative abundance of Cutibacterium acnes but low abundance of Staphylococcus aureus and Corynebacterium aurimucosum on human facial samples. Yet, results from both LFIA and antibody titer quantification in 96-well microplates illustrated antibody titers that were not correspondent, and instead negatively correlated, to their respective abundance with human blood containing higher concentrations of antibodies to both S. aureus and C. aurimucosum than C. acnes. Acne vulgaris develops several unique microbial and cellular features, but its correlation with circulating antibodies to bacteria in the pilosebaceous unit remains unknown. Results here revealed that antibodies to C. acnes and S. aureus were approximately 3-fold higher and 1.5-fold lower, respectively, in acne patients than in healthy subjects. Although the results can be further validated by larger sample sizes, the proof-of-concept study demonstrates a newfound discrepancy between the abundance of skin bacteria and amounts of their corresponding antibodies. And in light of acne-correlated amplified titers of specific anticommensal antibodies, we highlight that profiling these antibodies in the pilosebaceous unit by LFIAs may provide a unique signature for monitoring acne vulgaris.
Collapse
Affiliation(s)
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shabbir Moochhala
- Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Hauck S, Zager P, Halfter N, Wandel E, Torregrossa M, Kakpenova A, Rother S, Ordieres M, Räthel S, Berg A, Möller S, Schnabelrauch M, Simon JC, Hintze V, Franz S. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact Mater 2021; 6:4342-4359. [PMID: 33997511 PMCID: PMC8105600 DOI: 10.1016/j.bioactmat.2021.04.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Sustained inflammation associated with dysregulated macrophage activation prevents tissue formation and healing of chronic wounds. Control of inflammation and immune cell functions thus represents a promising approach in the development of advanced therapeutic strategies. Here we describe immunomodulatory hyaluronan/collagen (HA-AC/coll)-based hydrogels containing high-sulfated hyaluronan (sHA) as immunoregulatory component for the modulation of inflammatory macrophage activities in disturbed wound healing. Solute sHA downregulates inflammatory activities of bone marrow-derived and tissue-resident macrophages in vitro. This further affects macrophage-mediated pro-inflammatory activation of skin cells as shown in skin ex-vivo cultures. In a mouse model of acute skin inflammation, intradermal injection of sHA downregulates the inflammatory processes in the skin. This is associated with the promotion of an anti-inflammatory gene signature in skin macrophages indicating a shift of their activation profile. For in vivo translation, we designed HA-AC/coll hydrogels allowing delivery of sHA into wounds over a period of at least one week. Their immunoregulatory capacity was analyzed in a translational experimental approach in skin wounds of diabetic db/db mice, an established model for disturbed wound healing. The sHA-releasing hydrogels improved defective tissue repair with reduced inflammation, augmented pro-regenerative macrophage activation, increased vascularization, and accelerated new tissue formation and wound closure.
Collapse
Affiliation(s)
- Sophia Hauck
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Paula Zager
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Elke Wandel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Marta Torregrossa
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michelle Ordieres
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Susann Räthel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Albrecht Berg
- Biomaterials Department, INNOVENT e.V. Jena, Germany
| | | | | | - Jan C. Simon
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
- Corresponding author. University Leipzig, Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|