1
|
Khanal S, Pillai M, Biswas D, Torequl Islam M, Verma R, Kuca K, Kumar D, Najmi A, Zoghebi K, Khalid A, Mohan S. A paradigm shift in the detection of bloodborne pathogens: conventional approaches to recent detection techniques. EXCLI JOURNAL 2024; 23:1245-1275. [PMID: 39574968 PMCID: PMC11579516 DOI: 10.17179/excli2024-7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 11/24/2024]
Abstract
Bloodborne pathogens (BBPs) pose formidable challenges in the realm of infectious diseases, representing significant risks to both human and animal health worldwide. The review paper provides a thorough examination of bloodborne pathogens, highlighting the serious worldwide threat they pose and the effects they have on animal and human health. It addresses the potential dangers of exposure that healthcare workers confront, which have affected 3 million people annually, and investigates the many pathways by which these viruses can spread. The limitations of traditional detection techniques like PCR and ELISA have been criticized, which has led to the investigation of new detection methods driven by advances in sensor technology. The objective is to increase the amount of knowledge that is available regarding bloodborne infections as well as effective strategies for their management and detection. This review provides a thorough overview of common bloodborne infections, including their patterns of transmission, and detection techniques.
Collapse
Affiliation(s)
- Sonali Khanal
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manjusha Pillai
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deblina Biswas
- Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava,70800, Ostrava-Poruba, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, P. O. Box 114, Jazan, 82511, Saudi Arabia
| | - Syam Mohan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Ribeiro JF, Melo JR, Santos CDL, Chaves CR, Cabral Filho PE, Pereira G, Santos BS, Pereira GA, Rosa DS, Ribeiro RT, Fontes A. Sensitive Zika Biomarker Detection Assisted by Quantum Dot-Modified Electrochemical Immunosensing Platform. Colloids Surf B Biointerfaces 2022; 221:112984. [DOI: 10.1016/j.colsurfb.2022.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
4
|
Tortolini C, Angeloni A, Antiochia R. A Comparative Study of Voltammetric vs Impedimetric Immunosensor for Rapid SARS-CoV-2 Detection at the Point-of-care. ELECTROANAL 2022; 35:ELAN202200349. [PMID: 36247366 PMCID: PMC9538619 DOI: 10.1002/elan.202200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Here, a novel biosensing platform for the detection of SARS-CoV-2 usable both at voltammetric and impedimetric mode is reported. The platform was constructed on a multi-walled carbon nanotubes (MWCNTs) screen-printed electrode (SPE) functionalized by methylene blue (MB), antibodies against SARS-CoV-2 spike protein (SP), a bioactive layer of chitosan (CS) and protein A (PrA). The voltammetric sensor showed superior performances both in phosphate buffer solution (PBS) and spiked-saliva samples, with LOD values of 5.0±0.1 and 30±2.1 ng/mL, compared to 20±1.8 and 50±2.5 ng/mL for the impedimetric sensor. Moreover, the voltammetric immunosensor was tested in real saliva, showing promising results.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Experimental MedicineUniversity of Rome “La Sapienza”Viale Regina Elena 32400166RomeItaly
| | - Antonio Angeloni
- Department of Experimental MedicineUniversity of Rome “La Sapienza”Viale Regina Elena 32400166RomeItaly
| | - Riccarda Antiochia
- Department of Chemistry and Drug TechnologiesUniversity of Rome “La Sapienza”P.le Aldo Moro 500185RomeItaly
| |
Collapse
|
5
|
Manring N, Ahmed MMN, Tenhoff N, Smeltz JL, Pathirathna P. Recent Advances in Electrochemical Tools for Virus Detection. Anal Chem 2022; 94:7149-7157. [PMID: 35535749 DOI: 10.1021/acs.analchem.1c05358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Virus detection at the point-of-care facility has become an alarming topic in the research community. The latest coronavirus pandemic has highlighted the limitations of current conventional virus detection methods. Compared to nonelectrochemical sensors, electrochemical sensors provide the ideal platform for rapid, cheap, fast, sensitive, and selective diagnosis of several viruses, particularly at point-of-care facilities. This article highlights the most promising studies reported over the past decade to detect a broad spectrum of viruses using voltammetry, amperometry, and electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Noel Manring
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, United States
| | - Muzammil M N Ahmed
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, United States
| | - Nicholas Tenhoff
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, United States
| | - Jessica L Smeltz
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, United States
| | - Pavithra Pathirathna
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, United States
| |
Collapse
|
6
|
Ojha RP, Singh P, Azad UP, Prakash R. Impedimetric Immunosensor for the NS1 Dengue Biomarker Based on the Gold Nanorod Decorated Graphitic Carbon Nitride Modified Electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Solanki S, Soni A, Agrawal VV, Pandey MK, Sumana G. Ultrasensitive Immunosensor Based on Langmuir-Blodgett Deposited Ordered Graphene Assemblies for Dengue Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8705-8713. [PMID: 34278796 DOI: 10.1021/acs.langmuir.1c00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this manuscript partially reduced graphene oxide (RGO) nanosheet-based electrodes have been utilized for quantification of the NS1 protein and subsequently for dengue detection. NS1 is the biomarker found circulating in the body of dengue-infected persons on or after first day of the appearance of disease symptoms. Graphene oxide (GO) has been synthesized using a modified Hummer's method, and its ordered nanostructured films have been electrophoretically deposited on indium tin oxide (ITO)-coated glass substrates using Langmuir-Blodgett (LB) deposition. Deposited LB films of GO have been reduced with hydrazine vapors to obtain RGO-coated ITO electrodes. NS1 antibodies have been grafted onto the ordered thin films using covalent linking, and the bioelectrodes have been utilized for the specific detection of NS1 antigen. The electrochemical performance of the fabricated bioelectrodes for NS1 antigen detection has been explored in standard and spiked sera samples. The limit of detection for the standard samples and spiked serum samples is found to be 0.069 ng mL-1 and 0.081 ng mL-1, respectively, with a sensitivity of 8.41 and 36.75 Ω per ng mL, respectively, in the detection range of 101 to 107 ng mL-1.
Collapse
Affiliation(s)
- Shipra Solanki
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India
| | - Amrita Soni
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India
| | - Ved Varun Agrawal
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India
| | - M K Pandey
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India
| | - Gajjala Sumana
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India
| |
Collapse
|
8
|
Tran L, Park S. Highly sensitive detection of dengue biomarker using streptavidin-conjugated quantum dots. Sci Rep 2021; 11:15196. [PMID: 34312404 PMCID: PMC8313577 DOI: 10.1038/s41598-021-94172-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
A highly sensitive immunosensor using streptavidin-conjugated quantum dots (QDs/SA) was developed to detect dengue biomarker of non-structural protein 1 (NS1) at very low concentration, so that it can probe dengue infection even in the early stage. The QDs/SA were first bound to biotinylated NS1 antibody (Ab) and the QDs/SA-Ab conjugates were then used to detect the NS1 antigen (Ag) in the Ag concentration range of 1 pM to 120 nM. The formation of QDs/SA-Ab and QDs/SA-Ab-Ag conjugates was confirmed by the measurements of field emission scanning electron microscopy (FF-SEM), field emission transmission electron microscopy (FE-TEM), dynamic light scattering (DLS), and zeta-potential. Fluorescence emission spectra of QDs/SA-Ab-Ag conjugates showed that the magnitude of fluorescence quenching was linearly proportional to the NS1 Ag concentration and it nicely followed the Stern-Volmer (SV) equation in phosphate buffer solution. However, in human plasma serum solution, the fluorescence quenching behavior was negatively deviated from the SV equation presumably due to interference by the serum component biomolecules, and it was well explained by the Lehrer equation. These results suggest that the current approach is promising because it is highly sensitive, fast, simple, and convenient, and thus it has a potential of application for point-of-care.
Collapse
Affiliation(s)
- Linh Tran
- Department of Chemical and Biochemical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, South Korea
| | - Sangkwon Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, South Korea.
| |
Collapse
|
9
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
10
|
Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. MATERIALS TODAY. CHEMISTRY 2021; 20:100443. [PMID: 33615086 PMCID: PMC7877231 DOI: 10.1016/j.mtchem.2021.100443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
The World Health Organization (WHO) has declared the COVID-19 an international health emergency due to the severity of infection progression, which became more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the reverse transcription polymerase chain reaction (RT-PCR) technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times, invasive and painful screening, and high costs have restricted the use of RT-PCR methods for rapid diagnostics. Therefore, the development of cost-effective, portable, sensitive, prompt and selective sensing systems to detect SARS-CoV-2 in biofluids at fM/pM/nM concentrations would be a breakthrough in diagnostics. Immunosensors that show increased specificity and sensitivity are considerably fast and do not imply costly reagents or instruments, reducing the cost for COVID-19 detection. The current developments in immunosensors perhaps signify the most significant opportunity for a rapid assay to detect COVID-19, without the need of highly skilled professionals and specialized tools to interpret results. Artificial intelligence (AI) and the Internet of Medical Things (IoMT) can also be equipped with this immunosensing approach to investigate useful networking through database management, sharing, and analytics to prevent and manage COVID-19. Herein, we represent the collective concepts of biomarker-based immunosensors along with AI and IoMT as smart sensing strategies with bioinformatics approach to monitor non-invasive early stage SARS-CoV-2 development, with fast point-of-care (POC) diagnostics as the crucial goal. This approach should be implemented quickly and verified practicality for clinical samples before being set in the present times for mass-diagnostic research.
Collapse
Affiliation(s)
- A K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - D Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, 201301, India
| | - A Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - P Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110017, India
| | - P R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
11
|
Hernández-Saravia LP, Martinez T, Llanos J, Bertotti M. A Cu-NPG/SPE sensor for non-enzymatic and non-invasive electrochemical glucose detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Awan M, Rauf S, Abbas A, Nawaz MH, Yang C, Shahid SA, Amin N, Hayat A. A sandwich electrochemical immunosensor based on antibody functionalized-silver nanoparticles (Ab-Ag NPs) for the detection of dengue biomarker protein NS1. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Santos CDC, Santos PCM, Rocha KLS, Thomasini RL, de Oliveira DB, Franco DL, Ferreira LF. A new tool for dengue virus diagnosis: Optimization and detection of anti-NS1 antibodies in serum samples by impedimetric transducers. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl Biochem Biotechnol 2020; 191:1384-1394. [DOI: 10.1007/s12010-020-03285-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022]
|
15
|
Dhal A, Kalyani T, Ghorai S, Sahu NK, Jana SK. Recent development of electrochemical immunosensor for the diagnosis of dengue virus NSI protein: A review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Moro G, Bottari F, Van Loon J, Du Bois E, De Wael K, Moretto LM. Disposable electrodes from waste materials and renewable sources for (bio)electroanalytical applications. Biosens Bioelectron 2019; 146:111758. [PMID: 31605984 DOI: 10.1016/j.bios.2019.111758] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022]
Abstract
The numerous advantages of disposable and screen-printed electrodes (SPEs) particularly in terms of portability, sensibility, sensitivity and low-cost led to the massive application of these electroanalytical devices. To limit the electronic waste and recover precious materials, new recycling processes were developed together with alternative SPEs fabrication procedures based on renewable, biocompatible sources or waste materials, such as paper, agricultural byproducts or spent batteries. The increased interest in the use of eco-friendly materials for electronics has given rise to a new generation of highly performing green modifiers. From paper based electrodes to disposable electrodes obtained from CD/DVD, in the last decades considerable efforts were devoted to reuse and recycle in the field of electrochemistry. Here an overview of recycled and recyclable disposable electrodes, sustainable electrode modifiers and alternative fabrication processes is proposed aiming to provide meaningful examples to redesign the world of disposable electrodes.
Collapse
Affiliation(s)
- Giulia Moro
- LSE Research Group, Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Mestre, Italy; AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fabio Bottari
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Joren Van Loon
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Els Du Bois
- Product Development Research Group, Faculty of Design Sciences, University of Antwerp, Ambtmanstraat 1, 2000, Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Ligia Maria Moretto
- LSE Research Group, Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Mestre, Italy.
| |
Collapse
|
17
|
Anusha JR, Kim BC, Yu KH, Raj CJ. Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosens Bioelectron 2019; 142:111511. [PMID: 31319325 DOI: 10.1016/j.bios.2019.111511] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Dengue virus is a mosquito-borne, single positive-stranded RNA virus that spread human being through infected female Aedes mosquito bite and causes dengue fever. The demand for early detection of this virus has increased to control the widespread of infectious diseases and protect humankind from its harmful effects. Recently, biosensors are found to the potential tool to detect and quantify the virus with fast detection, relatively cost-effective, high sensitivity and selectivity than the conventional diagnostic methods such as immunological and molecular techniques. Mostly, the biosensors employ electrochemical detection technique with transducers, owing to its easy construction, low-cost, ease of use, and portability. Here, we review the current trends and advancement in the electrochemical diagnosis of dengue virus and discussed various types of electrochemical biosensing techniques such as; amperometric, potentiometric, impedometric, and voltammetric sensing. Apart from these, we discussed the role of biorecognition molecules such as nucleic acid, antibodies, and lectins in electrochemical sensing of dengue virus. In addition, the review highlighted the benefits of the electrochemical approach in comparison with traditional diagnostic methods. We expect that these dengue virus diagnostic techniques will continue to evolve and grow in future, with exciting new possibilities stemming from advancement in the rational design of electrochemical biosensors.
Collapse
Affiliation(s)
- J R Anusha
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea; Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, 600034, Tamil Nadu, India
| | - Byung Chul Kim
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| | - Kook-Hyun Yu
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea
| | - C Justin Raj
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
18
|
Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Anal Chim Acta 2018; 1026:1-7. [PMID: 29852984 DOI: 10.1016/j.aca.2018.04.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/13/2023]
Abstract
The present study represents fabrication of nonstructural antibody (NS1) based immunosensor coupled with bovine serum albumin (BSA) modified screen printed carbon electrodes (SPCE) as transducing substrate for the early diagnosis of dengue virus. The anti-NS1 monoclonal antibody was immobilized on electro grafted BSA surface of working electrode. The electrons transfer resistance before and after NS1 attachment was monitored as a function of its concentration to perform the qualitative and quantitative analysis. The as prepared impedimetric immunosensor successfully detected the dengue virus protein with enhanced limit of detection (0.3 ng/mL) and linear range (1-200 ng/mL). The selectivity of the designed device was further elaborated with several interfering analytes and was finally demonstrated with human serum samples. The extravagant selectivity, sensitivity and easier fabrication protocol corroborate the potential applications of such immunosensor for practical diagnosis of dengue virus.
Collapse
|
19
|
Wasik D, Mulchandani A, Yates MV. Point-of-Use Nanobiosensor for Detection of Dengue Virus NS1 Antigen in AdultAedes aegypti: A Potential Tool for Improved Dengue Surveillance. Anal Chem 2017; 90:679-684. [DOI: 10.1021/acs.analchem.7b03407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel Wasik
- Department of Environmental Sciences, ‡Department of Chemical and Environmental Engineering, and §Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States
| | - Ashok Mulchandani
- Department of Environmental Sciences, ‡Department of Chemical and Environmental Engineering, and §Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States
| | - Marylynn V. Yates
- Department of Environmental Sciences, ‡Department of Chemical and Environmental Engineering, and §Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
20
|
Cui W, Fan L, Geng L, An M, Zhang F. A new and facile strategy for determination of lead and cadmium using silver electrodes manufactured from digital versatile discs. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Freire MLC, Pol-Fachin L, Coêlho DF, Viana IFT, Magalhães T, Cordeiro MT, Fischer N, Loeffler FF, Jaenisch T, Franca RF, Marques ETA, Lins RD. Mapping Putative B-Cell Zika Virus NS1 Epitopes Provides Molecular Basis for Anti-NS1 Antibody Discrimination between Zika and Dengue Viruses. ACS OMEGA 2017; 2:3913-3920. [PMID: 30023708 PMCID: PMC6044859 DOI: 10.1021/acsomega.7b00608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 05/18/2023]
Abstract
B-cell epitope sequences from Zika virus (ZIKV) NS1 protein have been identified using epitope prediction tools. Mapping these sequences onto the NS1 surface reveals two major conformational epitopes and a single linear one. Despite an overall average sequence identity of ca. 55% between the NS1 from ZIKV and the four dengue virus (DENV) serotypes, epitope sequences were found to be highly conserved. Nevertheless, nonconserved epitope-flanking residues are responsible for a dramatically divergent electrostatic surface potential on the epitope regions of ZIKV and DENV2 serotypes. These findings suggest that strategies for differential diagnostics on the basis of short linear NS1 sequences are likely to fail due to immunological cross-reactions. Overall, results provide the molecular basis of differential discrimination between Zika and DENVs by NS1 monoclonal antibodies.
Collapse
Affiliation(s)
| | - Laércio Pol-Fachin
- Aggeu
Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Recife 50740-670, Brazil
| | - Danilo F. Coêlho
- Aggeu
Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Recife 50740-670, Brazil
| | | | - Tereza Magalhães
- Aggeu
Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
| | - Marli T. Cordeiro
- Aggeu
Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
| | - Nico Fischer
- Department
of Infectious Diseases, Section Clinical Tropical Medicine, Heidelberg University Hospital, INF 324, Heidelberg 69120, Germany
- HEiKA
- Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Felix F. Loeffler
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- HEiKA
- Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Thomas Jaenisch
- Department
of Infectious Diseases, Section Clinical Tropical Medicine, Heidelberg University Hospital, INF 324, Heidelberg 69120, Germany
- HEiKA
- Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Rafael F. Franca
- Aggeu
Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
| | - Ernesto T. A. Marques
- Aggeu
Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
- Center for
Vaccine Research, University of Pittsburgh, Pittsburgh 15261, Pennsylvania, United States
- E-mail: . Tel +1 (412) 624.4440 (E.T.A.M.)
| | - Roberto D. Lins
- Aggeu
Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Recife 50740-670, Brazil
- E-mail: . Tel +55 (81) 2123.7848 (R.D.L.)
| |
Collapse
|
22
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017. [DOI: 10.1002/celc.201600805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susana Campuzano
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - Paloma Yáñez-Sedeño
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - José Manuel Pingarrón
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| |
Collapse
|
23
|
Nicolini AM, McCracken KE, Yoon JY. Future developments in biosensors for field-ready Zika virus diagnostics. J Biol Eng 2017; 11:7. [PMID: 28127399 PMCID: PMC5260080 DOI: 10.1186/s13036-016-0046-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022] Open
Abstract
Since early reports of the recent Zika virus outbreak in May 2015, much has been learned and discussed regarding Zika virus infection and transmission. However, many opportunities still remain for translating these findings into field-ready sensors and diagnostics. In this brief review, we discuss current diagnostic methods, consider the prospects of translating other flavivirus biosensors directly to Zika virus sensing, and look toward the future developments needed for high-sensitivity and high-specificity biosensors to come.
Collapse
Affiliation(s)
- Ariana M. Nicolini
- Biomedical Engineering Graduate Interdisciplinary Program and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721 USA
| | - Katherine E. McCracken
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721 USA
| | - Jeong-Yeol Yoon
- Biomedical Engineering Graduate Interdisciplinary Program and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721 USA
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
24
|
Cecchetto J, Fernandes FC, Lopes R, Bueno PR. The capacitive sensing of NS1 Flavivirus biomarker. Biosens Bioelectron 2017; 87:949-956. [DOI: 10.1016/j.bios.2016.08.097] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 02/05/2023]
|
25
|
Raymundo-Pereira PA, Shimizu FM, Coelho D, Piazzeta MH, Gobbi AL, Machado SA, Oliveira ON. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces. Biosens Bioelectron 2016; 86:369-376. [DOI: 10.1016/j.bios.2016.06.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/10/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022]
|
26
|
Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. Talanta 2016; 155:250-7. [DOI: 10.1016/j.talanta.2016.04.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 01/26/2023]
|
27
|
Wong WR, Sekaran S, Mahamd Adikan FR, Berini P. Detection of dengue NS1 antigen using long-range surface plasmon waveguides. Biosens Bioelectron 2016; 78:132-139. [DOI: 10.1016/j.bios.2015.11.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/22/2015] [Accepted: 11/10/2015] [Indexed: 01/10/2023]
|
28
|
Parkash O, Shueb RH. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques. Viruses 2015; 7:5410-27. [PMID: 26492265 PMCID: PMC4632385 DOI: 10.3390/v7102877] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/01/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022] Open
Abstract
Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
Collapse
Affiliation(s)
- Om Parkash
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
29
|
Hosseini S, Ibrahim F, Rothan HA, Yusof R, Marel CVD, Djordjevic I, Koole LH. Aging effect and antibody immobilization on COOH exposed surfaces designed for dengue virus detection. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Electrical detection of dengue biomarker using egg yolk immunoglobulin as the biological recognition element. Sci Rep 2015; 5:7865. [PMID: 25597820 PMCID: PMC4297984 DOI: 10.1038/srep07865] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022] Open
Abstract
Nonstructural protein 1 (NS1) is secreted by dengue virus in the first days of infection and acts as an excellent dengue biomarker. Here, the direct electrical detection of NS1 from dengue type 2 virus has been achieved by the measurement of variations in open circuit potential (OCP) between a reference electrode and a disposable Au electrode containing immobilized anti-NS1 antibodies acting as immunosensor. Egg yolk immunoglobulin (IgY) was utilized for the first time as the biological recognition element alternatively to conventional mammalian antibodies in the detection of dengue virus NS1 protein. NS1 protein was detected in standard samples in a 0.1 to 10 µg.mL−1 concentration range with (3.2 ± 0.3) mV/µg.mL−1 of sensitivity and 0.09 µg.mL−1 of detection limit. Therefore, the proposed system can be extended to detect NS1 in real samples and provide an early diagnosis of dengue.
Collapse
|
31
|
Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen. Diagnostics (Basel) 2014; 4:165-80. [PMID: 26852684 PMCID: PMC4665558 DOI: 10.3390/diagnostics4040165] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/11/2014] [Accepted: 10/20/2014] [Indexed: 12/24/2022] Open
Abstract
An electrochemical immunosensor modified with the streptavidin/biotin system on screen printed carbon electrodes (SPCEs) for the detection of the dengue NS1 antigen was developed in this study. Monoclonal anti-NS1 capture antibody was immobilized on streptavidin-modified SPCEs to increase the sensitivity of the assay. Subsequently, a direct sandwich enzyme linked immunosorbent assay (ELISA) format was developed and optimized. An anti-NS1 detection antibody conjugated with horseradish peroxidase enzyme (HRP) and 3,3,5,5'-tetramethybezidine dihydrochloride (TMB/H2O2) was used as an enzyme mediator. Electrochemical detection was conducted using the chronoamperometric technique, and electrochemical responses were generated at −200 mV reduction potential. The calibration curve of the immunosensor showed a linear response between 0.5 µg/mL and 2 µg/mL and a detection limit of 0.03 µg/mL. Incorporation of a streptavidin/biotin system resulted in a well-oriented antibody immobilization of the capture antibody and consequently enhanced the sensitivity of the assay. In conclusion, this immunosensor is a promising technology for the rapid and convenient detection of acute dengue infection in real serum samples.
Collapse
|
32
|
Silva M, Dias A, Cordeiro M, Marques E, Goulart M, Dutra R. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein. Talanta 2014; 128:505-10. [DOI: 10.1016/j.talanta.2014.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/07/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
|
33
|
Mathematical modeling of functionalized-microsphere based assays for rapid DNA detection: From sample preparation to results. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Veloso AJ, Chow AM, Ganesh HVS, Li N, Dhar D, Wu DCH, Mikhaylichenko S, Brown IR, Kerman K. Electrochemical Immunosensors for Effective Evaluation of Amyloid-Beta Modulators on Oligomeric and Fibrillar Aggregation Processes. Anal Chem 2014; 86:4901-9. [DOI: 10.1021/ac500424t] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Ari M. Chow
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Hashwin V. S. Ganesh
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Nan Li
- Department
of Physical and Environmental Sciences and
| | - Devjani Dhar
- Department
of Physical and Environmental Sciences and
| | | | | | - Ian R. Brown
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department
of Physical and Environmental Sciences and
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
35
|
Arya SC, Agarwal N. Apropos “A label-free immunosensor based on recordable compact disk chip for early diagnostic of the dengue virus infection”. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Cheng MS, Toh CS. Novel biosensing methodologies for ultrasensitive detection of viruses. Analyst 2013; 138:6219-29. [DOI: 10.1039/c3an01394d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|