1
|
Pons Royo MDC, Jungbauer A. Polyethylene glycol precipitation: fundamentals and recent advances. Prep Biochem Biotechnol 2025:1-20. [PMID: 40084924 DOI: 10.1080/10826068.2025.2470220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Downstream processing continues to face significant bottlenecks due to current purification technologies and improvements in upstream. Chromatography systems have been the primary method for purification due to their high yields and purities. However, the use of high-titer-producing strains has highlighted limitations in chromatographic steps, including mass transfer limitations, low capacity, and scalability issues. These challenges, combined with the growing interest in fully continuous manufacturing processes, have led to a widespread interest in alternative to affinity chromatography systems. Polyethylene glycol precipitation has been demonstrated to be a powerful, flexible, easily scalable, and titer-independent methodology for purifying therapeutic proteins such as monoclonal antibodies, achieving yields and purities comparable to chromatography systems. Furthermore, it also holds great potential for simplifying the current purification processes of new modalities and overcome current bottlenecks in downstream processing. Herein, we discuss the latest advances in polyethylene glycol precipitation as a purification technology and explore its future research directions and potential applications.
Collapse
Affiliation(s)
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| |
Collapse
|
2
|
Conti M, Boland D, Heeran C, Symington JA, Pullen JR, Dimartino S. Purification of monoclonal antibodies using novel 3D printed ordered stationary phases. J Chromatogr A 2024; 1722:464873. [PMID: 38626540 DOI: 10.1016/j.chroma.2024.464873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
3D printing offers the unprecedented ability to fabricate chromatography stationary phases with bespoke 3D morphology as opposed to traditional packed beds of spherical beads. The restricted range of printable materials compatible with chromatography is considered a setback for its industrial implementation. Recently, we proposed a novel ink that exhibits favourable printing performance (printing time ∼100 mL/h, resolution ∼200 µm) and broadens the possibilities for a range of chromatography applications thanks to its customisable surface chemistry. In this work, this ink was used to fabricate 3D printed ordered columns with 300 µm channels for the capture and polishing of therapeutic monoclonal antibodies. The columns were initially assessed for leachables and extractables, revealing no material propensity for leaching. Columns were then functionalised with protein A and SO3 ligands to obtain affinity and strong cation exchangers, respectively. 3D printed protein A columns showed >85 % IgG recovery from harvested cell culture fluid with purities above 98 %. Column reusability was evaluated over 20 cycles showing unaffected performance. Eluate samples were analysed for co-eluted protein A fragments, host cell protein and aggregates. Results demonstrate excellent HCP clearance (logarithmic reduction value of > 2.5) and protein A leakage in the range of commercial affinity resins (<100 ng/mg). SO3 functionalised columns employed for polishing achieved removal of leaked Protein A (down to 10 ng/mg) to meet regulatory expectations of product purity. This work is the first implementation of 3D printed columns for mAb purification and provides strong evidence for their potential in industrial bioseparations.
Collapse
Affiliation(s)
- Mariachiara Conti
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Deirdre Boland
- Fujifilm Diosynth Biotechnologies, Teesside, TS23 1LH, UK
| | - Carmen Heeran
- Fujifilm Diosynth Biotechnologies, Teesside, TS23 1LH, UK
| | | | - James R Pullen
- Fujifilm Diosynth Biotechnologies, Teesside, TS23 1LH, UK
| | - Simone Dimartino
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK.
| |
Collapse
|
3
|
Gehrmann N, Daxbacher A, Hahn R. Rapid purification of mAb using protein a membranes yielding high HCP clearance. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123989. [PMID: 38154412 DOI: 10.1016/j.jchromb.2023.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Protein A chromatography remains the crucial step in mAb purification because of the high binding specificity and impurity clearance. In recent years, highly productive membrane adsorbers emerged as an alternative to traditional resins allowing for rapid purification of biomolecules. In this study, we tested three commercially available protein A membranes (Sartobind® Rapid A, HiTrap Fibro™ PrismA and GORE™ Protein Capture Device) regarding flow distribution, permeability and binding performance. As an application study using a cell-culture supernatant (CCS) containing monoclonal antibodies (mAbs), acidic and high pH wash steps were investigated regarding recovery and impurity removal. All membranes proved their applicability as highly productive capture media leading to high HCP and DNA removal with no observable influence on recovery. GORE™ Protein Capture Device exhibited a superior flow distribution but revealed diffusional limitations at high flow rates. Sartobind® Rapid A and HiTrap Fibro™ PrismA showed binding capacities of ∼ 40 g/L even at residence times (RTs) < 12 s but were limited by hydrodynamics suggesting room for improvement with optimized membrane housing.
Collapse
Affiliation(s)
- Nils Gehrmann
- Institute of Bioprocess Science and Engineering, Department of Biotechnology. University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Daxbacher
- Institute of Bioprocess Science and Engineering, Department of Biotechnology. University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Rainer Hahn
- Institute of Bioprocess Science and Engineering, Department of Biotechnology. University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
4
|
Recanati G, Pappenreiter M, Gstoettner C, Scheidl P, Vega ED, Sissolak B, Jungbauer A. Integration of a perfusion reactor and continuous precipitation in an entirely membrane-based process for antibody capture. Eng Life Sci 2023; 23:e2300219. [PMID: 37795344 PMCID: PMC10545976 DOI: 10.1002/elsc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
Continuous precipitation coupled with continuous tangential flow filtration is a cost-effective alternative for the capture of recombinant antibodies from crude cell culture supernatant. The removal of surge tanks between unit operations, by the adoption of tubular reactors, maintains a continuous harvest and mass flow of product with the advantage of a narrow residence time distribution (RTD). We developed a continuous process implementing two orthogonal precipitation methods, CaCl2 precipitation for removal of host-cell DNA and polyethylene glycol (PEG) for capturing the recombinant antibody, with no influence on the glycosylation profile. Our lab-scale prototype consisting of two tubular reactors and two stages of tangential flow microfiltration was continuously operated for up to 8 days in a truly continuous fashion and without any product flow interruption, both as a stand-alone capture and as an integrated perfusion-capture. Furthermore, we explored the use of a negatively charged membrane adsorber for flow-through anion exchange as first polishing step. We obtained a product recovery of approximately 80% and constant product quality, with more than two logarithmic reduction values (LRVs) for both host-cell proteins and host-cell DNA by the combination of the precipitation-based capture and the first polishing step.
Collapse
Affiliation(s)
- Gabriele Recanati
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Magdalena Pappenreiter
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Innovation ManagementBilfinger Life Science GmbHSalzburgAustria
| | - Christoph Gstoettner
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Patrick Scheidl
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Elena Domínguez Vega
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Bernhard Sissolak
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
5
|
Rajoub N, Gerard CJJ, Pantuso E, Fontananova E, Caliandro R, Belviso BD, Curcio E, Nicoletta FP, Pullen J, Chen W, Heng JYY, Ruane S, Liddell J, Alvey N, Ter Horst JH, Di Profio G. A workflow for the development of template-assisted membrane crystallization downstream processing for monoclonal antibody purification. Nat Protoc 2023; 18:2998-3049. [PMID: 37697106 DOI: 10.1038/s41596-023-00869-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/06/2023] [Indexed: 09/13/2023]
Abstract
Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost. We have shown that conventional protein A chromatography can be replaced with a single crystallization step and gram-scale production can be achieved in continuous flow using the template-assisted membrane crystallization process. The templates are embedded in a membrane (e.g., porous polyvinylidene fluoride with a layer of polymerized polyvinyl alcohol) and serve as nucleants for crystallization. mAbs are flexible proteins that are difficult to crystallize, so it can be challenging to determine the optimal conditions for crystallization. The objective of this protocol is to establish a systematic and flexible approach for the design of a robust, economic and sustainable mAb purification platform to replace at least the protein A affinity stage in traditional chromatography-based purification platforms. The procedure provides details on how to establish the optimal parameters for separation (crystallization conditions, choice of templates, choice of membrane) and advice on analytical and characterization methods.
Collapse
Affiliation(s)
- Nazer Rajoub
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Charline J J Gerard
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Elvira Pantuso
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Enrica Fontananova
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Rocco Caliandro
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Benny D Belviso
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria, Rende, Italy
| | - Fiore P Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, Rende, Italy
| | - James Pullen
- FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Wenqian Chen
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Sean Ruane
- Center for Process Innovation (CPI), Darlington, UK
| | - John Liddell
- Center for Process Innovation (CPI), Darlington, UK
| | | | - Joop H Ter Horst
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Gianluca Di Profio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy.
| |
Collapse
|
6
|
Shirataki H, Matsumoto Y, Konoike F, Yamamoto S. Viral clearance in end-to-end integrated continuous process for mAb purification: Total flow-through integrated polishing on two columns connected to virus filtration. Biotechnol Bioeng 2023; 120:2977-2988. [PMID: 37288613 DOI: 10.1002/bit.28464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
There are few reports of the adoption of continuous processes in bioproduction, particularly the implementation of end-to-end continuous or integrated processes, due to difficulties such as feed adjustment and incorporating virus filtration. Here, we propose an end-to-end integrated continuous process for a monoclonal antibody (mAb) with three integrated process segments: upstream production processes with pool-less direct connection, pooled low pH virus inactivation with pH control and a total flow-through integrated polishing process in which two columns were directly connected with a virus filter. The pooled virus inactivation step defines the batch, and high impurities reduction and mAb recovery were achieved for batches conducted in succession. Viral clearance tests also confirmed robust virus reduction for the flow-through two-column chromatography and the virus filtration steps. Additionally, viral clearance tests with two different hollow fiber virus filters operated at flux ranging from 1.5 to 40 LMH (liters per effective surface area of filter in square meters per hour) confirmed robust virus reduction over these ranges. Complete clearance with virus logarithmic reduction value ≥4 was achieved even with a process pause at the lowest flux. The end-to-end integrated continuous process proposed in this study is amenable to production processes, and the investigated virus filters have excellent applicability to continuous processes conducted at constant flux.
Collapse
Affiliation(s)
- Hironobu Shirataki
- Scientific Affairs Group, Bioprocess Division, Asahi Kasei Medical Co., Ltd., Tokyo, Japan
| | | | - Fuminori Konoike
- Bio-Pharma Research Laboratories, Kaneka Corporation, Hyogo, Japan
| | - Shuichi Yamamoto
- Yamaguchi University Biomedical Engineering Center (YUBEC), Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
7
|
Li Z, Chen J, Martinez-Fonts K, Rauscher M, Rivera S, Welsh J, Kandula S. Cationic polymer precipitation for enhanced impurity removal in downstream processing. Biotechnol Bioeng 2023. [PMID: 37148495 DOI: 10.1002/bit.28416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Precipitation can be used for the removal of impurities early in the downstream purification process of biologics, with the soluble product remaining in the filtrate through microfiltration. The objective of this study was to examine the use of polyallylamine (PAA) precipitation to increase the purity of product via higher host cell protein removal to enhance polysorbate excipient stability to enable a longer shelf life. Experiments were performed using three monoclonal antibodies (mAbs) with different properties of isoelectric point and IgG subclass. High throughput workflows were established to quickly screen precipitation conditions as a function of pH, conductivity and PAA concentrations. Process analytical tools (PATs) were used to evaluate the size distribution of particles and inform the optimal precipitation condition. Minimal pressure increase was observed during depth filtration of the precipitates. The precipitation was scaled up to 20L size and the extensive characterization of precipitated samples after protein A chromatography showed >75% reduction of host cell protein (HCP) concentrations (by ELISA), >90% reduction of number of HCP species (by mass spectrometry), and >99.8% reduction of DNA. The stability of polysorbate containing formulation buffers for all three mAbs in the protein A purified intermediates was improved at least 25% after PAA precipitation. Mass spectrometry was used to obtain additional understanding of the interaction between PAA and HCPs with different properties. Minimal impact on product quality and <5% yield loss after precipitation were observed while the residual PAA was <9 ppm. These results expand the toolbox in downstream purification to solve HCP clearance issues for programs with purification challenges, while also providing important insights into the integration of precipitation-depth filtration and the current platform process for the purification of biologics.
Collapse
Affiliation(s)
- Zhao Li
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Justin Chen
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Kirby Martinez-Fonts
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Michael Rauscher
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Shannon Rivera
- Analytical Research and Development Mass Spectrometry, Merck & Co., Inc., Rahway, New Jersey, USA
| | - John Welsh
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sunitha Kandula
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
8
|
Rumanek T, Kołodziej M, Piątkowski W, Antos D. Preferential precipitation of acidic variants from monoclonal antibody pools. Biotechnol Bioeng 2023; 120:114-124. [PMID: 36226348 DOI: 10.1002/bit.28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Microheterogeneity of monoclonal antibodies (mAbs) can impact their activity and stability. Formation of charge variants is considered as the most important source of the microheterogeneity. In particular, controlling the content of the acidic species is often of major importance for the production process and regulatory approval of therapeutic proteins. In this study, the preferential precipitation process was developed for reducing the content of acidic variants in mAb downstream pools. The process design was preceded by the determination of phase behavior of mAb variants in the presence of different precipitants. It was shown that the presence of polyethylene glycol (PEG) in protein solutions favored precipitation of acidic variants of mAbs. Precipitation yield was influenced by the variant composition in the mAb feed solutions, the concentration of the precipitant and the protein, and the ionic strength of the solutions. To improve yield, multistage precipitation was employed, where the precipitate was recycled to the precipitation process. The final product was a mixture of supernatants pooled together from the recycling steps. Such an approach can be potentially used either instead or in a combination with chromatography for adjusting the acidic variant content of mAbs, which can benefit in improvement in throughput and reduction in manufacturing costs.
Collapse
Affiliation(s)
- Tomasz Rumanek
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszów, Poland
| | - Michał Kołodziej
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów, Poland
| |
Collapse
|
9
|
Recanati G, Coca-Whiteford R, Scheidl P, Sissolak B, Jungbauer A. Redissolution of recombinant antibodies precipitated by ZnCl2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Poly (ethylene) glycol (PEG) precipitation of glycosylated and non-glycosylated monoclonal antibodies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Pons Royo MDC, Beulay JL, Valery E, Jungbauer A, Satzer P. Mode and dosage time in polyethylene glycol precipitation process influences protein precipitate size and filterability. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
13
|
Pons Royo MDC, Beulay JL, Valery E, Jungbauer A, Satzer P. Design of millidevices to expedite apparent solubility measurements. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00022a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A fast, automated and accurate millidevice for determination of the apparent solubility of proteins and impurities and different industrially relevant precipitating agents.
Collapse
Affiliation(s)
- Maria del Carme Pons Royo
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 18, 1190 Vienna, Austria
| | - Jean-Luc Beulay
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
| | - Eric Valery
- Department of Innovation, Novasep, 81 Boulevard de la Moselle, 54340 Pompey, France
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 18, 1190 Vienna, Austria
| | - Peter Satzer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| |
Collapse
|
14
|
Santos RD, Iria I, Manuel AM, Leandro AP, Madeira CAC, Goncalves J, Carvalho AL, Roque ACA. Magnetic Precipitation: A New Platform for Protein Purification. Biotechnol J 2020; 15:e2000151. [PMID: 32578939 DOI: 10.1002/biot.202000151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/03/2020] [Indexed: 01/01/2023]
Abstract
One of the trends in downstream processing comprises the use of "anything-but-chromatography" methods to overcome the current downfalls of standard packed-bed chromatography. Precipitation and magnetic separation are two techniques already proven to accomplish protein purification from complex media, yet never used in synergy. With the aim to capture antibodies directly from crude extracts, a new approach combining precipitation and magnetic separation is developed and named as affinity magnetic precipitation. A precipitation screening, based on the Hofmeister series, and a commercial precipitation kit are tested with affinity magnetic particles to assess the best condition for antibody capture from human serum plasma and clarified cell supernatant. The best conditions are obtained when using PEG3350 as precipitant at 4 °C for 1 h, reaching 80% purity and 50% recovery of polyclonal antibodies from plasma, and 99% purity with 97% recovery yield of anti-TNFα mAb from cell supernatants. These results show that the synergetic use of precipitation and magnetic separation can represent an alternative for the efficient capture of antibodies.
Collapse
Affiliation(s)
- Raquel Dos Santos
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal
| | - Inês Iria
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Ana M Manuel
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Ana P Leandro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Catarina A C Madeira
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Joao Goncalves
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, Lisbon, 1649-003, Portugal
| | - Ana Luísa Carvalho
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal
| | - Ana Cecília A Roque
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal
| |
Collapse
|
15
|
Satzer P, Burgstaller D, Krepper W, Jungbauer A. Fractal dimension of antibody-PEG precipitate: Light microscopy for the reconstruction of 3D precipitate structures. Eng Life Sci 2020; 20:67-78. [PMID: 32874171 PMCID: PMC7447892 DOI: 10.1002/elsc.201900110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Protein and in particular antibody precipitation by PEG is a cost-effective alternative for the first capture step. The 3D structure of precipitates has a large impact on the process parameters for the recovery and dissolution, but current technologies for determination of precipitate structures are either very time consuming (cryo-TEM) or only generate an average fractal dimension (light scattering). We developed a light microscopy based reconstruction of 3D structures of individual particles with a resolution of 0.1-0.2 µm and used this method to characterize particle populations generated by batch as well as continuous precipitation in different shear stress environments. The resulting precipitate structures show a broad distribution in terms of fractal dimension. While the average fractal dimension is significantly different for batch and continuous precipitation, the distribution is broad and samples overlap significantly. The precipitate flocs were monofractal from micro- to nanoscale showing a random but consistent nature of precipitate formation. We showed that the fractal dimension and 3D reconstruction is a valuable tool for characterization of protein precipitate processes. The current switch from batch to continuous manufacturing has to take the 3D structure and population of different protein precipitates into account in their design, engineering, and scale up.
Collapse
Affiliation(s)
- Peter Satzer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Daniel Burgstaller
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Walpurga Krepper
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
16
|
Krepper W, Burgstaller D, Jungbauer A, Satzer P. Mid-manufacturing storage: Antibody stability after chromatography and precipitation based capture steps. Biotechnol Prog 2019; 36:e2928. [PMID: 31622530 PMCID: PMC7187330 DOI: 10.1002/btpr.2928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 09/21/2019] [Indexed: 12/05/2022]
Abstract
Antibodies of the IgG2 subclass were captured from the clarified cell culture fluid either by protein A chromatography or by polyethylene glycol precipitation. The captured intermediates were stored as neutralized eluates (protein A chromatography) or in solid form as polyethylene glycol precipitates over a period of 13 months at three temperatures, −20°C, 5°C, and room temperature to compare the capture technologies in regard of the resulting product storability. Monomer content, high molecular mass impurities product loss and changes in the composition of the charge variants were determined at six time points during the storage. At the beginning and end of the study, samples were additionally tested by differential scanning calorimetry, differential scanning fluorimetry, and circular dichroism to determine structural alterations occurring during storage. Protein A purified material was highly stable at all tested temperatures in regard of monomer content and product losses. A transient, acidic isoform was formed during the chromatography step which re‐converted to the main charged variant upon storage within a matter of days. Precipitated antibodies could be stored at −20 or 5°C for 3 months without product losses but afterwards recovery yields dropped to 65%. At room temperature, the precipitated antibody was not stable and degraded within 3 months.
Collapse
Affiliation(s)
- Walpurga Krepper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Burgstaller
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Peter Satzer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
17
|
Li Y, Stern D, Lock LL, Mills J, Ou SH, Morrow M, Xu X, Ghose S, Li ZJ, Cui H. Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomater 2019; 95:73-90. [PMID: 30862553 DOI: 10.1016/j.actbio.2019.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Downstream processing is considered one of the most challenging phases of industrial manufacturing of therapeutic proteins, accounting for a large portion of the total production costs. The growing demand for therapeutic proteins in the biopharmaceutical market in addition to a significant rise in upstream titers have placed an increasing burden on the downstream purification process, which is often limited by high cost and insufficient capacities. To achieve efficient production and reduced costs, a variety of biomaterials have been exploited to improve the current techniques and also to develop superior alternatives. In this work, we discuss the significance of utilizing traditional biomaterials in downstream processing and review the recent progress in the development of new biomaterials for use in protein separation and purification. Several representative methods will be highlighted and discussed in detail, including affinity chromatography, non-affinity chromatography, membrane separations, magnetic separations, and precipitation/phase separations. STATEMENT OF SIGNIFICANCE: Nowadays, downstream processing of therapeutic proteins is facing great challenges created by the rapid increase of the market size and upstream titers, starving for significant improvements or innovations in current downstream unit operations. Biomaterials have been widely used in downstream manufacturing of proteins and efforts have been continuously devoted to developing more advanced biomaterials for the implementation of more efficient and economical purification methods. This review covers recent advances in the development and application of biomaterials specifically exploited for various chromatographic and non-chromatographic techniques, highlighting several promising alternative strategies.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
18
|
Großhans S, Suhm S, Hubbuch J. Precipitation of complex antibody solutions: influence of contaminant composition and cell culture medium on the precipitation behavior. Bioprocess Biosyst Eng 2019; 42:1039-1051. [PMID: 30887102 PMCID: PMC6527789 DOI: 10.1007/s00449-019-02103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Preparative protein precipitation is known as a cost-efficient and easy-to-use alternative to chromatographic purification steps. This said, at the moment, there is no process for monoclonal antibodies (mAb) on the market, although especially polyethylene glycol-induced precipitation has shown great potential. One reason might be the highly complex behavior of each component of a crude feedstock during the precipitation process. For different investigated mAbs, significant variations in the host cell protein (HCP) reduction are observed. In contrast to the precipitation behavior of single components, the interactions and interplay in a complex feedstock are not fully understood yet. This work discusses the influence of contaminants on the precipitation behavior of two different mAbs, an IgG1, and an IgG2. By spiking the mAbs with mock solution, a complex feedstock could successfully be mimicked. Spiking contaminants influenced the yield and purity of the mAbs after the precipitation step, compared to the precipitation behavior of the single components. The mixture showed a decrease in the contaminant and mAb solubility. By re-buffering the mock solution prior to spiking, special salts, small molecules like amino acids, vitamins, or sugars could be depleted while larger ones like HCP or DNA were still present. Therefore, it was possible to distinguish the influence of small molecules and larger ones. Hence, mAb-macromolecular interaction could be identified as a possible reason for the observed higher precipitation propensity, while small molecules of the cell culture medium were identified as solubilisation factors during the precipitation process.
Collapse
Affiliation(s)
- Steffen Großhans
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Susanna Suhm
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
19
|
Burgstaller D, Jungbauer A, Satzer P. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow. Biotechnol Bioeng 2019; 116:1053-1065. [PMID: 30636284 PMCID: PMC6667901 DOI: 10.1002/bit.26922] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
Continuous precipitation is a new unit operation for the continuous capture of antibodies. The capture step is based on continuous precipitation with PEG6000 and Zn++ in a tubular reactor integrated with a two‐stage continuous tangential flow filtration unit. The precipitate cannot be separated with centrifugation, because a highly compressed sediment results in poor resolubilization. We developed a new two‐stage tangential flow microfiltration method, where part of the concentrated retentate of the first stage was directly fed to the second stage, together with the wash buffer. Thus, the precipitate was concentrated and washed in a continuous process. We obtained 97% antibody purity, a 95% process yield during continuous operation, and a fivefold reduction in pre‐existing high‐molecular‐weight impurities. For other unit operations, surge tanks are often required, due to interruptions in the product mass flow out of the unit operation (e.g., the bind/elute mode in periodic counter‐current chromatography). Our setup required no surge tanks; thus, it provided a truly continuous antibody capture operation with uninterrupted product mass flow. Continuous virus inactivation and other flow‐through unit operations can be readily integrated downstream of the capture step to create truly continuous, integrated, downstream antibody processing without the need for hold tanks.
Collapse
Affiliation(s)
- Daniel Burgstaller
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Peter Satzer
- Department of Biotechnology, University of Natural Resources and Life Sciences,, Vienna, Austria
| |
Collapse
|
20
|
Martinez M, Spitali M, Norrant EL, Bracewell DG. Precipitation as an Enabling Technology for the Intensification of Biopharmaceutical Manufacture. Trends Biotechnol 2018; 37:237-241. [PMID: 30316558 DOI: 10.1016/j.tibtech.2018.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 12/27/2022]
Abstract
Advances in precipitation have demonstrated the capability of purifying therapeutic proteins such as antibodies from biological sources in a scalable and cost-effective manner. We discuss the latest developments in the unit operation for downstream processing applications and provide a perspective on exploring precipitation for bioprocess intensification.
Collapse
Affiliation(s)
- Michael Martinez
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | | | | | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Pabst TM, Thai J, Hunter AK. Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics. J Chromatogr A 2018; 1554:45-60. [DOI: 10.1016/j.chroma.2018.03.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
|
22
|
Sieberz J, Cinar E, Wohlgemuth K, Schembecker G. Clarification of a monoclonal antibody with cationic polyelectrolytes: Analysis of influencing parameters. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Maboudi K, Hosseini SM, Sepahi M, Yaghoubi H, Hadadian S. Production of Erythropoietin-Specific Polyclonal Antibodies. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:50-57. [PMID: 28959352 PMCID: PMC5582253 DOI: 10.15171/ijb.1413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 10/10/2016] [Accepted: 03/13/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Erythropoietin, as a principal hormone promotes red blood cell production in bone marrow. Varieties of erythropoietin biosimilar are being produced by recombinant DNA technology in cell cultures. The detection or quantifi cation of these molecules are being performed by diff erent methods which some of theme such as Western blot and enzymelinked immunosorbent assay (ELISA) require specifi c antibodies. High cost, inappropriate shipping (cold chain failures), reduced sensitivity and thus poor detection performance are common pitfalls of using commercial kits for performing immunological tests. OBJECTIVES To produce in-house polyclonal antibody against active pharmaceutical ingredient (API) of recombinant human erythropoietin (rh-EPO) was the aim of this study. MATERIALS AND METHODS Two healthy female albino rabbits were injected four times in 14 days interval using rh-EPO API as antigen. The produced antibody was separated from plasma via either caprylic acid or saturated ammonium sulfate precipitation and the results were compared from each purification methodologies. The antibody was further purified by ion exchange chromatography. Acceptable purity and good immunogenicity were detected respectively by SDS-PAGE and western blot analysis. The purified antibody was compared with a commercial kit to determine rh-EPO concentration in diff erent steps of production batches via ELISA. RESULTS The purity of antibodies after ion exchange chromatography, obtained from caprylic acid and ammonium sulfate precipitation were 97 and 80%, respectively. CONCLUSIONS As producing in house kits is one of the important challenges of bio- pharmaceutical manufacturers, a simple, cost- and time-effective, and easy to scale up strategy for making in-house polyclonal antibody was set up. Caprylic acid precipitation resulted higher purity than ammonium sulfate and fi nally purified antibody (97% purity) used as a capture antibody in sandwich ELISA test was able to detect erythropoietin antigen as sensitive (100%) and specifi c (100%) as commercial kits.
Collapse
Affiliation(s)
- Kourosh Maboudi
- Department of Biochemistry, Ardabil Branch, Islamic Azad University, Ardabil, 3159915111, Iran
| | | | - Mina Sepahi
- Recombinant Biopharmaceutical Production Department, Pasteur Institute of Iran, Karaj, 31635/157, Iran
| | - Hashem Yaghoubi
- Department of Biochemistry, Ardabil Branch, Islamic Azad University, Ardabil, 3159915111, Iran
| | - Shahin Hadadian
- Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran,1316943551, Iran
| |
Collapse
|
24
|
Shukla AA, Wolfe LS, Mostafa SS, Norman C. Evolving trends in mAb production processes. Bioeng Transl Med 2017; 2:58-69. [PMID: 29313024 PMCID: PMC5689530 DOI: 10.1002/btm2.10061] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. The establishment of robust manufacturing platforms are key for antibody drug discovery efforts to seamlessly translate into clinical and commercial successes. Several drivers are influencing the design of mAb manufacturing processes. The advent of biosimilars is driving a desire to achieve lower cost of goods and globalize biologics manufacturing. High titers are now routinely achieved for mAbs in mammalian cell culture. These drivers have resulted in significant evolution in process platform approaches. Additionally, several new trends in bioprocessing have arisen in keeping with these needs. These include the consideration of alternative expression systems, continuous biomanufacturing and non-chromatographic separation formats. This paper discusses these drivers in the context of the kinds of changes they are driving in mAb production processes.
Collapse
Affiliation(s)
| | - Leslie S. Wolfe
- Process Development & ManufacturingKBI Biopharma Inc.DurhamNC27704
| | - Sigma S. Mostafa
- Process Development & ManufacturingKBI Biopharma Inc.DurhamNC27704
| | - Carnley Norman
- Process Development & ManufacturingKBI Biopharma Inc.DurhamNC27704
| |
Collapse
|
25
|
Renaissance of protein crystallization and precipitation in biopharmaceuticals purification. Biotechnol Adv 2017; 35:41-50. [DOI: 10.1016/j.biotechadv.2016.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
|
26
|
DoE based integration approach of upstream and downstream processing regarding HCP and ATPE as harvest operation. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Kress C, Sadowski G, Brandenbusch C. Protein partition coefficients can be estimated efficiently by hybrid shortcut calculations. J Biotechnol 2016; 233:151-9. [DOI: 10.1016/j.jbiotec.2016.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 11/16/2022]
|
28
|
Kateja N, Agarwal H, Saraswat A, Bhat M, Rathore AS. Continuous precipitation of process related impurities from clarified cell culture supernatant using a novel coiled flow inversion reactor (CFIR). Biotechnol J 2016; 11:1320-1331. [DOI: 10.1002/biot.201600271] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Nikhil Kateja
- Department of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Harshit Agarwal
- Department of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Aditya Saraswat
- Department of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Manish Bhat
- Department of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Anurag S. Rathore
- Department of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| |
Collapse
|
29
|
Continuous polyethylene glycol precipitation of recombinant antibodies: Sequential precipitation and resolubilization. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Lončar N, Slavić MŠ, Vujčić Z, Božić N. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases. Sci Rep 2015; 5:15772. [PMID: 26492875 PMCID: PMC4650330 DOI: 10.1038/srep15772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/01/2015] [Indexed: 11/22/2022] Open
Abstract
Bacillus licheniformis 9945a α-amylase is known as a potent enzyme for raw starch hydrolysis. In this paper, a mixed mode Nuvia cPrime™ resin is examined with the aim to improve the downstream processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface. This resin combines hydrophobic interactions with cation exchange groups and as such the presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper selectivity. α-Amylase was produced using an optimized fed-batch approach in a defined media and significant overexpression of 1.2 g L(-1) was achieved. This single step procedure enables simultaneous concentration, pigment removal as well as purification of amylase with yields of 96% directly from the fermentation broth.
Collapse
Affiliation(s)
- Nikola Lončar
- Department of Biochemistry, Faculty of Chemistry, University of
Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Marinela Šokarda Slavić
- Centre of Chemistry, Institute of Chemistry, Technology and Metallurgy,
University of Belgrade, Studentski trg 12-16, Belgrade,
Serbia
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of
Belgrade, Studentski trg 12-16, Belgrade, Serbia
- Center of Excellence for Molecular Food Sciences, University of
Belgrade, Belgrade, Serbia
| | - Nataša Božić
- Centre of Chemistry, Institute of Chemistry, Technology and Metallurgy,
University of Belgrade, Studentski trg 12-16, Belgrade,
Serbia
| |
Collapse
|
31
|
Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015; 10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
In recent years, the development of novel recombinant virus-like particles (VLPs) has been generating new perspectives for the prevention of untreated and arising infectious diseases. However, cost-reduction and acceleration of manufacturing processes for VLP-based vaccines or vectors are key challenges for the global health system. In particular, the design of rapid and cost-efficient purification processes is a critical bottleneck. In this review, we describe and evaluate new concepts, development strategies and unit operations for the downstream processing of VLPs. A special focus is placed on purity requirements and current trends, as well as chances and limitations of novel technologies. The discussed methods and case studies demonstrate the advances and remaining challenges in both rational process development and purification tools for large biomolecules. The potential of a new era of VLP-based products is highlighted by the progress of various VLPs in clinical phases.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | | |
Collapse
|