1
|
Qi Q, Gu R, Zhu J, Anderson KE, Ma X. Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity. Drug Metab Dispos 2024; 52:1201-1207. [PMID: 38351044 PMCID: PMC11495668 DOI: 10.1124/dmd.123.001582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/08/2024] [Indexed: 10/18/2024] Open
Abstract
ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy. SIGNIFICANCE STATEMENT: This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity.
Collapse
Affiliation(s)
- Qian Qi
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (Q.Q., R.G., J.Z., X.M.) and Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| | - Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (Q.Q., R.G., J.Z., X.M.) and Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (Q.Q., R.G., J.Z., X.M.) and Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| | - Karl E Anderson
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (Q.Q., R.G., J.Z., X.M.) and Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (Q.Q., R.G., J.Z., X.M.) and Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas (K.E.A.)
| |
Collapse
|
2
|
Chobisa D, Muniyandi A, Sishtla K, Corson TW, Yeo Y. Long-Acting Microparticle Formulation of Griseofulvin for Ocular Neovascularization Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306479. [PMID: 37940612 PMCID: PMC10939919 DOI: 10.1002/smll.202306479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss in older adults. nAMD is treated with biologics targeting vascular endothelial growth factor; however, many patients do not respond to the current therapy. Here, a small molecule drug, griseofulvin (GRF), is used due to its inhibitory effect on ferrochelatase, an enzyme important for choroidal neovascularization (CNV). For local and sustained delivery to the eyes, GRF is encapsulated in microparticles based on poly(lactide-co-glycolide) (PLGA), a biodegradable polymer with a track record in long-acting formulations. The GRF-loaded PLGA microparticles (GRF MPs) are designed for intravitreal application, considering constraints in size, drug loading content, and drug release kinetics. Magnesium hydroxide is co-encapsulated to enable sustained GRF release over >30 days in phosphate-buffered saline with Tween 80. Incubated in cell culture medium over 30 days, the GRF MPs and the released drug show antiangiogenic effects in retinal endothelial cells. A single intravitreal injection of MPs containing 0.18 µg GRF releases the drug over 6 weeks in vivo to inhibit the progression of laser-induced CNV in mice with no abnormality in the fundus and retina. Intravitreally administered GRF MPs prove effective in preventing CNV, providing proof-of-concept toward a novel, cost-effective nAMD therapy.
Collapse
Affiliation(s)
- Dhawal Chobisa
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Integrated Product Development Organization, Innovation Plaza Dr. Reddy's Laboratories, Hyderabad, 500050, India
| | - Anbukkarasi Muniyandi
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Timothy W Corson
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Huang Y, Tan M, Wang N, Zhang Y, Yao H, Xiao X, Huang N, Zou K. Highly Regio- and Diastereoselective Phosphine-Catalyzed [2 + 4] Annulation of Benzofuran-Derived Azadienes with Allyl Carbonates: Access to Spiro[benzofuran-cyclohexanes]. J Org Chem 2023; 88:13030-13041. [PMID: 37648964 DOI: 10.1021/acs.joc.3c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A novel highly regio- and diastereoselective phosphine-catalyzed [2 + 4] annulation of benzofuran-derived azadienes (BDAs) with acidic hydrogen-tethered allyl carbonates has been developed ingeniously. A range of functionalized spiro[benzofuran-cyclohexane] derivatives with two consecutive stereocenters were smoothly obtained in moderate to excellent yields under mild reaction conditions from readily available materials. Moreover, this method is a practical and scalable strategy that creates the core structural motif of the fungistatic drug, griseofulvin.
Collapse
Affiliation(s)
- Yifei Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Mengting Tan
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yufei Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
4
|
Hussain Z, Qi Q, Zhu J, Anderson KE, Ma X. Protoporphyrin IX-induced phototoxicity: Mechanisms and therapeutics. Pharmacol Ther 2023; 248:108487. [PMID: 37392940 PMCID: PMC10529234 DOI: 10.1016/j.pharmthera.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Protoporphyrin IX (PPIX) is an intermediate in the heme biosynthesis pathway. Abnormal accumulation of PPIX due to certain pathological conditions such as erythropoietic protoporphyria and X-linked protoporphyria causes painful phototoxic reactions of the skin, which can significantly impact daily life. Endothelial cells in the skin have been proposed as the primary target for PPIX-induced phototoxicity through light-triggered generation of reactive oxygen species. Current approaches for the management of PPIX-induced phototoxicity include opaque clothing, sunscreens, phototherapy, blood therapy, antioxidants, bone marrow transplantation, and drugs that increase skin pigmentation. In this review, we discuss the present understanding of PPIX-induced phototoxicity including PPIX production and disposition, conditions that lead to PPIX accumulation, symptoms and individual differences, mechanisms, and therapeutics.
Collapse
Affiliation(s)
- Zahir Hussain
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qian Qi
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Karl E Anderson
- Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
5
|
Quintás G, Castell JV, Moreno-Torres M. The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics. Front Pharmacol 2023; 14:1155271. [PMID: 37214440 PMCID: PMC10196061 DOI: 10.3389/fphar.2023.1155271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess, the potential hepatotoxicity of new compounds. However, the applicability of the metabolomic analysis to assess the hepatotoxicity of drugs is complex and requires careful and systematic work, precise controls, wise data preprocessing and appropriate biological interpretation to make meaningful interpretations and/or predictions of drug hepatotoxicity. This review provides an updated look at recent in vitro studies which used principally mass spectrometry-based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the principal drawbacks that still limit its general applicability in safety assessment screenings. We discuss the analytical workflow, essential factors that need to be considered and suggestions to overcome these drawbacks, as well as recent advancements made in this rapidly growing field of research.
Collapse
Affiliation(s)
- Guillermo Quintás
- Metabolomics and Bioanalysis, Health and Biomedicine, Leitat Technological Center, Barcelona, Spain
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - José V. Castell
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Moreno-Torres
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Xu L, Qi Q, Zhu J, Ma X. N-Methyl Protoporphyrin IX: An Understudied Porphyrin. Chem Res Toxicol 2022; 35:2186-2193. [PMID: 36459538 PMCID: PMC10039788 DOI: 10.1021/acs.chemrestox.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
N-Methyl protoporphyrin IX (NmePPIX) is a derivative of protoporphyrin IX (PPIX) and the lattice of heme. Certain xenobiotics strongly induce NmePPIX production in the liver. The existence of endogenous NmePPIX in untreated animal liver has also been reported. The detailed mechanisms of NmePPIX biosynthesis remain unclear, but cytochrome P450 enzymes are thought to be critical in xenobiotic-induced NmePPIX production. High levels of NmePPIX cause PPIX accumulation because NmePPIX is a potent inhibitor (Ki = 7 nM) of ferrochelatase, the last enzyme in the heme biosynthesis pathway that converts PPIX to heme. NmePPIX is also involved in several other physiological processes, including inhibition of nitric oxide production and promotion of lamin aggregation. Compared to the two well-characterized porphyrins, PPIX and heme, NmePPIX is understudied regarding the mechanism of formation, fate, and physiological functions. This Review summarizes the current understanding of NmePPIX and provides perspectives on areas of future research on NmePPIX.
Collapse
Affiliation(s)
| | | | | | - Xiaochao Ma
- Corresponding Author: Xiaochao Ma, Ph.D., Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261. Tel. (412) 648-9448;
| |
Collapse
|
7
|
Ma L, Guo S, Piao J, Piao M. Preparation and Evaluation of a Microsponge Dermal Stratum Corneum Retention Drug Delivery System for Griseofulvin. AAPS PharmSciTech 2022; 23:199. [PMID: 35854184 DOI: 10.1208/s12249-022-02362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Griseofulvin (GF) is used as an antifungal to treat superficial skin fungal infections such as tinea capitis and tinea pedis. Currently, GF is only available in traditional oral dosage forms and suffers from poor and highly variable bioavailability, hepatotoxicity, and long duration of treatment. Therefore, the main objective of this study was to reduce the side effects of the drug and to increase the concentration of the drug retained in the cutaneous stratum corneum (SC) and improve its efficacy through the preparation of drug-laden GF microsponge (GFMS). The emulsification-solvent-diffusion method was used to prepare GFMS, and the prescriptions were screened by a single-factor approach. The optimized formulation (GFF8) had a microsponge particle size (μm) of 28.36 ± 0.26, an encapsulation efficiency (%) of 87.53 ± 1.07, a yield (%) of 86.58 ± 0.42, and drug release (%) from 77.57 ± 3.88. The optimized microsponge formulation was then loaded into a Carbopol 934 gel matrix and skin retention differences between the microsponge gel formulation and normal gels were examined by performing skin retention and fluorescence microscopy tests. Finally, the hepatoprotective and cutaneous stratum corneum retention abilities of microsponge gel formulations compared to oral GF formulations were assessed by hepatotoxicity, pharmacokinetics, and tissue distribution studies. This provides a new perspective on GF dermal stratum corneum retention administration.
Collapse
Affiliation(s)
- Lin Ma
- School of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Song Guo
- School of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jingshu Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Mingguan Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
8
|
Chandana M, Anand A, Ghosh S, Das R, Beura S, Jena S, Suryawanshi AR, Padmanaban G, Nagaraj VA. Malaria parasite heme biosynthesis promotes and griseofulvin protects against cerebral malaria in mice. Nat Commun 2022; 13:4028. [PMID: 35821013 PMCID: PMC9276668 DOI: 10.1038/s41467-022-31431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Heme-biosynthetic pathway of malaria parasite is dispensable for asexual stages, but essential for mosquito and liver stages. Despite having backup mechanisms to acquire hemoglobin-heme, pathway intermediates and/or enzymes from the host, asexual parasites express heme pathway enzymes and synthesize heme. Here we show heme synthesized in asexual stages promotes cerebral pathogenesis by enhancing hemozoin formation. Hemozoin is a parasite molecule associated with inflammation, aberrant host-immune responses, disease severity and cerebral pathogenesis. The heme pathway knockout parasites synthesize less hemozoin, and mice infected with knockout parasites are protected from cerebral malaria and death due to anemia is delayed. Biosynthetic heme regulates food vacuole integrity and the food vacuoles from knockout parasites are compromised in pH, lipid unsaturation and proteins, essential for hemozoin formation. Targeting parasite heme synthesis by griseofulvin-a FDA-approved antifungal drug, prevents cerebral malaria in mice and provides an adjunct therapeutic option for cerebral and severe malaria.
Collapse
Affiliation(s)
- Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Subhashree Beura
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Sarita Jena
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | | | - Govindarajan Padmanaban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
9
|
Sishtla K, Lambert-Cheatham N, Lee B, Han DH, Park J, Sardar Pasha SPB, Lee S, Kwon S, Muniyandi A, Park B, Odell N, Waller S, Park IY, Lee SJ, Seo SY, Corson TW. Small-molecule inhibitors of ferrochelatase are antiangiogenic agents. Cell Chem Biol 2022; 29:1010-1023.e14. [PMID: 35090600 PMCID: PMC9233146 DOI: 10.1016/j.chembiol.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Activity of the heme synthesis enzyme ferrochelatase (FECH) is implicated in multiple diseases. In particular, it is a mediator of neovascularization in the eye and thus an appealing therapeutic target for preventing blindness. However, no drug-like direct FECH inhibitors are known. Here, we set out to identify small-molecule inhibitors of FECH as potential therapeutic leads using a high-throughput screening approach to identify potent inhibitors of FECH activity. A structure-activity relationship study of a class of triazolopyrimidinone hits yielded drug-like FECH inhibitors. These compounds inhibit FECH in cells, bind the active site in cocrystal structures, and are antiangiogenic in multiple in vitro assays. One of these promising compounds was antiangiogenic in vivo in a mouse model of choroidal neovascularization. This foundational work may be the basis for new therapeutic agents to combat not only ocular neovascularization but also other diseases characterized by FECH activity.
Collapse
Affiliation(s)
- Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nathan Lambert-Cheatham
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bit Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Duk Hee Han
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Sheik Pran Babu Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanha Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Anbukkarasi Muniyandi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Noa Odell
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spelman College, Atlanta, GA 30314, USA
| | - Sydney Waller
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea.
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon 21936, South Korea.
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Xie Y, Sun R, Gao L, Guan J, Wang J, Bell A, Zhu J, Zhang M, Xu M, Lu P, Cai X, Ren S, Xu P, Monga SP, Ma X, Yang D, Liu Y, Lu B, Xie W. Chronic Activation of LXRα Sensitizes Mice to Hepatocellular Carcinoma. Hepatol Commun 2022; 6:1123-1139. [PMID: 34981658 PMCID: PMC9035576 DOI: 10.1002/hep4.1880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 01/26/2023] Open
Abstract
The oxysterol receptor liver X receptor (LXR) is a nuclear receptor best known for its function in the regulation of lipid and cholesterol metabolism. LXRs, both the α and β isoforms, have been suggested as potential therapeutic targets for several cancer types. However, there was a lack of report on whether and how LXRα plays a role in the development of hepatocellular carcinoma (HCC). In the current study, we found that systemic activation of LXRα in the VP-LXRα knock-in (LXRαKI) mice or hepatocyte-specific activation of LXRα in the VP-LXRα transgenic mice sensitized mice to liver tumorigenesis induced by the combined treatment of diethylnitrosamine (DEN) and 3,3',5,5'-tetrachloro-1,4-bis (pyridyloxy) benzene (TCPOBOP). Mechanistically, the LXRα-responsive up-regulation of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway and the complement system, and down-regulation of bile acid metabolism, may have contributed to increased tumorigenesis. Accumulations of secondary bile acids and oxysterols were found in both the serum and liver tissue of LXRα activated mice. We also observed an induction of monocytic myeloid-derived suppressor cells accompanied by down-regulation of dendritic cells and cytotoxic T cells in DEN/TCPOBOP-induced liver tumors, indicating that chronic activation of LXRα may have led to the activation of innate immune suppression. The HCC sensitizing effect of LXRα activation was also observed in the c-MYC driven HCC model. Conclusion: Our results indicated that chronic activation of LXRα promotes HCC, at least in part, by promoting innate immune suppressor as a result of accumulation of oxysterols, as well as up-regulation of the IL-6/Janus kinase/STAT3 signaling and complement pathways.
Collapse
Affiliation(s)
- Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Runzi Sun
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Li Gao
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of GastroenterologyPeking University People’s HospitalBeijingChina
| | - Jibin Guan
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Aaron Bell
- Division of Experimental PathologyDepartment of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Peipei Lu
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Satdarshan P. Monga
- Division of Experimental PathologyDepartment of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of Pittsburgh Medical Center and University of Pittsburgh School of MedicinePittsburghPAUSA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Yulan Liu
- Department of GastroenterologyPeking University People’s HospitalBeijingChina
| | - Binfeng Lu
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
11
|
Jiang L, Hong Y, Xie G, Zhang J, Zhang H, Cai Z. Comprehensive multi-omics approaches reveal the hepatotoxic mechanism of perfluorohexanoic acid (PFHxA) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148160. [PMID: 34380288 DOI: 10.1016/j.scitotenv.2021.148160] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Perfluorohexanoic acid (PFHxA), one of the short-chain perfluoroalkyl acids (PFAAs), is considered as a substitute of perfluorooctane sulfonate (PFOS). This emerging organic pollutant is persistent and highly bioavailable to humans, raising concerns about its potential health risks. There are currently few researches on the toxicity of PFHxA. Liver has been suggested to be the main target of PFHxA toxicity, and the mechanism remains unclear. Herein, we investigated the transcriptomic, proteomic, and metabolomic landscape in PFHxA-exposed mice. Using these approaches, we identified several valuable biological processes involved in the process of liver injury, comprising fatty acid biosynthesis and degradation pathways, which might be induced by peroxisome proliferator-activated receptor (PPAR) signaling pathway. These processes further promoted oxidative stress and induced liver injury. Meanwhile, abnormalities in purine metabolism and glutathione metabolism were observed during the liver injury induced by PFHxA, indicating the production of oxidative stress. Finally, our present multi-omics studies provided new insights into the mechanisms involved in PFHxA-induced liver injury.
Collapse
Affiliation(s)
- Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| | - Guangshan Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jinghui Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Kunz BC, Center SA, Randolph JF, Walker JD, Choi AE, Anderson KE. Congenital erythropoietic protoporphyria and protoporphyric hepatopathy in a dog. J Am Vet Med Assoc 2021; 257:1148-1156. [PMID: 33226294 DOI: 10.2460/javma.2020.257.11.1148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION A 6-month-old sexually intact male Clumber Spaniel was evaluated because of small stature, recurrent dermatitis of the head, and progressive pigmentary hepatopathy. CLINICAL FINDINGS Clinicopathologic findings included nonanemic hypochromic microcytosis, hypocholesterolemia, persistently high serum liver enzyme activities, and anicteric hyperbilirubinemia. Histologic examination of liver biopsy specimens collected when the dog was 6 months and 2 years of age revealed expansion and bridging of portal tracts, occasional centrilobular parenchymal collapse, scattered lymphoplasmacytic infiltrates, and dark red to brown pigment within large aggregates of macrophages, engorged bile canaliculi, and hepatocytes. The pigment failed to stain for the presence of iron, copper, bile, and glycoprotein and, when examined with polarized microscopy, emitted a yellow to green birefringence with occasional Maltese cross configurations. Further analyses confirmed marked porphyrin accumulation in blood, urine, feces, and liver tissue; protoporphyrin accumulation in RBCs and liver tissue; and a signature porphyrin profile and fluorescence peak consistent with erythropoietic protoporphyria. Advanced protoporphyric hepatopathy was diagnosed. The chronic dermatopathy was presumed to reflect protoporphyric photosensitivity. TREATMENT AND OUTCOME Management was focused on avoiding conditions known to induce heme synthesis and catabolism, administrating ursodeoxycholic acid and antioxidants S-adenosylmethionine and vitamin E, and avoiding sunlight exposure. At follow-up at 4 years of age, the dog was stable without evidence of jaundice but with probable persistent erythropoietic protoporphyria-related solar dermatopathy. CLINICAL RELEVANCE Clinical and histologic features of congenital erythropoietic protoporphyria and resultant protoporphyric hepatopathy, the diagnosis, and the successful management of a dog with these conditions over 4 years were described. Veterinarians should consider porphyric syndromes when unusual pigmentary hepatopathies are encountered.
Collapse
|
13
|
Pran Babu SPS, White D, Corson TW. Ferrochelatase regulates retinal neovascularization. FASEB J 2020; 34:12419-12435. [PMID: 32716567 PMCID: PMC7726024 DOI: 10.1096/fj.202000964r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023]
Abstract
Ferrochelatase (FECH) is the terminal enzyme in heme biosynthesis. We previously showed that FECH is required for endothelial cell growth in vitro and choroidal neovascularization in vivo. But FECH has not been explored in retinal neovascularization, which underlies diseases like proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the inhibition of FECH using genetic and chemical approaches in the oxygen-induced retinopathy (OIR) mouse model. In OIR mice, FECH expression is upregulated and co-localized with neovascular tufts. Partial loss-of-function Fechm1Pas mutant mice showed reduced retinal neovascularization and endothelial cell proliferation in OIR. An intravitreal injection of the FECH inhibitor N-methyl protoporphyrin had similar effects. Griseofulvin is an antifungal drug that inhibits FECH as an off-target effect. Strikingly, intravitreal griseofulvin decreased both pathological tuft formation and areas of vasoobliteration compared to vehicle, suggesting potential as a FECH-targeting therapy. Ocular toxicity studies revealed that intravitreal injection of griseofulvin in adult mice does not disrupt retinal vasculature, function, or morphology. In sum, mutation and chemical inhibition of Fech reduces retinal neovascularization and promotes physiological angiogenesis, suggesting a dual effect on vascular repair upon FECH inhibition, without ocular toxicity. These findings suggest that FECH inhibitors could be repurposed to treat retinal neovascularization.
Collapse
Affiliation(s)
- Sardar Pasha Sheik Pran Babu
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Darcy White
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Shetty T, Corson TW. Mitochondrial Heme Synthesis Enzymes as Therapeutic Targets in Vascular Diseases. Front Pharmacol 2020; 11:1015. [PMID: 32760270 PMCID: PMC7373750 DOI: 10.3389/fphar.2020.01015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/23/2020] [Indexed: 01/16/2023] Open
Affiliation(s)
- Trupti Shetty
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Bashir K, Guo P, Chen G, Li Y, Ge Y, Shu H, Fu Q. Synthesis, characterization, and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Development of Surface Molecularly Imprinted Polymers as Dispersive Solid Phase Extraction Coupled with HPLC Method for the Removal and Detection of Griseofulvin in Surface Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010134. [PMID: 31878121 PMCID: PMC6981569 DOI: 10.3390/ijerph17010134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022]
Abstract
Griseofulvin (GSF) is clinically employed to treat fungal infections in humans and animals. GSF was detected in surface waters as a pharmaceutical pollutant. GSF detection as an anthropogenic pollutant is considered as a possible source of drug resistance and risk factor in ecosystem. To address this concern, a new extraction and enrichment method was developed. GSF-surface molecularly imprinted polymers (GSF-SMIPs) were prepared and applied as solid phase extraction (SPE) sorbent. A dispersive solid phase extraction (DSPE) method was designed and combined with HPLC for the analysis of GSF in surface water samples. The performance of GSF-SMIPs was assessed for its potential to remove GSF from water samples. The factors affecting the removal efficiency such as sample pH and ionic strength were investigated and optimized. The DSPE conditions such as the amount of GSF-SMIPs, the extraction time, the type and volume of desorption solvents were also optimized. The established method is linear over the range of 0.1–100 µg/mL. The limits of detection and quantification were 0.01 and 0.03 µg/mL respectively. Good recoveries (91.6–98.8%) were achieved after DSPE. The intra-day and inter-day relative standard deviations were 0.8 and 4.3% respectively. The SMIPs demonstrated good removal efficiency (91.6%) as compared to powder activated carbon (67.7%). Moreover, the SMIPs can be reused 10 times for water samples. This is an additional advantage over single-use activated carbon and other commercial sorbents. This study provides a specific and sensitive method for the selective extraction and detection of GSF in surface water samples.
Collapse
|
17
|
Wang YK, Yang XN, Liang WQ, Xiao Y, Zhao Q, Xiao XR, Gonzalez FJ, Li F. A metabolomic perspective of pazopanib-induced acute hepatotoxicity in mice. Xenobiotica 2019; 49:655-670. [PMID: 29897827 PMCID: PMC6628935 DOI: 10.1080/00498254.2018.1489167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
To elucidate the metabolism of pazopanib, a metabolomics approach was performed based on ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry. A total of 22 pazopanib metabolites were identified in vitro and in vivo. Among these metabolites, 17 were novel, including several cysteine adducts and aldehyde derivatives. By screening using recombinant CYPs, CYP3A4 and CYP1A2 were found to be the main forms involved in the pazopanib hydroxylation. Formation of a cysteine conjugate (M3), an aldehyde derivative (M15) and two N-oxide metabolites (M18 and M20) from pazopanib could induce the oxidative stress that may be responsible in part for pazopanib-induced hepatotoxicity. Morphological observation of the liver suggested that pazopanib (300 mg/kg) could cause liver injury. The aspartate transaminase and alanine aminotransferase in serum significantly increased after pazopanib (150, 300 mg/kg) treatment; this liver injury could be partially reversed by the broad-spectrum CYP inhibitor 1-aminobenzotriazole (ABT). Metabolomics analysis revealed that pazopanib could significantly change the levels of L-carnitine, proline and lysophosphatidylcholine 18:1 in liver. Additionally, drug metabolism-related gene expression analysis revealed that hepatic Cyp2d22 and Abcb1a (P-gp) mRNAs were significantly lowered by pazopanib treatment. In conclusion, this study provides a global view of pazopanib metabolism and clues to its influence on hepatic function.
Collapse
Affiliation(s)
- Yi-Kun Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Nan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei-Qing Liang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yao Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
18
|
Yang R, Zhao Q, Hu DD, Xiao XR, Huang JF, Li F. Metabolomic analysis of cholestatic liver damage in mice. Food Chem Toxicol 2018; 120:253-260. [DOI: 10.1016/j.fct.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
|
19
|
Yang R, Zhao Q, Hu DD, Xiao XR, Li F. Optimization of extraction and analytical protocol for mass spectrometry-based metabolomics analysis of hepatotoxicity. Biomed Chromatogr 2018; 32:e4359. [PMID: 30091800 DOI: 10.1002/bmc.4359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
- University of Chinese Academy of Sciences; Beijing China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
- University of Chinese Academy of Sciences; Beijing China
| | - Dan-Dan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products; Kunming Medical University; Kunming China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
| |
Collapse
|
20
|
Basavarajappa HD, Sulaiman RS, Qi X, Shetty T, Sheik Pran Babu S, Sishtla KL, Lee B, Quigley J, Alkhairy S, Briggs CM, Gupta K, Tang B, Shadmand M, Grant MB, Boulton ME, Seo SY, Corson TW. Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol Med 2018; 9:786-801. [PMID: 28377496 PMCID: PMC5452042 DOI: 10.15252/emmm.201606561] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ocular neovascularization underlies major blinding eye diseases such as “wet” age‐related macular degeneration (AMD). Despite the successes of treatments targeting the vascular endothelial growth factor (VEGF) pathway, resistant and refractory patient populations necessitate discovery of new therapeutic targets. Using a forward chemical genetic approach, we identified the heme synthesis enzyme ferrochelatase (FECH) as necessary for angiogenesis in vitro and in vivo. FECH is overexpressed in wet AMD eyes and murine choroidal neovascularization; siRNA knockdown of Fech or partial loss of enzymatic function in the Fechm1Pas mouse model reduces choroidal neovascularization. FECH depletion modulates endothelial nitric oxide synthase function and VEGF receptor 2 levels. FECH is inhibited by the oral antifungal drug griseofulvin, and this compound ameliorates choroidal neovascularization in mice when delivered intravitreally or orally. Thus, FECH inhibition could be used therapeutically to block ocular neovascularization.
Collapse
Affiliation(s)
- Halesha D Basavarajappa
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rania S Sulaiman
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Xiaoping Qi
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Trupti Shetty
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sardar Sheik Pran Babu
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kamakshi L Sishtla
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bit Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Judith Quigley
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sameerah Alkhairy
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christian M Briggs
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kamna Gupta
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Buyun Tang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mehdi Shadmand
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael E Boulton
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Kim JH, Jo JH, Seo KA, Hwang H, Lee HS, Lee S. Non-targeted metabolomics-guided sildenafil metabolism study in human liver microsomes. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:86-93. [PMID: 29136555 DOI: 10.1016/j.jchromb.2017.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Metabolomics combined with high-resolution mass spectrometry (HR-MS) and multivariate data analysis has broad applications in the study of xenobiotic metabolism. Although information about xenobiotic metabolism is essential to understand toxic mechanisms, pharmacokinetic parameters and excretion pathways, it is limited to predict all generated metabolites in biological fluids. Here, we revisited sildenafil metabolism in human liver microsomes using a metabolomics approach to achieve a global picture of sildenafil phase 1 metabolism. Finally, 12 phase 1 metabolites were identified in human liver microsomes; M1-M5 were previously known metabolites. The chemical structures of the novel metabolites were elucidated by MS2 fragmentation using an HR-MS system as follows: M6, reduced sildenafil; M7, N,N-deethylation and mono-oxidation; M8, demethanamine, N,N-deethylation and mono-hydroxylation; M9, demethanamine and N,N-deethylation; M10 and M11, mono-oxidation in the piperazine ring after N-demethylation; and M12, mono-oxidation. All metabolites, except M1, were formed by CYP3A4 and CYP3A5. In conclusion, we successfully updated the metabolic pathway of sildenafil in human liver, including 7 novel metabolites using metabolomics combined with HR-MS and multivariate data analysis.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jun Hyun Jo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Ah Seo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
22
|
Smith CM, Jerkovic A, Truong TT, Foote SJ, McCarthy JS, McMorran BJ. Griseofulvin impairs intraerythrocytic growth of Plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study. Sci Rep 2017; 7:41975. [PMID: 28176804 PMCID: PMC5296727 DOI: 10.1038/srep41975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/28/2016] [Indexed: 01/23/2023] Open
Abstract
Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 μM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase.
Collapse
Affiliation(s)
- Clare M Smith
- School of Medicine and The Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Ante Jerkovic
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Thy Thuc Truong
- Joint Mass Spectrometry Facility, Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Simon J Foote
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Brendan J McMorran
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
23
|
Abstract
Although safety of drug candidates is carefully monitored in preclinical and clinical studies using a variety of approaches, drug toxicity may still occur in clinical practice. Therefore, novel approaches are needed to complement the current drug safety evaluation system. Metabolomics comprehensively analyzes the metabolites altered by drug exposure, which can therefore be used to profile drug metabolism, endobiotic metabolism, and drug-microbiota interactions. The information from metabolomic analysis can be used to determine the off-targets of a drug candidate, and thus provide a mechanistic understanding of drug toxicity. We herein discuss the opportunities of metabolomics in drug safety evaluation.
Collapse
|
24
|
Sachar M, Li F, Liu K, Wang P, Lu J, Ma X. Chronic Treatment with Isoniazid Causes Protoporphyrin IX Accumulation in Mouse Liver. Chem Res Toxicol 2016; 29:1293-7. [PMID: 27438535 DOI: 10.1021/acs.chemrestox.6b00121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoniazid (INH) can cause hepatotoxicity. In addition, INH is contraindicated in patients suffering from porphyrias. Our metabolomic analysis revealed that chronic treatment with INH in mice causes a hepatic accumulation of protoporphyrin IX (PPIX). PPIX is an intermediate in the heme biosynthesis pathway, and it is also known as a hepatotoxin. We further found that INH induces delta-aminolevulinate synthase 1 (ALAS1), the rate-limiting enzyme in heme biosynthesis. We also found that INH downregulates ferrochelatase (FECH), the enzyme that converts PPIX to heme. In summary, this study illustrated that chronic treatment with INH causes PPIX accumulation in mouse liver in part through ALAS1 induction and FECH downregulation. This study also highlights that drugs can disrupt the metabolic pathways of endobiotics and increase the risk of liver damage.
Collapse
Affiliation(s)
- Madhav Sachar
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas 77030, United States
| | - Ke Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Pengcheng Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|