1
|
Langan LM, Baettig CG, Cole AR, Lovin L, Scarlett K, Wronski AR, O'Brien ME, Shmaitelly Y, Brooks BW. Experimental reporting of fish transcriptomic responses in environmental toxicology and ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae077. [PMID: 39965138 DOI: 10.1093/etojnl/vgae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025]
Abstract
Due to its increasing affordability and efforts to understand transcriptional responses of organisms to biotic and abiotic stimuli, transcriptomics has become an important tool with significant impact on toxicological investigations and hazard and risk assessments, especially during development and application of new approach methodologies (NAMs). Data generated using transcriptomic methodologies have directly informed adverse outcome pathway frameworks, chemical and biological read across, and aided in the identification of points of departure. Using data reporting frameworks for transcriptomics data offers improved transparency and reproducibility of research and an opportunity to identify barriers to adoption of these NAMs, especially in environmental toxicology and ecotoxicology with aquatic models. Improved reporting also allows for reexamination of existing data, limiting needs for experiment replication and further reducing animal experimentation. Here, we use a standardized form of data reporting for omics-based studies, the Organisation for Economic Co-operation and Development omics reporting framework, which specifically reports on a list of parameters that should be included in transcriptomics studies used in a regulatory context. We focused specifically on fish studies using RNA- Sequencing (Seq)/microarray technologies within a toxicology context. Inconsistencies in reporting and methodologies among the experimental designs (toxicology vs. molecular characterization) were observed in addition to foundational differences in reporting of sample concentration or preparation or quality assessments, which can affect reproducibility and read across, confidence in results, and contribute substantially to understanding molecular mechanisms of toxicants and toxins. Our findings present an opportunity for improved research reporting. We also provide several recommendations as logical steps to reduce barriers to adoption of transcriptomics within environmental toxicology and ecotoxicology.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Camille G Baettig
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Alexander R Cole
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Lea Lovin
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Kendall Scarlett
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Adam R Wronski
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Megan E O'Brien
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Yesmeena Shmaitelly
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Bryan W Brooks
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Department of Public Health, Baylor University, Waco, TX, United States
| |
Collapse
|
2
|
Ahuis TP, Smyk MK, Laloux C, Aulehner K, Bray J, Waldron AM, Miljanovic N, Seiffert I, Song D, Boulanger B, Jucker M, Potschka H, Platt B, Riedel G, Voehringer P, Nicholson JR, Drinkenburg WHIM, Kas MJH, Leiser SC. Evaluation of variation in preclinical electroencephalographic (EEG) spectral power across multiple laboratories and experiments: An EQIPD study. PLoS One 2024; 19:e0309521. [PMID: 39471212 PMCID: PMC11521305 DOI: 10.1371/journal.pone.0309521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 11/01/2024] Open
Abstract
The European Quality In Preclinical Data (EQIPD) consortium was born from the fact that publications report challenges with the robustness, rigor, and/or validity of research data, which may impact decisions about whether to proceed with further preclinical testing or to advance to clinical testing, as well as draw conclusions on the predictability of preclinical models. To address this, a consortium including multiple research laboratories from academia and industry participated in a series of electroencephalography (EEG) experiments in mice aimed to detect sources of variance and to gauge how protocol harmonisation and data analytics impact such variance. Ultimately, the goal of this first ever between-laboratory comparison of EEG recordings and analyses was to validate the principles that supposedly increase data quality, robustness, and comparability. Experiments consisted of a Localisation phase, which aimed to identify the factors that influence between-laboratory variability, a Harmonisation phase to evaluate whether harmonisation of standardized protocols and centralised processing and data analysis reduced variance, and a Ring-Testing phase to verify the ability of the harmonised protocol to generate consistent findings. Indeed, between-laboratory variability reduced from Localisation to Harmonisation and this reduction remained during the Ring-Testing phase. Results obtained in this multicentre preclinical qEEG study also confirmed the complex nature of EEG experiments starting from the surgery and data collection through data pre-processing to data analysis that ultimately influenced the results and contributed to variance in findings across laboratories. Overall, harmonisation of protocols and centralized data analysis were crucial in reducing laboratory-to-laboratory variability. To this end, it is recommended that standardized guidelines be updated and followed for collection and analysis of preclinical EEG data.
Collapse
Affiliation(s)
- Tim P. Ahuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Magdalena K. Smyk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Jack Bray
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Dekun Song
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Patrizia Voehringer
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R. Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Wilhelmus H. I. M. Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Steven C. Leiser
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| |
Collapse
|
3
|
Nevone A, Lattarulo F, Russo M, Panno G, Milani P, Basset M, Avanzini MA, Merlini G, Palladini G, Nuvolone M. A Strategy for the Selection of RT-qPCR Reference Genes Based on Publicly Available Transcriptomic Datasets. Biomedicines 2023; 11:1079. [PMID: 37189697 PMCID: PMC10135859 DOI: 10.3390/biomedicines11041079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In the next-generation sequencing era, RT-qPCR is still widely employed to quantify levels of nucleic acids of interest due to its popularity, versatility, and limited costs. The measurement of transcriptional levels through RT-qPCR critically depends on reference genes used for normalization. Here, we devised a strategy to select appropriate reference genes for a specific clinical/experimental setting based on publicly available transcriptomic datasets and a pipeline for RT-qPCR assay design and validation. As a proof-of-principle, we applied this strategy to identify and validate reference genes for transcriptional studies of bone-marrow plasma cells from patients with AL amyloidosis. We performed a systematic review of published literature to compile a list of 163 candidate reference genes for RT-qPCR experiments employing human samples. Next, we interrogated the Gene Expression Omnibus to assess expression levels of these genes in published transcriptomic studies on bone-marrow plasma cells from patients with different plasma cell dyscrasias and identified the most stably expressed genes as candidate normalizing genes. Experimental validation on bone-marrow plasma cells showed the superiority of candidate reference genes identified through this strategy over commonly employed "housekeeping" genes. The strategy presented here may apply to other clinical and experimental settings for which publicly available transcriptomic datasets are available.
Collapse
Affiliation(s)
- Alice Nevone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Lattarulo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Russo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giada Panno
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology, Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Ott AW, Sol-Church K, Deshpande GM, Knudtson KL, Meyn SM, Mische SM, Taatjes DJ, Sturges MR, Gregory CW. Rigor, Reproducibility, and Transparency in Shared Research Resources: Follow-Up Survey and Recommendations for Improvements. J Biomol Tech 2022; 33:3fc1f5fe.fa789303. [PMID: 36910580 PMCID: PMC10001929 DOI: 10.7171/3fc1f5fe.fa789303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rigor, reproducibility, and transparency (RR&T) are essential components of all scientific pursuits. Shared research resources, also known as core facilities, are on the frontlines of ensuring robust RR&T practices. The Association of Biomolecular Resource Facilities Committee on Core Rigor and Reproducibility conducted a follow-up survey 4 years after the initial 2017 survey to determine if core facilities have seen a positive impact of new RR&T initiatives (including guidance from the National Institutes of Health, new scientific journal requirements on transparency and data provenance, and educational tools from professional organizations). While there were fewer participants in the most recent survey, the respondents' opinions on the role of core facilities and level of best practices adoption remained the same. Overall, the respondents agreed that procedures should be implemented by core facilities to ensure scientific RR&T. They also indicated that there is a strong correlation between institutions that emphasize RR&T and core customers using this expertise in grant applications and publications. The survey also assessed the impact of the COVID-19 pandemic on core operations and RR&T. The answers to these pandemic-related questions revealed that many of the strategies aimed at increasing efficiencies are also best practices related to RR&T, including the development of standard operating procedures, supply chain management, and cross training. Given the consistent and compelling awareness of the importance of RR&T expressed by core directors in 2017 and 2021 contrasted with the lack of apparent improvements over this time period, the authors recommend an adoption of RR&T statements by all core laboratories. Adhering to the RR&T guidelines will result in more efficient training, better compliance, and improved experimental approaches empowering cores to become "rigor champions."
Collapse
Affiliation(s)
- Andrew W Ott
- Northwestern University EvanstonIllinois60208 USA
| | | | | | | | - Susan M Meyn
- Vanderbilt University Medical Center NashvilleTennessee37232 USA
| | - Sheenah M Mische
- New York University Langone Medical Center New YorkNew York10016 USA
| | - Douglas J Taatjes
- Larner College of Medicine University of Vermont BurlingtonVermont05405 USA
| | | | | |
Collapse
|
5
|
Santiago-Frangos A, Nemudryi A, Nemudraia A, Wiegand T, Nichols JE, Krishna P, Scherffius AM, Zahl TR, Wilkinson RA, Wiedenheft B. CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods 2022; 205:1-10. [PMID: 35690249 PMCID: PMC9181078 DOI: 10.1016/j.ymeth.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 01/04/2023] Open
Abstract
Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Pushya Krishna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Trevor R Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
6
|
Rubtsova MY, Filippova AA, Fursova NK, Grigorenko VG, Presnova GV, Ulyashova MM, Egorov AM. Quantitative Determination of Beta-Lactamase mRNA in the RNA Transcripts of Antibiotic-Resistant Bacteria Using Colorimetric Biochips. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Application of a High-Throughput Targeted Sequence AmpliSeq Procedure to Assess the Presence and Variants of Virulence Genes in Salmonella. Microorganisms 2022; 10:microorganisms10020369. [PMID: 35208824 PMCID: PMC8879106 DOI: 10.3390/microorganisms10020369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
We have developed a targeted, amplicon-based next-generation sequencing method to detect and analyze 227 virulence genes (VG) of Salmonella (AmpliSeqSalm_227VG) for assessing the pathogenicity potential of Salmonella. The procedure was developed using 80 reference genomes representing 75 epidemiologically-relevant serovars associated with human salmonellosis. We applied the AmpliSeqSalm_227VG assay to (a) 35 previously characterized field strains of Salmonella consisting of serovars commonly incriminated in foodborne illnesses and (b) 34 Salmonella strains with undisclosed serological or virulence attributes, and were able to divide Salmonella VGs into two groups: core VGs and variable VGs. The commonest serovars causing foodborne illnesses such as Enteritidis, Typhimurium, Heidelberg and Newport had a high number of VGs (217–227). In contrast, serovars of subspecies not commonly associated with human illnesses, such as houtenae, arizonae and salame, tended to have fewer VGs (177–195). Variable VGs were not only infrequent but, when present, displayed considerable sequence variation: safC, sseL, sseD, sseE, ssaK and stdB showed the highest variation and were linked to strain pathogenicity. In a chicken infection model, VGs belonging to rfb and sse operons showed differences and were linked with pathogenicity. The high-throughput, targeted NGS-based AmpliSeqSalm_227VG procedure provided previously unknown information about variation in select virulence genes that can now be applied to a much larger population of Salmonella for evaluating pathogenicity of various serovars of Salmonella and for risk assessment of foodborne salmonellosis.
Collapse
|
8
|
Alkhizzi B, Khan MI, Al-Ghafari A, Choudhry H. Upregulation of circular and linear METTL3 and USP3 in colorectal cancer. Oncol Lett 2021; 22:675. [PMID: 34345300 DOI: 10.3892/ol.2021.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Several screening methods are currently used to detect colorectal cancer (CRC). However, these are either under-utilized due to their invasive nature or are limited in terms of their diagnostic ability. Numerous reports have investigated messenger and circular RNA as non-invasive biomarkers, but the majority of gene expression studies using RT-qPCR involve critical errors that often lead to irreproducible findings. In the present study, several of these issues were addressed. To the best of our knowledge, this study reports for the first time the upregulation of both the circular and the linear isoform of USP3 and METTL3 in leukocytes from patients with CRC. The linear transcripts of USP3 and METTL3 exhibited 2.3- and 2-fold increases on average in CRC samples (n=42 CRC) compared with the respective healthy controls (n=32), whereas their circular isoforms showed 1.6- and 1.7-fold increases, respectively. Moreover, a strong positive correlation was observed between the circular and linear isoforms of USP3 in the CRC cohort (P<0.0001), but not in the control group (P>0.05). In addition, the linear USP3 assay had excellent sensitivity (79%), specificity (75%), positive predictive value (81%), negative predictive value (73%) and area under the curve (AUC, 0.8534; P-value <0.0001). The circular (AUC, 0.6946; P-value =0.0043) and linear (AUC, 0.7202; P-value =0.0012) METTL3 assays also showed potential; however, this was not the case for the circular USP3 assay (P-value >0.05). Taken together, this stringent RT-qPCR approach provides evidence for the viability of using circular and linear RNA molecules as disease biomarkers and may help shed light on the regulatory pathways of CRC.
Collapse
Affiliation(s)
- Bilal Alkhizzi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Scientific Research Center, Dar Al-Hekma University, Jeddah 22246, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Covey SD. An adaptable dry lab for SYBR based RT-qPCR primer design to reinforce concepts in molecular biology and nucleic acids. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:262-270. [PMID: 32897640 DOI: 10.1002/bmb.21446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The real time PCR (qPCR) method provides a powerful method to assess levels of particular species of DNA. When combined with reverse transcription (RT-qPCR) it is the predominate technique to measure expression of gene transcripts. While this approach is very powerful, particular care must be taken in the design of the primers to facilitate specific and sensitive detection. Herein describes the framework for an undergraduate assignment which aims to teach primer design for SYBR based RT-qPCR. Beyond gaining direct experience with primer design, students will gain familiarity with important bioinformatic resources as well as a deeper theoretical understanding of the RT-qPCR approach and potential limitations. Moreover, as students' progress through the assignment they re-encounter many important concepts in molecular biology, gene expression, and nucleic acids, creating an opportunity for spiral learning. As this exercise only requires access to free web-based resources and does not require a laboratory it can be used in most science education settings. Despite not being a wet lab, this is a highly authentic research experience as this design process is commonplace in a molecular biology laboratory. Furthermore, the assignment is highly adaptable for different learning outcomes, time frames, and student background and ability. This article seeks to highlight connections and expanded learning outcomes for those already teaching such material, as well as a step-by-step guide for those new to teaching such content.
Collapse
Affiliation(s)
- Scott D Covey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Bustin S, Mueller R, Shipley G, Nolan T. COVID-19 and Diagnostic Testing for SARS-CoV-2 by RT-qPCR-Facts and Fallacies. Int J Mol Sci 2021; 22:2459. [PMID: 33671091 PMCID: PMC7957603 DOI: 10.3390/ijms22052459] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Although molecular testing, and RT-qPCR in particular, has been an indispensable component in the scientific armoury targeting SARS-CoV-2, there are numerous falsehoods, misconceptions, assumptions and exaggerated expectations with regards to capability, performance and usefulness of the technology. It is essential that the true strengths and limitations, although publicised for at least twenty years, are restated in the context of the current COVID-19 epidemic. The main objective of this commentary is to address and help stop the unfounded and debilitating speculation surrounding its use.
Collapse
Affiliation(s)
- Stephen Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK;
| | | | | | - Tania Nolan
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
11
|
Corbani TL, Martin JE, Healy SD. The Impact of Acute Loud Noise on the Behavior of Laboratory Birds. Front Vet Sci 2021; 7:607632. [PMID: 33490135 PMCID: PMC7815526 DOI: 10.3389/fvets.2020.607632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023] Open
Abstract
Husbandry procedures and facility settings, such as low-frequency fire alarms, can produce noises in a laboratory environment that cause stress to animals used in research. However, most of the data demonstrating harmful effects that have, consequently, led to adaptations to management, have largely come from laboratory rodents with little known of the impacts on avian behavior and physiology. Here we examined whether exposure to a routine laboratory noise, a low-frequency fire alarm test, induced behavioral changes in laboratory zebra finches (Taeniopygia guttata). Twenty-four breeding pairs of zebra finches were randomly selected and exposed to the low-frequency fire alarm (sounding for 10-20 s) or no noise (control) on separate test days. All birds were filmed before and after the alarm sounded and on a control day (without the alarm). The zebra finches decreased their general activity and increased stationary and social behaviors after exposure to the alarm. Brief exposure to a low-frequency alarm disrupted the birds' behavior for at least 15 min. The induction of this behavioral stress response suggests that low-frequency sound alarms in laboratory facilities have the potential to compromise the welfare of laboratory birds.
Collapse
Affiliation(s)
- Tayanne L. Corbani
- The Royal (Dick) School of Veterinary Studies, The College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jessica E. Martin
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, The College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Susan D. Healy
- School of Biology, Harold Mitchell Building, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
12
|
Alfirevic Z. Retracted papers are only the tip of the iceberg of untrustworthy evidence. Am J Obstet Gynecol MFM 2020; 2:100223. [PMID: 33345931 DOI: 10.1016/j.ajogmf.2020.100223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Zarko Alfirevic
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
13
|
Prospects and challenges of multi-omics data integration in toxicology. Arch Toxicol 2020; 94:371-388. [PMID: 32034435 DOI: 10.1007/s00204-020-02656-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Exposure of cells or organisms to chemicals can trigger a series of effects at the regulatory pathway level, which involve changes of levels, interactions, and feedback loops of biomolecules of different types. A single-omics technique, e.g., transcriptomics, will detect biomolecules of one type and thus can only capture changes in a small subset of the biological cascade. Therefore, although applying single-omics analyses can lead to the identification of biomarkers for certain exposures, they cannot provide a systemic understanding of toxicity pathways or adverse outcome pathways. Integration of multiple omics data sets promises a substantial improvement in detecting this pathway response to a toxicant, by an increase of information as such and especially by a systemic understanding. Here, we report the findings of a thorough evaluation of the prospects and challenges of multi-omics data integration in toxicological research. We review the availability of such data, discuss options for experimental design, evaluate methods for integration and analysis of multi-omics data, discuss best practices, and identify knowledge gaps. Re-analyzing published data, we demonstrate that multi-omics data integration can considerably improve the confidence in detecting a pathway response. Finally, we argue that more data need to be generated from studies with a multi-omics-focused design, to define which omics layers contribute most to the identification of a pathway response to a toxicant.
Collapse
|
14
|
Adhikari BM, Jahanshad N, Shukla D, Turner J, Grotegerd D, Dannlowski U, Kugel H, Engelen J, Dietsche B, Krug A, Kircher T, Fieremans E, Veraart J, Novikov DS, Boedhoe PSW, van der Werf YD, van den Heuvel OA, Ipser J, Uhlmann A, Stein DJ, Dickie E, Voineskos AN, Malhotra AK, Pizzagalli F, Calhoun VD, Waller L, Veer IM, Walter H, Buchanan RW, Glahn DC, Hong LE, Thompson PM, Kochunov P. A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: an ENIGMA rs-fMRI protocol. Brain Imaging Behav 2020; 13:1453-1467. [PMID: 30191514 DOI: 10.1007/s11682-018-9941-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Large-scale consortium efforts such as Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) and other collaborative efforts show that combining statistical data from multiple independent studies can boost statistical power and achieve more accurate estimates of effect sizes, contributing to more reliable and reproducible research. A meta- analysis would pool effects from studies conducted in a similar manner, yet to date, no such harmonized protocol exists for resting state fMRI (rsfMRI) data. Here, we propose an initial pipeline for multi-site rsfMRI analysis to allow research groups around the world to analyze scans in a harmonized way, and to perform coordinated statistical tests. The challenge lies in the fact that resting state fMRI measurements collected by researchers over the last decade vary widely, with variable quality and differing spatial or temporal signal-to-noise ratio (tSNR). An effective harmonization must provide optimal measures for all quality data. Here we used rsfMRI data from twenty-two independent studies with approximately fifty corresponding T1-weighted and rsfMRI datasets each, to (A) review and aggregate the state of existing rsfMRI data, (B) demonstrate utility of principal component analysis (PCA)-based denoising and (C) develop a deformable ENIGMA EPI template based on the representative anatomy that incorporates spatial distortion patterns from various protocols and populations.
Collapse
Affiliation(s)
- Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Neda Jahanshad
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Dinesh Shukla
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Jennifer Engelen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Premika S W Boedhoe
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Ysbrand D van der Werf
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Jonathan Ipser
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Erin Dickie
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Anil K Malhotra
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, New York, NY, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Vince D Calhoun
- The Mind Research Network & The University of New Mexico, Albuquerque, NM, USA
| | - Lea Waller
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Ilja M Veer
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Hernik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
A bioinformatics workflow for the evaluation of RT-qPCR primer specificity: Application for the assessment of gene expression data reliability in toxicological studies. Regul Toxicol Pharmacol 2020; 111:104575. [PMID: 31945455 DOI: 10.1016/j.yrtph.2020.104575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
The reliability of Reverse Transcription quantitative real-time PCR (RT-qPCR) gene expression data depends on proper primer design and RNA quality controls. Despite freely available genomic databases and bioinformatics tools, primer design deficiencies can be found across life science publications. In order to assess the prevalence of such deficiencies in the toxicological literature, 504 primer sets extracted from a random selection of 70 recent rat toxicological studies were evaluated. The specificity of each primer set was systematically analysed using a bioinformatics workflow developed from publicly available resources (NCBI Primer BLAST, in silico PCR in UCSC genome browser, Ensembl DNA database). Potential mismatches (9%), cross-matches (13.5%), co-amplification of multiple gene splice variants (9%) and sub-optimal amplicon sizes (25%) were identified for a significant proportion of the primer sets assessed in silico. Quality controls for gDNA contamination of RNA samples were infrequently reported in the surveyed manuscripts. Hence, the impacts of gDNA contamination on RT-qPCR data were further investigated, revealing that lowly expressed genes presented higher susceptibility to contaminating gDNA. In addition to the retrospective identification of potential primer design issues presented in this study, the described bioinformatics workflow can also be used prospectively to select candidate primer sets for experimental validation.
Collapse
|
16
|
Abstract
BACKGROUND A lack of reproducibility has been repeatedly criticized in computational research. High throughput sequencing (HTS) data analysis is a complex multi-step process. For most of the steps a range of bioinformatic tools is available and for most tools manifold parameters need to be set. Due to this complexity, HTS data analysis is particularly prone to reproducibility and consistency issues. We have defined four criteria that in our opinion ensure a minimal degree of reproducible research for HTS data analysis. A series of workflow management systems is available for assisting complex multi-step data analyses. However, to the best of our knowledge, none of the currently available work flow management systems satisfies all four criteria for reproducible HTS analysis. RESULTS Here we present uap, a workflow management system dedicated to robust, consistent, and reproducible HTS data analysis. uap is optimized for the application to omics data, but can be easily extended to other complex analyses. It is available under the GNU GPL v3 license at https://github.com/yigbt/uap. CONCLUSIONS uap is a freely available tool that enables researchers to easily adhere to reproducible research principles for HTS data analyses.
Collapse
|
17
|
Enhanced Probe-Based RT-qPCR Quantification of MicroRNAs Using Poly(A) Tailing and 5' Adaptor Ligation. Methods Mol Biol 2019. [PMID: 31578686 DOI: 10.1007/978-1-4939-9833-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Probe-based quantitative PCR (qPCR) is a commonly used tool in the realm of real-time qPCR experiments since it is one of the most sensitive detection methods allowing an accurate and reproducible analysis. It uses real-time fluorescence from a fluorescently labeled probe that specifically targets the desired PCR product to measure DNA amplification at each cycle of the PCR. Coupled to a proper reverse transcription step, probe-based qPCR can be efficiently used for the analysis of the expression of difficult targets such as miRNAs. In this chapter, we describe the TaqMan® advanced miRNA assay in which, owing to a poly(A)-tailing step, the reverse transcription is advantageously performed at once for all the miRNAs in a given sample, and, coupled to the ligation of a 5' universal adapter, allows for a supplementary pre-qPCR amplification step increasing the sensitivity of the assay. Along this protocol, we also provide our general guidelines and advices to perform a reliable and successful quantitative analysis.
Collapse
|
18
|
Knudtson KL, Carnahan RH, Hegstad-Davies RL, Fisher NC, Hicks B, Lopez PA, Meyn SM, Mische SM, Weis-Garcia F, White LD, Sol-Church K. Survey on Scientific Shared Resource Rigor and Reproducibility. J Biomol Tech 2019; 30:36-44. [PMID: 31452645 PMCID: PMC6657953 DOI: 10.7171/jbt.19-3003-001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Shared scientific resources, also known as core facilities, support a significant portion of the research conducted at biomolecular research institutions. The Association of Biomolecular Resource Facilities (ABRF) established the Committee on Core Rigor and Reproducibility (CCoRRe) to further its mission of integrating advanced technologies, education, and communication in the operations of shared scientific resources in support of reproducible research. In order to first assess the needs of the scientific shared resource community, the CCoRRe solicited feedback from ABRF members via a survey. The purpose of the survey was to gain information on how U.S. National Institutes of Health (NIH) initiatives on advancing scientific rigor and reproducibility influenced current services and new technology development. In addition, the survey aimed to identify the challenges and opportunities related to implementation of new reporting requirements and to identify new practices and resources needed to ensure rigorous research. The results revealed a surprising unfamiliarity with the NIH guidelines. Many of the perceived challenges to the effective implementation of best practices (i.e., those designed to ensure rigor and reproducibility) were similarly noted as a challenge to effective provision of support services in a core setting. Further, most cores routinely use best practices and offer services that support rigor and reproducibility. These services include access to well-maintained instrumentation and training on experimental design and data analysis as well as data management. Feedback from this survey will enable the ABRF to build better educational resources and share critical best-practice guidelines. These resources will become important tools to the core community and the researchers they serve to impact rigor and transparency across the range of science and technology.
Collapse
Affiliation(s)
| | | | | | - Nancy C. Fisher
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20877
| | - Peter A. Lopez
- New York University, Langone Medical Center, New York, New York 10016, USA
| | - Susan M. Meyn
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Sheenah M. Mische
- New York University, Langone Medical Center, New York, New York 10016, USA
| | | | - Lisa D. White
- Baylor College Medicine, Houston, Texas 77030, USA; and
| | - Katia Sol-Church
- University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
19
|
García del Valle EP, Lagunes García G, Prieto Santamaría L, Zanin M, Menasalvas Ruiz E, Rodríguez-González A. Disease networks and their contribution to disease understanding: A review of their evolution, techniques and data sources. J Biomed Inform 2019; 94:103206. [DOI: 10.1016/j.jbi.2019.103206] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
|
20
|
On resolving ambiguities in microbial community analysis of partial nitritation anammox reactors. Sci Rep 2019; 9:6954. [PMID: 31061389 PMCID: PMC6502876 DOI: 10.1038/s41598-019-42882-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/11/2019] [Indexed: 11/08/2022] Open
Abstract
PCR-based methods have caused a surge for integration of eco-physiological approaches into research on partial nitritation anammox (PNA). However, a lack of rigorous standards for molecular analyses resulted in widespread data misinterpretation and consequently lack of consensus. Data consistency and accuracy strongly depend on the primer selection and data interpretation. An in-silico evaluation of 16S rRNA gene eubacterial primers used in PNA studies from the last ten years unraveled the difficulty of comparing ecological data from different studies due to a variation in the coverage of these primers. Our 16S amplicon sequencing approach, which includes parallel sequencing of six 16S rRNA hypervariable regions, showed that there is no perfect hypervariable region for PNA microbial communities. Using qPCR analysis, we emphasize the significance of primer choice for quantification and caution with data interpretation. We also provide a framework for PCR based analyses that will improve and assist to objectively interpret and compare such results.
Collapse
|
21
|
Burdukiewicz M, Spiess AN, Blagodatskikh KA, Lehmann W, Schierack P, Rödiger S. Algorithms for automated detection of hook effect-bearing amplification curves. BIOMOLECULAR DETECTION AND QUANTIFICATION 2018; 16:1-4. [PMID: 30560061 PMCID: PMC6287529 DOI: 10.1016/j.bdq.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
Amplification curves from quantitative Real-Time PCR experiments typically exhibit a sigmoidal shape. They can roughly be divided into a ground or baseline phase, an exponential amplification phase, a linear phase and finally a plateau phase, where in the latter, the PCR product concentration no longer increases. Nevertheless, in some cases the plateau phase displays a negative trend, e.g. in hydrolysis probe assays. This cycle-to-cycle fluorescence decrease is commonly referred to in the literature as the hook effect. Other detection chemistries also exhibit this negative trend, however the underlying molecular mechanisms are different. In this study we present two approaches to automatically detect hook effect-like curvatures based on linear (hookreg) and nonlinear regression (hookregNL). As the hook effect is typical for qPCR data, both algorithms can be employed for the automated identification of regular structured qPCR curves. Therefore, our algorithms streamline quality control, but can also be used for assay optimization or machine learning.
Collapse
Affiliation(s)
| | | | | | | | - Peter Schierack
- Institute of Biotechnology, Brandenburg University of Technology Cottbus – Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Brandenburg University of Technology Cottbus – Senftenberg, Senftenberg, Germany
- Corresponding author.
| |
Collapse
|
22
|
Guidi LG, Velayos‐Baeza A, Martinez‐Garay I, Monaco AP, Paracchini S, Bishop DVM, Molnár Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur J Neurosci 2018; 48:3212-3233. [PMID: 30218584 PMCID: PMC6282621 DOI: 10.1111/ejn.14149] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
The capacity for language is one of the key features underlying the complexity of human cognition and its evolution. However, little is known about the neurobiological mechanisms that mediate normal or impaired linguistic ability. For developmental dyslexia, early postmortem studies conducted in the 1980s linked the disorder to subtle defects in the migration of neurons in the developing neocortex. These early studies were reinforced by human genetic analyses that identified dyslexia susceptibility genes and subsequent evidence of their involvement in neuronal migration. In this review, we examine recent experimental evidence that does not support the link between dyslexia and neuronal migration. We critically evaluate gene function studies conducted in rodent models and draw attention to the lack of robust evidence from histopathological and imaging studies in humans. Our review suggests that the neuronal migration hypothesis of dyslexia should be reconsidered, and the neurobiological basis of dyslexia should be approached with a fresh start.
Collapse
Affiliation(s)
- Luiz G. Guidi
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Isabel Martinez‐Garay
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Division of NeuroscienceSchool of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
23
|
Abstract
Biobanking and BioMolecular resources Research Infrastructure (BBMRI)- European Research Infrastructure Consortium (ERIC) is the largest infrastructure launched in Europe in health research. By nature it is a distributed infrastructure, in which biological samples and data are hosted by the European Member States biobanks. As of today, BBMRI-ERIC consists of 19 European Member States and 1 international organization, the International Agency for Research on Cancer. This means that BBMRI-ERIC has a population of >500 million individuals in Europe. BBMRI-ERIC is a truly Pan-European Research Infrastructure for health research. Given that BBMRI-ERIC is set up to become a key source for users in both academic and scientific institutions as well as in the pharmaceutical and life science industries, it contributes directly to the Innovation Union concept. It is pan-European because BBMRI-ERIC already shows an excellent geographic and regional coverage all over Europe involving countries from South, East, West, North, and Central Europe. BBMRI-ERIC is a service-driven infrastructure for the European Member States, driven by science. The BBMRI-ERIC Directory consists of 100 million samples and a roadmap for better-defined quality in European biobanks for improving reproducibility and reliability of the biological sample and data.
Collapse
Affiliation(s)
- Jan-Eric Litton
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Sanders R, Bustin S, Huggett J, Mason D. Improving the standardization of mRNA measurement by RT-qPCR. BIOMOLECULAR DETECTION AND QUANTIFICATION 2018; 15:13-17. [PMID: 29922589 PMCID: PMC6006386 DOI: 10.1016/j.bdq.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/09/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
Abstract
Human health and safety depend on reliable measurements in medical diagnosis and on tests that support the selection and evaluation of therapeutic intervention and newly discovered molecular biomarkers must pass a rigorous evaluation process if they are to be of benefit to patients. Measurement standardization helps to maximize data quality and confidence and ultimately improves the reproducibility of published research. Failure to consider how a given experiment may be standardized can be costly, both financially as well as in time and failure to perform and report pre-clinical research in an appropriately rigorous manner will hinder the development of diagnostic methods. Hence standardization is a crucial step in maintaining the integrity of scientific studies and is a key feature of robust investigation.
Collapse
Affiliation(s)
- Rebecca Sanders
- Molecular and Cell Biology, Science and Innovation, LGC, Queens Road, Teddington, Middlesex TW11 0LY, UK
| | - Stephen Bustin
- Faculty of Medical Science, Anglia Ruskin University, Michael Salmon Building, Chelmsford, Essex CM1 1SQ, UK
| | - Jim Huggett
- Molecular and Cell Biology, Science and Innovation, LGC, Queens Road, Teddington, Middlesex TW11 0LY, UK
| | - Deborah Mason
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
25
|
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ. Transcriptional-Readthrough RNAs Reflect the Phenomenon of "A Gene Contains Gene(s)" or "Gene(s) within a Gene" in the Human Genome, and Thus Are Not Chimeric RNAs. Genes (Basel) 2018; 9:E40. [PMID: 29337901 PMCID: PMC5793191 DOI: 10.3390/genes9010040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023] Open
Abstract
Tens of thousands of chimeric RNAs, i.e., RNAs with sequences of two genes, have been identified in human cells. Most of them are formed by two neighboring genes on the same chromosome and are considered to be derived via transcriptional readthrough, but a true readthrough event still awaits more evidence and trans-splicing that joins two transcripts together remains as a possible mechanism. We regard those genomic loci that are transcriptionally read through as unannotated genes, because their transcriptional and posttranscriptional regulations are the same as those of already-annotated genes, including fusion genes formed due to genetic alterations. Therefore, readthrough RNAs and fusion-gene-derived RNAs are not chimeras. Only those two-gene RNAs formed at the RNA level, likely via trans-splicing, without corresponding genes as genomic parents, should be regarded as authentic chimeric RNAs. However, since in human cells, procedural and mechanistic details of trans-splicing have never been disclosed, we doubt the existence of trans-splicing. Therefore, there are probably no authentic chimeras in humans, after readthrough and fusion-gene derived RNAs are all put back into the group of ordinary RNAs. Therefore, it should be further determined whether in human cells all two-neighboring-gene RNAs are derived from transcriptional readthrough and whether trans-splicing truly exists.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City 443002, Hubei, China.
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA.
| | - Hai Huang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou, China.
| |
Collapse
|
26
|
Guidi LG, Mattley J, Martinez-Garay I, Monaco AP, Linden JF, Velayos-Baeza A, Molnár Z. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing. Cereb Cortex 2017; 27:5831-5845. [PMID: 29045729 PMCID: PMC5939205 DOI: 10.1093/cercor/bhx269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system.
Collapse
Affiliation(s)
- Luiz G Guidi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jane Mattley
- Ear Institute, University College London, London WC1X 8EE, UK
| | - Isabel Martinez-Garay
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Current address: Office of the President, Ballou Hall, Tufts University, Medford, MA 02155, USA
| | - Jennifer F Linden
- Ear Institute, University College London, London WC1X 8EE, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
27
|
qPCR primer design revisited. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 14:19-28. [PMID: 29201647 PMCID: PMC5702850 DOI: 10.1016/j.bdq.2017.11.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 01/04/2023]
Abstract
Primers are arguably the single most critical components of any PCR assay, as their properties control the exquisite specificity and sensitivity that make this method uniquely powerful. Consequently, poor design combined with failure to optimise reaction conditions is likely to result in reduced technical precision and false positive or negative detection of amplification targets. Despite the framework provided by the MIQE guidelines and the accessibility of wide-ranging support from peer-reviewed publications, books and online sources as well as commercial companies, the design of many published assays continues to be less than optimal: primers often lack intended specificity, can form dimers, compete with template secondary structures at the primer binding sites or hybridise only within a narrow temperature range. We present an overview of the main steps in the primer design workflow, with data that illustrate some of the unexpected variability that often occurs when theory is translated into practice. We also strongly urge researchers to report as much information about their assays as possible in their publications.
Collapse
|
28
|
Bustin S, Nolan T. Talking the talk, but not walking the walk: RT-qPCR as a paradigm for the lack of reproducibility in molecular research. Eur J Clin Invest 2017; 47:756-774. [PMID: 28796277 DOI: 10.1111/eci.12801] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
Poorly executed and inadequately reported molecular measurement methods are amongst the causes underlying the lack of reproducibility of much biomedical research. Although several high impact factor journals have acknowledged their past failure to scrutinise adequately the technical soundness of manuscripts, there is a perplexing reluctance to implement basic corrective measures. The reverse transcription real-time quantitative PCR (RT-qPCR) is probably the most straightforward measurement technique available for RNA quantification and is widely used in research, diagnostic, forensic and biotechnology applications. Despite the impact of the minimum information for the publication of quantitative PCR experiments (MIQE) guidelines, which aim to improve the robustness and the transparency of reporting of RT-qPCR data, we demonstrate that elementary protocol errors, inappropriate data analysis and inadequate reporting continue to be rife and conclude that the majority of published RT-qPCR data are likely to represent technical noise.
Collapse
Affiliation(s)
- Stephen Bustin
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Tania Nolan
- Institute of Population Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Vynck M, Vandesompele J, Thas O. Quality control of digital PCR assays and platforms. Anal Bioanal Chem 2017; 409:5919-5931. [PMID: 28799053 DOI: 10.1007/s00216-017-0538-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Digital polymerase chain reaction (digital PCR, dPCR) is a direct nucleic acid quantification method, thus requiring no standard curves unlike quantitative real-time PCR (qPCR). Nevertheless, evaluation of the linear dynamic range, accuracy, and precision of an assay or platform is recommended, as there are several potential causes of important non-linearity, bias, and imprecision. Ignoring these quality issues may lead to erroneous quantification. This necessitates an approach akin to the construction of standard curves. We study the pitfalls associated with the evaluation of such an experiment, and provide guidelines for the assessment of linearity, accuracy, and precision in dPCR experiments. We present simulation results and a case study supporting the importance of a thorough evaluation. Further, typically presented plots and statistics may not reveal problems with linearity, accuracy, or precision. We find that a robust weighted least-squares approach is highly advisable, yet may also suffer from an inflated false-positive rate. The proposed assessments are also applicable to other analyses, such as the comparison of results obtained from qPCR and dPCR. A web tool for quality evaluation, dPCalibRate, is available.
Collapse
Affiliation(s)
- Matthijs Vynck
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,Bioinformatics Institute Ghent: from Nucleotides to Networks (BIG N2N), Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,Biogazelle, Technologiepark 3, 9052, Zwijnaarde, Belgium
| | - Olivier Thas
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Bioinformatics Institute Ghent: from Nucleotides to Networks (BIG N2N), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied Statistics, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
30
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
31
|
Bustin SA, Huggett JF. Reproducibility of biomedical research - The importance of editorial vigilance. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 11:1-3. [PMID: 28331813 PMCID: PMC5348116 DOI: 10.1016/j.bdq.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many journal editors are a failing to implement their own authors' instructions, resulting in the publication of many articles that do not meet basic standards of transparency, employ unsuitable data analysis methods and report overly optimistic conclusions. This problem is particularly acute where quantitative measurements are made and results in the publication of papers that lack scientific rigor and contributes to the concerns with regard to the reproducibility of biomedical research. This hampers research areas such as biomarker identification, as reproducing all but the most striking changes is challenging and translation to patient care rare.
Collapse
Affiliation(s)
- Stephen A Bustin
- Faculty of Medical Science , Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Jim F Huggett
- Analytical Microbiology, School of Bioscience and Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
32
|
Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4. PLoS One 2017; 12:e0171767. [PMID: 28178348 PMCID: PMC5298334 DOI: 10.1371/journal.pone.0171767] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics.
Collapse
|
33
|
Bustin S. Science in the UK - whereto now? BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 9:A1-4. [PMID: 27679763 PMCID: PMC5037121 DOI: 10.1016/j.bdq.2016.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Ahmed Z, Zeeshan S, Dandekar T. Mining biomedical images towards valuable information retrieval in biomedical and life sciences. Database (Oxford) 2016; 2016:baw118. [PMID: 27538578 PMCID: PMC4990152 DOI: 10.1093/database/baw118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/07/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Saman Zeeshan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany EMBL, Computational Biology and Structures Program, Heidelberg, Germany
| |
Collapse
|
35
|
Safavi M, Sabourian R, Abdollahi M. The development of biomarkers to reduce attrition rate in drug discovery focused on oncology and central nervous system. Expert Opin Drug Discov 2016; 11:939-56. [DOI: 10.1080/17460441.2016.1217196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Buschmann D, Haberberger A, Kirchner B, Spornraft M, Riedmaier I, Schelling G, Pfaffl MW. Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow. Nucleic Acids Res 2016; 44:5995-6018. [PMID: 27317696 PMCID: PMC5291277 DOI: 10.1093/nar/gkw545] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Small RNA-Seq has emerged as a powerful tool in transcriptomics, gene expression profiling and biomarker discovery. Sequencing cell-free nucleic acids, particularly microRNA (miRNA), from liquid biopsies additionally provides exciting possibilities for molecular diagnostics, and might help establish disease-specific biomarker signatures. The complexity of the small RNA-Seq workflow, however, bears challenges and biases that researchers need to be aware of in order to generate high-quality data. Rigorous standardization and extensive validation are required to guarantee reliability, reproducibility and comparability of research findings. Hypotheses based on flawed experimental conditions can be inconsistent and even misleading. Comparable to the well-established MIQE guidelines for qPCR experiments, this work aims at establishing guidelines for experimental design and pre-analytical sample processing, standardization of library preparation and sequencing reactions, as well as facilitating data analysis. We highlight bottlenecks in small RNA-Seq experiments, point out the importance of stringent quality control and validation, and provide a primer for differential expression analysis and biomarker discovery. Following our recommendations will encourage better sequencing practice, increase experimental transparency and lead to more reproducible small RNA-Seq results. This will ultimately enhance the validity of biomarker signatures, and allow reliable and robust clinical predictions.
Collapse
Affiliation(s)
- Dominik Buschmann
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Goethestraße 29, 80336 München, Germany
| | - Anna Haberberger
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Melanie Spornraft
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Irmgard Riedmaier
- Eurofins Medigenomix Forensik GmbH, Anzinger Straße 7a, 85560 Ebersberg, Germany Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 München, Germany
| | - Gustav Schelling
- Department of Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
37
|
A glance at the applications of Singular Spectrum Analysis in gene expression data. BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 4:17-21. [PMID: 27077034 PMCID: PMC4822218 DOI: 10.1016/j.bdq.2015.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/12/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
In recent years Singular Spectrum Analysis (SSA) has been used to solve many biomedical issues and is currently accepted as a potential technique in quantitative genetics studies. Presented in this article is a review of recent published genetics studies which have taken advantage of SSA. Since Singular Value Decomposition (SVD) is an important stage of this technique which can also be used as an independent analytical method in gene expression data, we also briefly touch upon some areas of the application of SVD. The review finds that at present, the most prominent area of applying SSA in genetics is filtering and signal extraction, which proves that SSA can be considered as a valuable aid and promising method for genetics analysis.
Collapse
|
38
|
Die JV, Roman B, Flores F, Rowland LJ. Design and Sampling Plan Optimization for RT-qPCR Experiments in Plants: A Case Study in Blueberry. FRONTIERS IN PLANT SCIENCE 2016; 7:271. [PMID: 27014296 PMCID: PMC4779984 DOI: 10.3389/fpls.2016.00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
The qPCR assay has become a routine technology in plant biotechnology and agricultural research. It is unlikely to be technically improved, but there are still challenges which center around minimizing the variability in results and transparency when reporting technical data in support of the conclusions of a study. There are a number of aspects of the pre- and post-assay workflow that contribute to variability of results. Here, through the study of the introduction of error in qPCR measurements at different stages of the workflow, we describe the most important causes of technical variability in a case study using blueberry. In this study, we found that the stage for which increasing the number of replicates would be the most beneficial depends on the tissue used. For example, we would recommend the use of more RT replicates when working with leaf tissue, while the use of more sampling (RNA extraction) replicates would be recommended when working with stems or fruits to obtain the most optimal results. The use of more qPCR replicates provides the least benefit as it is the most reproducible step. By knowing the distribution of error over an entire experiment and the costs at each step, we have developed a script to identify the optimal sampling plan within the limits of a given budget. These findings should help plant scientists improve the design of qPCR experiments and refine their laboratory practices in order to conduct qPCR assays in a more reliable-manner to produce more consistent and reproducible data.
Collapse
Affiliation(s)
- Jose V. Die
- U.S. Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Belen Roman
- Area Mejora y Biotecnologia, IFAPA Centro Alameda del ObispoCordoba, Spain
| | - Fernando Flores
- Departamento Ciencias Agroforestales, Universidad de HuelvaHuelva, Spain
| | - Lisa J. Rowland
- U.S. Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
39
|
Bustin SA. Improving the reliability of peer-reviewed publications: We are all in it together. BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 7:A1-5. [PMID: 27077047 PMCID: PMC4827640 DOI: 10.1016/j.bdq.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
The current, and welcome, focus on standardization of techniques and transparency of reporting in the biomedical, peer-reviewed literature is commendable. However, that focus has been intermittent as well as lacklustre and so failed to tackle the alarming lack of reliability and reproducibly of biomedical research. Authors have access to numerous recommendations, ranging from simple standards dealing with technical issues to those regulating clinical trials, suggesting that improved reporting guidelines are not the solution. The elemental solution is for editors to require meticulous implementation of their journals' instructions for authors and reviewers and stipulate that no paper is published without a transparent, complete and accurate materials and methods section.
Collapse
Affiliation(s)
- Stephen A. Bustin
- Faculty of Medical Science, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
- The Gene Team Ltd., UK
| |
Collapse
|
40
|
Chapman JR, Helin AS, Wille M, Atterby C, Järhult JD, Fridlund JS, Waldenström J. A Panel of Stably Expressed Reference Genes for Real-Time qPCR Gene Expression Studies of Mallards (Anas platyrhynchos). PLoS One 2016; 11:e0149454. [PMID: 26886224 PMCID: PMC4757037 DOI: 10.1371/journal.pone.0149454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/31/2016] [Indexed: 02/07/2023] Open
Abstract
Determining which reference genes have the highest stability, and are therefore appropriate for normalising data, is a crucial step in the design of real-time quantitative PCR (qPCR) gene expression studies. This is particularly warranted in non-model and ecologically important species for which appropriate reference genes are lacking, such as the mallard--a key reservoir of many diseases with relevance for human and livestock health. Previous studies assessing gene expression changes as a consequence of infection in mallards have nearly universally used β-actin and/or GAPDH as reference genes without confirming their suitability as normalisers. The use of reference genes at random, without regard for stability of expression across treatment groups, can result in erroneous interpretation of data. Here, eleven putative reference genes for use in gene expression studies of the mallard were evaluated, across six different tissues, using a low pathogenic avian influenza A virus infection model. Tissue type influenced the selection of reference genes, whereby different genes were stable in blood, spleen, lung, gastrointestinal tract and colon. β-actin and GAPDH generally displayed low stability and are therefore inappropriate reference genes in many cases. The use of different algorithms (GeNorm and NormFinder) affected stability rankings, but for both algorithms it was possible to find a combination of two stable reference genes with which to normalise qPCR data in mallards. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies in ducks. The fact that nearly all previous studies of the influence of pathogen infection on mallard gene expression have used a single, non-validated reference gene is problematic. The toolkit of putative reference genes provided here offers a solid foundation for future studies of gene expression in mallards and other waterfowl.
Collapse
Affiliation(s)
- Joanne R. Chapman
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Anu S. Helin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Michelle Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Clara Atterby
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jimmy S. Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
41
|
Commercialisation of Biomarker Tests for Mental Illnesses: Advances and Obstacles. Trends Biotechnol 2015; 33:712-723. [DOI: 10.1016/j.tibtech.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/14/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
|
42
|
Abstract
The MIQE guidelines for qPCR and dPCR have been around for a while now, but few are taking advantage of this resource. Jeffrey Perkel looks at challenge of standardizing PCR.
Collapse
|